1
|
Xu Q, Vinogradskiy Y, Grimm J, Nie W, Dupre P, Chawla AK, Bajaj G, Yang H, LaCouture T, Fan J. Evaluation of a novel patient-specific quality assurance phantom for robotic single-isocentre, multiple-target stereotactic radiosurgery, and stereotactic radiotherapy. Br J Radiol 2024; 97:660-667. [PMID: 38401536 PMCID: PMC11027335 DOI: 10.1093/bjr/tqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/26/2024] Open
Abstract
OBJECTIVES To evaluate patient-specific quality assurance (PSQA) of 3 targets in a single delivery using a novel film-based phantom. METHODS The phantom was designed to rotate freely as a sphere and could measure 3 targets with film in a single delivery. After identifying the coordinates of 3 targets in the skull, the rotation angles about the equator and meridian were computed for optimal phantom setup, ensuring the film plane intersected the 3 targets. The plans were delivered on the CyberKnife system using fiducial tracking. The irradiated films were scanned and processed. All films were analysed using 3 gamma criteria. RESULTS Fifteen CyberKnife test plans with 3 different modalities were delivered on the phantom. Both automatic and marker-based registration methods were applied when registering the irradiated film and dose plane. Gamma analysis was performed using a 3%/1 mm, 2%/1 mm, and 1%/1 mm criteria with a 10% threshold. For the automatic registration method, the passing rates were 98.2% ± 1.9%, 94.2% ± 3.7%, and 80.9% ± 6.3%, respectively. For the marker-based registration approach, the passing rates were 96.4% ± 2.7%, 91.7% ± 4.3%, and 78.4% ± 6.2%, respectively. CONCLUSIONS A novel spherical phantom was evaluated for the CyberKnife system and achieved acceptable PSQA passing rates using TG218 recommendations. The phantom can measure true-composite dose and offers high-resolution results for PSQA, making it a valuable device for robotic radiosurgery. ADVANCES IN KNOWLEDGE This is the first study on PSQA of 3 targets concurrently on the CyberKnife system.
Collapse
Affiliation(s)
- Qianyi Xu
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Jimm Grimm
- Department of Radiation Oncology, Wellstar Health System, Marietta, GA 30060, United States
| | - Wei Nie
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| | - Pamela Dupre
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| | - Ashish K Chawla
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| | - Gopal Bajaj
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| | - Haihua Yang
- Department of Radiation Oncology, Taizhou Hospital, Zhejiang 317000, China
| | - Tamara LaCouture
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Jiajin Fan
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| |
Collapse
|
2
|
Golmakani S, McGrath AN, Williams TJ. Dosimetric effects of rotational errors for single isocenter multiple targets in HyperArc plans: A phantom and retrospective imaging analysis study. J Appl Clin Med Phys 2024; 25:e14214. [PMID: 38102815 PMCID: PMC10795450 DOI: 10.1002/acm2.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
PURPOSE This study uses a phantom to investigate the dosimetric impact of rotational setup errors for Single Isocenter Multiple Targets (SIMT) HyperArc plans. Additionally, it evaluates intra-fractional rotational setup errors in patients treated with Encompass immobilization system. METHODS The Varian HyperArc system (Varian Medical systems) was used to create plans targeting spherical PTVs with diameters of 5, 10, and 15 mm and with offsets of 1.3-5.3 cm from the isocenter. Dosimetric parameters, including mean and maximum dose, D99% and D95% were evaluated for various rotational setup errors ranging from 0.5° to 2° for the PTVs and certain CTVs created within PTVs. These rotational errors were applied in an order and direction that resulted in the maximum displacement of targets. The rotation was applied both uniformly around all three axes and individually around each axis. Furthermore, to link the findings to actual treatment scenarios, the intra-fractional rotational setup errors were obtained for stereotactic cranial patients treated with the Encompass system using CBCT images acquired during treatments. RESULTS The maximum displacement of 2.7 mm was observed for targets located at 4.4 and 4.5 cm from the isocenter with rotational setup errors of 2°. The dose reduction for D99% values corresponding to this displacement were about 50%, 40%, and 30% for PTVs with diameters of 5, 10, and 15 mm, respectively. Both D99% and D95% showed a consistent trend of dose reduction across various rotational errors and PTV volumes. While the maximum dose remained consistent for different targets with various rotational errors, the mean dose decreased by approximately 25%, 12%, and 6% for PTVs with diameters of 5, 10, and 15 cm, respectively, with rotational errors of 2°. In addition, by analyzing CBCT images, the absolute mean rotational setup errors obtained during treatment with Encompass for pitch, roll, and yaw were 0.17° ± 0.13°, 0.11° ± 0.10°, and 0.12° ± 0.10° respectively. This data, combined with existing studies, suggest that a 0.5° rotational setup error is a safe choice to consider for calculating additional PTV margin to ensure adequate CTV coverage. Therefore, the assessment of maximum displacement and dosimetric parameters in this study, for a 0.5° rotational error, highlights the need for an additional 0.7 mm PTV margin for targets positioned at distances of 4.4 cm or greater from the isocenter. CONCLUSIONS For SIMT Plans, a 0.5° rotational setup error is recommended as a basis for calculating additional PTV margins to ensure adequate CTV coverage when using the Encompass system.
