1
|
Men K, Dai J. A comprehensive evaluation of angular range and separation on image quality, image registration, and imaging dose for cone beam computed tomography in radiotherapy. Med Dosim 2019; 44:67-73. [DOI: 10.1016/j.meddos.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/16/2018] [Accepted: 02/12/2018] [Indexed: 12/31/2022]
|
2
|
Apport du guidage par l’image pour le repositionnement au cours de la radiothérapie des tumeurs encéphaliques. Cancer Radiother 2018; 22:593-601. [DOI: 10.1016/j.canrad.2018.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022]
|
3
|
Masson I, Delpon G, Vendrely V. [Image-guided radiotherapy contribution and patient setup for anorectal cancer treatment]. Cancer Radiother 2018; 22:622-630. [PMID: 30143462 DOI: 10.1016/j.canrad.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/27/2018] [Indexed: 01/24/2023]
Abstract
Intensity-modulated radiation therapy is recommended in anal squamous cell carcinoma treatment and is increasingly used in rectal cancer. It adapts the dose to target volumes, with a high doses gradient. Intensity-modulated radiation therapy allows to reduce toxicity to critical normal structures and to consider dose-escalation studies or systemic treatment intensification. Image-guided radiation therapy is a warrant of quality for intensity-modulated radiation therapy, especially for successful delivery of the dose as planned. There is no recommended international or national anorectal cancer image-guided radiation therapy protocol currently available. Dose-escalation trials or expert opinions about intensity-modulated/image-guided radiation therapy good practice guidelines recommend daily volumetric imaging throughout the treatment or during the five first fractions and weekly thereafter as a minimum. Image-guided radiation therapy allows to reduce margins related to patient setup errors. Internal margin, related to the internal organ motion, needs to be adapted according to short- or long-course radiotherapy, gender, rectal location; it can be higher than current recommended planning target volume margins, particularly in the upper and anterior part of mesorectum, which has the most significant movement. Image-guided radiation therapy based on volumetric imaging allows to take target volume shrinkage into account and to develop adaptive strategies, in particular for mesorectum shrinkage during rectal cancer treatment. Lastly, the emergence of new image-guided radiation therapy technologies including MRI (which plays a major role in pelvic tumours assessment and diagnosis) opens up interesting perspectives for adaptive radiotherapy, taking into account both organs' movements and tumour shrinkage.
Collapse
Affiliation(s)
- I Masson
- Département de radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain, France.
| | - G Delpon
- Département de physique médicale, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - V Vendrely
- Service de radiothérapie, hôpital Haut-Lévêque, CHU de Bordeaux, avenue de Magellan, 33604 Pessac, France
| |
Collapse
|
4
|
Men K, Dai J, Chen X, Li M, Zhang K, Huang P. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography. Phys Med 2017; 36:110-118. [PMID: 28410679 DOI: 10.1016/j.ejmp.2017.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 01/30/2023] Open
Abstract
PURPOSE To improve the image quality and accuracy of dose calculation for cone-beam computed tomography (CT) images through implementation of a dual-energy cone-beam computed tomography method (DE-CBCT), and evaluate the improvement quantitatively. METHODS Two sets of CBCT projections were acquired using the X-ray volumetric imaging (XVI) system on a Synergy (Elekta, Stockholm, Sweden) system with 120kV (high) and 70kV (low) X-rays, respectively. Then, the electron density relative to water (relative electron density (RED)) of each voxel was calculated using a projection-based dual-energy decomposition method. As a comparison, single-energy cone-beam computed tomography (SE-CBCT) was used to calculate RED with the Hounsfield unit-RED calibration curve generated by a CIRS phantom scan with identical imaging parameters. The imaging dose was measured with a dosimetry phantom. The image quality was evaluated quantitatively using a Catphan 503 phantom with the evaluation indices of the reproducibility of the RED values, high-contrast resolution (MTF50%), uniformity, and signal-to-noise ratio (SNR). Dose calculation of two simulated volumetric-modulated arc therapy plans using an Eclipse treatment-planning system (Varian Medical Systems, Palo Alto, CA, USA) was performed on an Alderson Rando Head and Neck (H&N) phantom and a Pelvis phantom. Fan-beam planning CT images for the H&N and Pelvis phantom were set as the reference. A global three-dimensional gamma analysis was used to compare dose distributions with the reference. The average gamma values for targets and OAR were analyzed with paired t-tests between DE-CBCT and SE-CBCT. RESULTS In two scans (H&N scan and body scan), the imaging dose of DE-CBCT increased by 1.0% and decreased by 1.3%. It had a better reproducibility of the RED values (mean bias: 0.03 and 0.07) compared with SE-CBCT (mean bias: 0.13 and 0.16). It also improved the image uniformity (57.5% and 30.1%) and SNR (9.7% and 2.3%), but did not affect the MTF50%. Gamma analyses of the 3D dose distribution with criteria of 1%/1mm showed a pass rate of 99.0-100% and 85.3-97.6% for DE-CBCT and 73.5-99.1% and 80.4-92.7% for SE-CBCT. The average gamma values were reduced significantly by DE-CBCT (p< 0.05). Gamma index maps showed that matching of the dose distribution between CBCT-based and reference was improved by DE-CBCT. CONCLUSIONS DE-CBCT can achieve both better image quality and higher accuracy of dose calculation, and could be applied to adaptive radiotherapy.
