1
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kovalenko TF, Yadav B, Anufrieva KS, Larionova TD, Aksinina TE, Latyshev YA, Bastola S, Shakhparonov MI, Pandey AK, Pavlyukov MS. PTEN regulates expression of its pseudogene in glioblastoma cells in DNA methylation-dependent manner. Biochimie 2024; 219:74-83. [PMID: 37619809 DOI: 10.1016/j.biochi.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and frequent type of primary brain cancer in adult patients. One of the key molecular features associated with GBM pathogenesis is the dysfunction of PTEN oncosuppressor. In addition to PTEN gene, humans and several primates possess processed PTEN pseudogene (PTENP1) that gives rise to long non-coding RNA lncPTENP1-S. Regulation and functions of PTEN and PTENP1 are highly interconnected, however, the exact molecular mechanism of how these two genes affect each other remains unclear. Here, we analyzed the methylation level of the CpG islands (CpGIs) in the promoter regions of PTEN and PTENP1 in patient-derived GBM neurospheres. We found that increased PTEN methylation corelates with decreased PTEN mRNA level. Unexpectedly, we showed the opposite trend for PTENP1. Using targeted methylation and demethylation of PTENP1 CpGI, we demonstrated that DNA methylation increases lncPTENP1-S expression in the presence of wild type PTEN protein but decreases lncPTENP1-S expression if PTEN protein is absent. Further experiments revealed that PTEN protein binds to PTENP1 promoter region and inhibits lncPTENP1-S expression if its CpGI is demethylated. Interestingly, we did not detect any effect of lncPTENP1-S on the level of PTEN mRNA, indicating that in GBM cells PTENP1 is a downstream target of PTEN rather than its upstream regulator. Finally, we studied the functions of lncPTENP1-S and demonstrated that it plays a pro-oncogenic role in GBM cells by upregulating the expression of cancer stem cell markers and decreasing cell adhesion.
Collapse
Affiliation(s)
| | - Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, India
| | - Ksenia S Anufrieva
- Laboratory of System Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Yaroslav A Latyshev
- Federal State Autonomous Institution, N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Soniya Bastola
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, India; National Institute of Pharmaceutical Education and Research, Palaj, Gandhinagar, Gujarat, India
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
3
|
Feng L, Chen X, Sheng G, Li Y, Li Y, Zhang Y, Yao K, Wu Z, Zhang R, Kiboku T, Kawasaki A, Horimoto K, Tang Y, Sun M, Han F, Chen D. Synthesis and Bioevaluation of 3-(Arylmethylene)indole Derivatives: Discovery of a Novel ALK Modulator with Antiglioblastoma Activities. J Med Chem 2023; 66:14609-14622. [PMID: 37861443 DOI: 10.1021/acs.jmedchem.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Glioblastoma is the most common brain tumor, with high recurrence and low survival rates. An integrative bioinformatics analysis demonstrated that anaplastic lymphoma kinase (ALK) is a promising therapeutic target for glioblastoma. We designed and synthesized a series of 3-(arylmethylene)indole derivatives, which were further evaluated for antiproliferative activity using glioma cell lines. Among them, compound 4a significantly inhibited the viability of glioblastoma cells. With favorable pharmacokinetic characteristics and blood-brain barrier permeability, 4a improved the survival rate and inhibited the growth of orthotopic glioblastoma. The Phospho-Totum system revealed that ALK was a potential target for the antiglioblastoma activity of 4a. Further experiments indicated that 4a might be a novel ALK modulator, which interacted with the extracellular ligand-binding domain of ALK, thus selectively induced ERK-mediated autophagy and apoptosis. Our findings provide an alternative ALK-based targeting strategy and a new drug candidate for glioblastoma therapy.