Collapse
|
3
|
Gutiérrez A, Gevaert T, Boussaer M, Everaert T, Ferro Teixeira C, De Ridder M. Gantry triggered x-ray verification during single-isocenter stereotactic radiosurgery: Increased certainty for a no-margin strategy. Radiother Oncol 2023; 186:109808. [PMID: 37468067 DOI: 10.1016/j.radonc.2023.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Single-isocenter linac-based stereotactic radiosurgery (SRS) has emerged as a dedicated treatment option for multiple brain metastases. Consequently, image-guidance for patient positioning and motion management has become very important. The purpose of this study was to analyze intra-fraction errors measured with stereoscopic x-rays and their impact on the dose distribution. MATERIALS AND METHODS Treatments were planned with non- coplanar dynamic conformal arcs for 33 patients corresponding to 127 brain lesions and 356 arcs. Intra-arc positioning errors were measuredusing stereoscopic x-rays (ExacTrac Dynamic, Brainlab), triggered during arc delivery. Couch corrections above 0.7 mm and 0.5° were always applied. Intra-arc positioning data was analyzed. The dose impact was evaluated by applying the measured errors to the dose given in each arc. RESULTS Median residual errors were 0.10 mm, 0.13 mm and 0.08 mm for the lateral, longitudinal and vertical directions and 0.10°, 0.08° and 0.13° for the pitch, roll and yaw angles respectively. 90% of the treatment arcs showed shifts of less than 0.4 mm and 0.4°in all directions. Dosimetric impact of motion showed the largest losses in coverage on small targets. All targets achieved at least 95% of the prescription dose to 95% of their volume, even when planned without margins. CONCLUSIONS Intra-fractional errors measured during beam delivery were found to be notably low with a dose impact that showed acceptable target coverage when applying these intra-arc errors to the dose distributions of the individual treatment arcs. Using an adequate immobilization and intra-fraction imaging prior to and during irradiation, no margins need to be added to compensate for intra-fraction motion.
Collapse
Affiliation(s)
- Adrián Gutiérrez
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Thierry Gevaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marlies Boussaer
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tim Everaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Sağlam Y. A novel weight optimized dynamic conformal arcs with TrueBeam™ Linac for very small tumors (≤1 cc) with single isocenter of multiple brain metastases (2≤, ≥4) in stereotactic radiosurgery: A comparison with volumetric modulated arc therapy. J Cancer Res Ther 2023; 19:1297-1304. [PMID: 37787298 DOI: 10.4103/jcrt.jcrt_1829_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction We evaluated whether improved increase delivery efficiency of weight optimized dynamic conformal arc (WO-DCA) therapy in comparison to volumetric modulated arc therapy (VMAT) with single isocenter for SRS treatment of very small volume and multiple brain metastases (BMs). Materials and Methods 20 patients having a less than 1 cc volume and 2≤, ≥4 of multiple BMs, redesigned for 20 Gy in 1 fraction using WO-DCA and VMAT techniques with double full coplanar and three partial noncoplanar arcs. Plan qualities were compared using tumor coverage, conformity index (CI), gradient index (GI), V4Gy, V10Gy, and V12Gy volumes of brain, monitor units (MUs), and percent of quality assurance pass rate (QA%). Results Both techniques satisfied clinical requirements in coverage and CI. VMAT had a significantly higher MU and mean GI than WO-DCA (for MUs; 2330 vs. 1991; P < 0.001, and for GI; 4.72 vs. 3.39; P < 0.001). WO-DCA was found significantly lower V4Gy (171.11 vs. 232.80 cm3, P < 0.001), V10Gy (25.82 vs. 29.71 cm3, P < 0.05), and V12Gy (14.35 vs. 17.28 cm3, P < 0.05) volumes than VMAT. WO-DCA was associated with markedly increase QA pass rates for all plans (97.65% vs. 92.64%, P < 0.001). Conclusions WO-DCA may be the first choice compared to the VMAT in reducing the dose in the brain and minimizing small-field dosimetric errors for very small SRS treatment of brain metastases in the range of ≤ 1 cc and 2≤, ≥4.