Collapse
Affiliation(s)
- Kuo Men
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianrong Dai
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xinyuan Chen
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Minghui Li
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ke Zhang
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peng Huang
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
5
|
de Crevoisier R, Duvergé L, Hulot C, Chauvet B, Henry O, Bouvet C, Castelli J. [Interest of positioning control in onboard imaging and its delegation to the therapists]. Cancer Radiother 2016; 20:601-7. [PMID: 27614503 DOI: 10.1016/j.canrad.2016.07.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
The delegation of the on board imaging position control, from the radiation oncologist to the therapist, is justified by the generalization of the image-guided radiotherapy techniques which are particularly time consuming. This delegation is however partial. Indeed, the validation of the position by the therapist can be clearly performed when the registration is based on bony landmark or fiducial. The radiation oncologist needs however to make the validation in case of large target displacement, in more complex soft tissue-based registration, and in case of stereotactic body radiation therapy. Moreover, this delegation implies at least three conditions which are first the training of the staff, then the formalization of the procedures, responsibilities and delegations and finally, the evaluation of the practices of IGRT.
Collapse
Affiliation(s)
- R de Crevoisier
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, 35042 Rennes, France.
| | - L Duvergé
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, 35042 Rennes, France
| | - C Hulot
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, 35042 Rennes, France
| | - B Chauvet
- Département de radiothérapie, institut Sainte-Catherine, 84918 Avignon cedex 9, France
| | - O Henry
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, 35042 Rennes, France
| | - C Bouvet
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, 35042 Rennes, France
| | - J Castelli
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, 35042 Rennes, France
| |
Collapse
|
6
|
Ramiandrisoa F, Duvergé L, Castelli J, Nguyen TD, Servagi-Vernat S, de Crevoisier R. [Clinical to planning target volume margins in prostate cancer radiotherapy]. Cancer Radiother 2016; 20:629-39. [PMID: 27614515 DOI: 10.1016/j.canrad.2016.07.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 02/03/2023]
Abstract
The knowledge of inter- and intrafraction motion and deformations of the intrapelvic target volumes (prostate, seminal vesicles, prostatectomy bed and lymph nodes) as well as the main organs at risk (bladder and rectum) allow to define rational clinical to planning target volume margins, depending on the different radiotherapy techniques and their uncertainties. In case of image-guided radiotherapy, prostate margins and seminal vesicles margins can be between 5 and 10mm. The margins around the prostatectomy bed vary from 10 to 15mm and those around the lymph node clinical target volume between 7 and 10mm. Stereotactic body radiotherapy allows lower margins, which are 3 to 5mm around the prostate. Image-guided and stereotactic body radiotherapy with adequate margins allow finally moderate or extreme hypofractionation.