Collapse
Affiliation(s)
- Lili Feng
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Gang Sheng
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yingchun Li
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yingying Li
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yixuan Zhang
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Kun Yao
- Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Zhouyue Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Rong Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | | | | | - Katsuhisa Horimoto
- Socium Inc., Tokyo 1350064, Japan
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 1350064, Japan
| | - Yamin Tang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meiling Sun
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dongyin Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Fuentes-Fayos AC, G-García ME, Pérez-Gómez JM, Montero-Hidalgo AJ, Martín-Colom J, Doval-Rosa C, Blanco-Acevedo C, Torres E, Toledano-Delgado Á, Sánchez-Sánchez R, Peralbo-Santaella E, Ortega-Salas RM, Jiménez-Vacas JM, Tena-Sempere M, López M, Castaño JP, Gahete MD, Solivera J, Luque RM. Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: clinical and translational evidence. EBioMedicine 2023; 90:104484. [PMID: 36907105 PMCID: PMC10024193 DOI: 10.1016/j.ebiom.2023.104484] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. METHODS An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. FINDINGS Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFβ-pathways). Interestingly, an enrichment analysis uncovered a TGFβ-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. INTERPRETATION Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. FUNDING Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| | - Miguel E G-García
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Julia Martín-Colom
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Carlos Doval-Rosa
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Encarnación Torres
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Álvaro Toledano-Delgado
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Esther Peralbo-Santaella
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Flow Cytometry Unit, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004, Cordoba, Spain
| | - Rosa M Ortega-Salas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Manuel Tena-Sempere
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Miguel López
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain; NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Juan Solivera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| |
Collapse
|
5
|
Mazur DV, Mishanova AV, Kovalenko TF, Shakhparonov MI, Antipova NV. Influence of the Cultivation Conditions of the Glioblastoma Neurosphere on the Expression of MALAT1 and LINCROR Long Non-coding RNA Genes. DOKL BIOCHEM BIOPHYS 2023; 508:21-24. [PMID: 36653583 PMCID: PMC10042948 DOI: 10.1134/s1607672922700053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor. One of the reasons for the resistance of GBM to treatment is the extreme heterogeneity of the tumor and, in particular, the presence of cancer stem cells (CSCs) in the population of glioblastoma cells. In this work, we investigated the effect of conditions that reduce the proportion of CSCs in the GBM cell population on the levels of long noncoding RNAs (lincROR and MALAT1) involved in the formation of the phenotype of glioblastoma cancer stem cells. We have shown that culturing under conditions that cause a decrease in cell stemness (when fetal bovine serum is added to the culture medium) affected the content of these transcripts: in the cells of most of the analyzed lines, a decrease in the level of the positive stemness regulator lincROR and an increase in the content of MALAT1 were noted.
Collapse
Affiliation(s)
- D V Mazur
- Institute of Bioorganic Chemistry named after M.M. Shemyakin and Yu.A. Ovchinnikov, Moscow, Russia
| | - A V Mishanova
- Institute of Bioorganic Chemistry named after M.M. Shemyakin and Yu.A. Ovchinnikov, Moscow, Russia
| | - T F Kovalenko
- Institute of Bioorganic Chemistry named after M.M. Shemyakin and Yu.A. Ovchinnikov, Moscow, Russia
| | - M I Shakhparonov
- Institute of Bioorganic Chemistry named after M.M. Shemyakin and Yu.A. Ovchinnikov, Moscow, Russia
| | - N V Antipova
- Institute of Bioorganic Chemistry named after M.M. Shemyakin and Yu.A. Ovchinnikov, Moscow, Russia. .,Department of Biology and Biotechnology, Higher School of Economics, Moscow, Russia.
