1
|
Zhu W, Zhang H, Tang L, Fang K, Lin N, Huang Y, Zhang Y, Le H. Identification of a Plasma Exosomal lncRNA- and circRNA-Based ceRNA Regulatory Network in Patients With Lung Adenocarcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70026. [PMID: 39428538 PMCID: PMC11491303 DOI: 10.1111/crj.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/03/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Exosomes have been established to be enriched with various long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) that exert various biological effects. However, the lncRNA- and circRNA-mediated coexpression competing endogenous RNA (ceRNA) regulatory network in exosomes derived from the plasma of patients with lung adenocarcinoma (LUAD) remains elusive. METHODS AND RESULTS This study enrolled nine patients with lung adenocarcinoma and three healthy individuals, and the differential expression of messenger RNAs (mRNAs), lncRNAs, and circRNAs was detected using microarray analysis, while microRNAs (miRNAs) were detected through RNA sequencing. Additionally, bioinformatics algorithms were applied to evaluate the lncRNA-miRNA-mRNAs/circRNA-miRNA-mRNA network. Differentially expressed cicRNAs were identified via quantitative reverse transcription polymerase chain reaction (RT-qPCR). A total of 1016 lncRNAs, 1396 circRNAs, 45 miRNAs, and 699 mRNAs were differentially expressed in the plasma exosomes of patients with LUAD compared with healthy controls. Among them, 881 lncRNAs were upregulated and 135 were downregulated, 916 circRNAs were upregulated while 480 were downregulated, 45 miRNAs were upregulated while none were downregulated, and 591 mRNAs were upregulated while 108 were downregulated (p ≤ 0.05, and fold change ≥ 2). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the biological functions of differentially expressed RNAs. Meanwhile, the RNA networks displayed the regulatory relationship between dysregulated RNAs. Finally, RT-qPCR validated that the expression of circ-0033861, circ-0043273, and circ-0011959 was upregulated in the plasma exosome of patients with LUAD compared to healthy controls (p = 0.0327, p = 0.0002, p = 0.0437, respectively). CONCLUSION This study proposed a newly discovered ncRNA-miRNA-mRNA/circRNA-miRNA-mRNA ceRNA network and identified that the expression of circulating circ-0033861, circ-0043273, and circ-0011959 was up-regulated in the plasma exosomes of patients with LUAD, offering valuable insights for exploring the potential function of exosomal noncoding RNA and identifying potential biomarkers for LUAD.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Exosomes/genetics
- Exosomes/metabolism
- RNA, Circular/blood
- RNA, Circular/genetics
- Male
- Female
- Lung Neoplasms/genetics
- Lung Neoplasms/blood
- Lung Neoplasms/pathology
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/blood
- Adenocarcinoma of Lung/pathology
- Middle Aged
- Gene Regulatory Networks
- RNA, Messenger/genetics
- RNA, Messenger/blood
- Gene Expression Regulation, Neoplastic
- MicroRNAs/blood
- MicroRNAs/genetics
- Aged
- Gene Expression Profiling/methods
- Computational Biology/methods
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Up-Regulation
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Wangyu Zhu
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Huafeng Zhang
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Liwei Tang
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Kexin Fang
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
| | - Nawa Lin
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
| | - Yanyan Huang
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
| | - Yongkui Zhang
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Hanbo Le
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| |
Collapse
|
2
|
Guo D, Sheng K, Zhang Q, Li P, Sun H, Wang Y, Lyu X, Jia Y, Wang C, Wu J, Zhang X, Wang D, Sun Y, Huang S, Yu J, Zhang J. Single-cell transcriptomic analysis reveals the landscape of epithelial-mesenchymal transition molecular heterogeneity in esophageal squamous cell carcinoma. Cancer Lett 2024; 587:216723. [PMID: 38342234 DOI: 10.1016/j.canlet.2024.216723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignant disease. The epithelial-mesenchymal transition (EMT) is crucial in promoting ESCC development. However, the molecular heterogeneity of ESCC and the potential inhibitory strategies targeting EMT remain poorly understood. In this study, we analyzed high-resolution single-cell transcriptome data encompassing 209,231 ESCC cells from 39 tumor samples and 16 adjacent samples obtained from 44 individuals. We identified distinct cell populations exhibiting heterogeneous EMT characteristics and identified 87 EMT-associated molecules. The expression profiles of these EMT-associated molecules showed heterogeneity across different stages of ESCC progression. Moreover, we observed that EMT primarily occurred in early-stage tumors, before lymph node metastasis, and significantly promoted the rapid deterioration of ESCC. Notably, we identified SERPINH1 as a potential novel marker for ESCC EMT. By classifying ESCC patients based on EMT gene sets, we found that those with high EMT exhibited poorer prognosis. Furthermore, we predicted and experimentally validated drugs targeting ESCC EMT, including dactolisib, docetaxel, and nutlin, which demonstrated efficacy in inhibiting EMT and metastasis in ESCC. Through the integration of scRNA-seq, RNA-seq, and TCGA data with experimental validation, our comprehensive analysis elucidated the landscape of EMT during the entire course of ESCC development and metastasis. These findings provide valuable insights and a reference for refining ESCC clinical treatment strategies.
Collapse
Affiliation(s)
- Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Kaiwen Sheng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Qi Zhang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Pin Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Haoqiang Sun
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yongjie Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xinxing Lyu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250117, China.
| | - Caifan Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jing Wu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiaohang Zhang
- Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| | - Dandan Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yawen Sun
- Department of Clinical Epidemiology and Biostatistics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jingze Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|