Collapse
Affiliation(s)
- F Ramiandrisoa
- Département de radiothérapie, institut Jean-Godinot, 1, rue du Général-Kœnig, 51100 Reims, France.
| | - L Duvergé
- Département de radiothérapie, centre Eugène-Marquis, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France
| | - J Castelli
- Département de radiothérapie, centre Eugène-Marquis, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France; LTSI, campus de Beaulieu, université de Rennes 1, 35000 Rennes, France; Inserm U1099, campus de Beaulieu, 35000 Rennes, France
| | - T D Nguyen
- Département de radiothérapie, institut Jean-Godinot, 1, rue du Général-Kœnig, 51100 Reims, France
| | - S Servagi-Vernat
- Département de radiothérapie, institut Jean-Godinot, 1, rue du Général-Kœnig, 51100 Reims, France
| | - R de Crevoisier
- Département de radiothérapie, centre Eugène-Marquis, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France; LTSI, campus de Beaulieu, université de Rennes 1, 35000 Rennes, France; Inserm U1099, campus de Beaulieu, 35000 Rennes, France
| |
Collapse
|
7
|
Colliaux J, Kharchi L, Vincendeau S, Simon A, Perdrieux M, Le Prisé É, Bellisant É, Castelli J, de Crevoisier R. [Expected benefit of lymph node and seminal vesical dissection to decrease high-risk prostate cancer radiotherapy]. Cancer Radiother 2016; 20:347-56. [PMID: 27344535 DOI: 10.1016/j.canrad.2016.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE In case of pelvic lymph node and seminal vesicle dissection followed by prostate cancer intensity-modulated radiotherapy, the objective of the study was to evaluate the dosimetric benefit of reducing the target volume. PATIENTS AND METHODS A total of 25 patients with high-risk prostate cancer had surgery first followed by intensity-modulated radiotherapy and androgen deprivation. Four treatment planning were simulated for each patient, based on two CT scans performed before and after surgery. The target volumes were: prostate-seminal vesicles-lymph nodes, prostate-lymph nodes, prostate-seminal vesicles and prostate only. The total dose was 46Gy in the seminal vesicles and lymph nodes, and 80Gy in the prostate. RESULTS Compared to prostate target volume only, the addition of seminal vesicles and lymph nodes multiplied by a factor of 1.6 and 6.5 the target volume, respectively. Decreasing the target volume from prostate-seminal vesicles-lymph nodes to prostate-seminal vesicles, to prostate only decreased the rectal wall mean dose from 49Gy to 42Gy, to 36Gy, and the risk of late rectal bleeding from 4.4% to 3.2%, to 2.4% (P<0.05), respectively. The bladder wall mean dose decreased from 51Gy to 40Gy, to 35Gy (P<0,05), respectively. Not irradiating the lymph nodes decreased the absolute risk of diarrhea by 11%. CONCLUSION Lymph node and seminal vesicle dissection before prostate cancer intensity-modulated radiotherapy allows decreasing moderately the risk of digestive toxicity.
Collapse
Affiliation(s)
- J Colliaux
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France; Université de Rennes 1, centre investigation clinique, CHU Pontchaillou, 2, rue Henri-Le Guilloux, 35000 Rennes, France
| | - L Kharchi
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France; Inserm, U1099, laboratoire de traitement du signal et de l'image, 263, avenue du Général-Leclerc, 35042 Rennes, France
| | - S Vincendeau
- Service d'urologie, CHU Pontchaillou, 2, rue Henri-Le-Guilloux, 35000 Rennes, France
| | - A Simon
- Inserm, U1099, laboratoire de traitement du signal et de l'image, 263, avenue du Général-Leclerc, 35042 Rennes, France
| | - M Perdrieux
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France
| | - É Le Prisé
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France
| | - É Bellisant
- Université de Rennes 1, centre investigation clinique, CHU Pontchaillou, 2, rue Henri-Le Guilloux, 35000 Rennes, France
| | - J Castelli
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France; Université de Rennes 1, centre investigation clinique, CHU Pontchaillou, 2, rue Henri-Le Guilloux, 35000 Rennes, France
| | - R de Crevoisier
- Département de radiothérapie, centre régional de lutte contre le cancer Eugène-Marquis, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France; Inserm, U1099, laboratoire de traitement du signal et de l'image, 263, avenue du Général-Leclerc, 35042 Rennes, France; Université de Rennes 1, centre investigation clinique, CHU Pontchaillou, 2, rue Henri-Le Guilloux, 35000 Rennes, France.
| |
Collapse
|