| |
Collapse
|
6
|
Liu R, Liang W, Hua Q, Wu L, Wang X, Li Q, Zhong F, Li B, Qiu Z. Fatty Acid Metabolic Signaling Pathway Alternation Predict Prognosis of Immune Checkpoint Inhibitors in Glioblastoma. Front Immunol 2022; 13:819515. [PMID: 35251000 PMCID: PMC8894256 DOI: 10.3389/fimmu.2022.819515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionGlioblastoma(GBM) is a highly malignant primary brain tumor. Even after undergoing surgery and chemotherapy, patients with this affliction still have little to no chance of survival. Current research on immunotherapy treatment for GBM shows that immune-checkpoint inhibitors (ICIs) may be a promising new treatment method. However, at present, the relationship between the fatty acid metabolic process and the prognosis of GBM patients who are receiving immunotherapy is not clear.MethodsFirst, we downloaded a GBM cohort that had been treated with immunotherapy, which included the mutation and prognosis data, and the TCGA-GBM and Jonsson-GBM queues. CIBERSORT and single sample gene set enrichment analysis(ssGSEA) were used to evaluate immune cell scores. Gene set enrichment analysis (GSEA) was used to evaluate the patient’s accessment score. The pRRophetic algorithm was used to evaluate the drug sensitivity of each patient. Univariable and multivariate cox regression analyses, as well as the Kaplan-Meier (KM) method, were used to evaluate the relationship between the fatty acid metabolic process and the prognosis of GBM patients.ResultsThe univariate and multivariate cox regression models showed that the fatty acid metabolic process mutant-type (MT) can be used as an independent predictor of the efficacy of immunotherapy for GBM patients. In addition, fatty acid metabolic process MT is related with significantly longer overall survival (OS) time than the wild-type(WT) variant. However, the mutation status of the fatty acid metabolic process has nothing to do with the prognosis of GBM patients who are receiving conventional treatment. Our analysis showed that fatty acid metabolic process MT correlated with significantly increased natural killer T (NKT) cells and significantly decreased CD8+T cells. At the same time, GSEA analysis revealed that fatty acid metabolic process MT was associated with significantly increased immune activation pathways and an enriched fraction of cytokine secretion compared with WT.ConclusionsWe found that fatty acid metabolic process MT may be used as an independent predictor of the efficacy of ICI treatment in GBM patients. Use of the fatty acid metabolic process MT will result in higher immunogenicity rates, a significant increase in the proportion of activated immune cells, and improvement of the immune microenvironment.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Neurology, Ganzhou People’s Hospital, Ganzhou, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weidong Liang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qian Hua
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Longqiu Wu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangcai Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiang Li
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangjun Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Bin Li
- Department of Neurology, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Bin Li, ; Zhengang Qiu,
| | - Zhengang Qiu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Bin Li, ; Zhengang Qiu,
| |
Collapse
|
7
|
Chi D, Zhang W, Jia Y, Cong D, Hu S. Spalt-Like Transcription Factor 1 (SALL1) Gene Expression Inhibits Cell Proliferation and Cell Migration of Human Glioma Cells Through the Wnt/β-Catenin Signaling Pathway. Med Sci Monit Basic Res 2019; 25:128-138. [PMID: 31040265 PMCID: PMC6511114 DOI: 10.12659/msmbr.915067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The spalt-like transcription factor 1 (SALL1) gene is a member of the Krüppel-associated box-containing zinc finger proteins (KRAB-ZFPs) and has been shown to modulate the onset and progression of human tumors. This study aimed to investigate the regulatory effects and mechanisms of SALL1 gene expression in human glioblastoma and glioma cells and tissue samples from patients with cerebral glioma. Material/Methods The human glioblastoma cell lines, LN229, U87-MG, U-251, U343, and the Hs683 glioma cell line were studied. The cell counting kit-8 (CCK-8) assay, cell cycle assay, wound-healing assay, transwell assay, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to evaluate cell proliferation, cell migration, and the cell cycle and expression of SALL1. Expression of SALL1 mRNA in 120 samples of cerebral glioma and 20 samples of normal brain were studied. Overall survival data from patients with cerebral glioma were analyzed. Results SALL1 expression was down-regulated in human glioblastoma and glioma cells and in cerebral glioma tissues. Down-regulation of SALL1 expression was associated with reduced overall survival. Overexpression of SALL1 was associated with inhibition of cell proliferation associated with cell cycle arrest at the G0/G1 phase. SALL1 inhibited cell migration by preventing epithelial-mesenchymal transition (EMT) and down-regulating the expression of stem cell markers. Reduced levels of β-catenin and downregulation of c-Myc and cyclin D1 and upregulation of p21and p27 expression were associated with SALL1 expression. Conclusions In human glioblastoma cells and cerebral glioma tissues, SALL1 acted as a tumor suppressor gene by inhibiting Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Dapeng Chi
- Department of Neurological Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China (mainland)
| | - Wei Zhang
- Department of Pathology, Shanghai Tenth Peoples' Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Yulong Jia
- Department of Neurological Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China (mainland)
| | - Damin Cong
- Department of Neurological Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China (mainland)
| | - Shaoshan Hu
- Department of Neurological Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China (mainland)
| |
Collapse
|
8
|
Samaras V, Stamatelli A, Samaras E, Arnaoutoglou C, Arnaoutoglou M, Stergiou I, Konstantopoulou P, Varsos V, Karameris A, Barbatis C. Comparative immunohistochemical analysis of aurora-A and aurora-B expression in human glioblastomas. Associations with proliferative activity and clinicopathological features. Pathol Res Pract 2009; 205:765-73. [PMID: 19616898 DOI: 10.1016/j.prp.2009.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/17/2009] [Accepted: 06/10/2009] [Indexed: 01/22/2023]
Abstract
In the present study, we carried out a comparative immunohistochemical analysis of aurora-A and aurora-B expression in 40 patients with primary glioblastomas, and attempted to identify any associations with Ki-67 index and the patients' clinical features. The impact of various treatment modalities and proliferative activity on patient outcome was also assessed. Immunohistochemistry was carried out using formalin-fixed and paraffin-embedded tissue sections. Aurora-A expression was higher in tumors with high Ki-67 expression (p=0.01) and was positively, though marginally, related to aurora-B expression (p=0.085). Aurora-B expression was not linked to Ki-67 expression (p=0.182). Lower aurora-A immunohistochemical expression, chemotherapy administration, and tumor localization in one lobe of the brain implied a greater probability of patient survival in univariate analysis (p=0.044, p=0.008, p=0.041, respectively). Ki-67 and aurora-B immunoreactivities were not associated with patient survival (p=0.918 and p=0.539, respectively). To our knowledge, for the first time, the association between aurora-A and aurora-B expression, the correlation of aurora-A with Ki-67 index, and the prognostic impact of aurora-A expression were assessed in glioblastomas. Although we addressed a prognostic connotation of aurora-A, we presume that aurora-A and aurora-B play a complicated role within glioblastomas. Further examinations of larger series are required, so that definite conclusions can be drawn.
Collapse
Affiliation(s)
- Vassilis Samaras
- Department of Histology and Embryology, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Choi JW, Lee MM, Kim IA, Kim JH, Choe G, Kim CY. The outcomes of concomitant chemoradiotherapy followed by adjuvant chemotherapy with temozolomide for newly diagnosed high grade gliomas : the preliminary results of single center prospective study. J Korean Neurosurg Soc 2008; 44:222-7. [PMID: 19096681 DOI: 10.3340/jkns.2008.44.4.222] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/19/2008] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Malignant gliomas are the most common primary cerebral neoplasms in adults. Despite multimodality treatments, the prognosis for patients with malignant glioma remains poor. However, recently, the effectiveness of concomitant chemoradiotherapy (CCRT) with temozolomide (TMZ) has been reported. We report for the first time preliminary results of the treatment with CCRT of newly diagnosed malignant gliomas in Korean people. METHODS Thirty-two patients over the age of 17 years with newly diagnosed and histologically confirmed high-grade gliomas (HGG), from June 2004 to August 2007 were the subjects of this study. There were 17 men and 15 women, with a median age of 53.5 years (range, 17-74). Pathologically, glioblastoma, anaplastic astrocytoma, anaplastic oligodendroglioma, and gliomatosis cerebri had been diagnosed in eighteen, eight, four, and two patients, respectively. These 32 patients were treated with CCRT with TMZ. RESULTS The median follow-up period was 12.5 months (range 3-48). At the time of this analysis, 13 patients died and three patients had been lost to follow-up. There was no mortality caused by drug toxicity. The median progression-free survival (PFS) of these patients was 9.0 months, and the six-month PFS rate was 72.4%. The median overall survival (OS) was 26 months, and the one-year OS rate was 83.6%. The 18 patients with glioblastoma were analyzed separately from the other patients with HGG, and the median OS was 18 months, and the one-year OS rates were 81.8%. The median PFS was seven months, and the six-month PFS rate was 75.0%. CONCLUSION Our results are consistent with many other reports, confirming that CCRT with TMZ achieves good clinical outcomes in the treatment of HGG. Therefore, we suggest that CCRT with TMZ as adjuvant chemotherapy be considered as a standard therapy for patients with HGG.
Collapse
Affiliation(s)
- Jung-Won Choi
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University, College of Medicine, Seongnam, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Tournat H, Huchet A, Ouhabrache N, Thomas IC, Roubaud G, Maire JP. Évolution métastatique osseuse d'un méningiome récidivant : à propos d'un cas. Cancer Radiother 2006; 10:590-4. [PMID: 16876455 DOI: 10.1016/j.canrad.2006.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
We report the case of a 57-year-old man who presented with two local recurrences and metastatic dissemination of a papillary meningioma of the sphenoid 3 years after surgery. Treatment consisted in a combination of surgery for the local recurrence in the initial site, radiotherapy and chemotherapy for bone metastases. Evolution of the disease spread over 7.5 years. The literature relating metastatic meningiomas is reviewed; prognostic factors and main therapeutic protocols are discussed.
Collapse
Affiliation(s)
- Helène Tournat
- Service d'Oncologie Médicale et de Radiothérapie, Hôpital Saint-André, 1, rue Jean-Burguet, 33075 Bordeaux cedex, France
| | | | | | | | | | | |
Collapse
|
11
|
Kochbati L, Bouaouina N, Hentati D, Nasr C, Besbes M, Benna F, Boussen H, Maalej M. [Medulloblastoma with extracentral nervous system metastases: clinical presentation and risk factors]. Cancer Radiother 2006; 10:107-11. [PMID: 16600659 DOI: 10.1016/j.canrad.2006.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 02/13/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE Extra-central nervous system (extra-CNS) metastases are relatively unknown failure patterns in medulloblastoma. The aim of this study was to analyse epidemiological, clinical and aetiopathological aspects of these extra-CNS localisations. PATIENTS AND METHODS Extra-CNS metastases were retrospectively identified in patients treated in the department of radiation therapy at Salah-Azaïz institute (ISA) for medulloblastoma. These metastases were diagnosed as extra-CNS for all secondary localisations not related to other tumour aetiology. Aetiopathological aspects are discussed with a literature review. RESULTS Among 103 patients treated and followed-up in the department of radiation therapy of ISA from 1970 to 1992, 8 developed extra-CNS metastases (7.7%). Age at diagnosis of primitive tumour varied from 3 to 23 years. Sex ratio was 1. Primitive tumour treatment was: complete surgical resection in 4 patients with preoperative cerebrospinal fluid shunting in two, cerebrospinal axis irradiation in 7 patients and a cerebral-limited irradiation in 1. Two patients received chemotherapy for their initial treatment (systemic in one case and intrathecal in the other). The mean free-interval from diagnosis of primitive tumour to extra-CNS metastases was 23 months, varying from 8 to 53 months. These metastases were located in the liver (1 case), cervical lymph nodes (2 cases), bone marrow (1 case) and bone (2 cases). Two patients had multiple metastases: bone and bone marrow (in one), lung, pleura, cervical lymph node and bone localisations (in one). Treatment of these metastases was: chemotherapy in 5 cases, chemotherapy and radiation in one, radiation therapy in one and 2 patients were given only supportive care treatment. All patients died or are in progressive disease in less than one year from the diagnosis of extra-CNS metastases. CONCLUSION Extra-CNS metastases are not rare and have a poor prognosis. The most commonly involved sites are bone, cervical lymph nodes and bone marrow. A complete work-up at initial diagnosis is recommended to screen early metastases. Literature review showed that histopathologic grading might help to identify groups at risk.
Collapse
Affiliation(s)
- Lotfi Kochbati
- Radiotherapy department, Salah-Azaïz institute, boulevard Bab-Saadoun, Tunis, Tunisia. lotfi@
| | | | | | | | | | | | | | | |
Collapse
|