Collapse
Affiliation(s)
- Yücel Sağlam
- Department of Radiation Oncology, School of Medicine, Koc University, Topkapi, Istanbul, Turkey
| |
Collapse
|
5
|
Rotational effect and dosimetric impact: HDMLC vs 5-mm MLC leaf width in single isocenter multiple metastases radiosurgery with Brainlab Elements™. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022. [DOI: 10.1017/s1460396922000048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Purpose:
To analyse the impact of multileaf collimator (MLC) leaf width in multiple metastases radiosurgery (SRS) considering the target distance to isocenter and rotational displacements.
Methods:
Ten plans were optimised. The plans were created with Elements Multiple Mets SRS v2·0 (Brainlab AG, Munchen, Germany). The mean number of metastases per plan was 5 ± 2 [min 3, max 9], and the mean volume of gross tumour volume (GTV) was 1·1 ± 1·3 cc [min 0·02, max 5·1]. Planning target volume margin criterion was based on GTV-isocenter distance and target dimensions. Plans were performed using 6 MV with high-definition MLC (HDMLC) and reoptimised using 5-mm MLC (MLC-5). Plans were compared using Paddick conformity index (PCI), gradient index, monitor units , volume receiving half of prescription isodose (PIV50), maximum dose to brainstem, optic chiasm and optic nerves, and V12Gy, V10Gy and V5Gy for healthy brain were analysed. The maximum displacement due to rotational combinations was optimised by a genetic algorithm for both plans. Plans were reoptimised and compared using optimised margin.
Results:
HDMLC plans had better conformity and higher dose falloff than MLC-5 plans. Dosimetric differences were statistically significant (p < 0·05). The smaller the lesion volume, the higher the dosimetric differences between both plans. The effect of rotational displacements produced for each target in SRS was not dependent on the MLC (p > 0·05).
Conclusions:
The finer HDMLC offers dosimetric advantages compared with the MLC-5 in terms of target conformity and dose to the surrounding organs at risk. However, only dose falloff differences due to rotations depend on MLC.
Collapse
|
6
|
Local recurrence and cerebral progression-free survival after multiple sessions of stereotactic radiotherapy of brain metastases: a retrospective study of 184 patients : Statistical analysis. Strahlenther Onkol 2022; 198:527-536. [PMID: 35294567 DOI: 10.1007/s00066-022-01913-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Forty to sixty percent of patients treated with focal therapy for brain metastasis (BM) will have distant brain recurrence (C-LR), while 10-25% of patients will have local recurrence (LR) within 1 year after stereotactic radiotherapy (SRT). The purpose of this study was to analyze cerebral progression-free survival (C-PFS) and LR of BM among patients treated with repeated courses of radiotherapy in stereotactic conditions. METHODS AND MATERIALS We retrospectively reviewed data from 184 patients treated for 915 BMs with at least two courses of SRT without previous WBRT. Initial patient characteristics, patient characteristics at each SRT, brain metastasis velocity (BMV), delay between SRT, MRI response, LR and C‑LR were analyzed. RESULTS In all, 123 (66.9%), 39 (21.2%), and 22 (12%) patients received 2, 3, or 4 or more SRT sessions, respectively. Ninety percent of BMs were irradiated without prior surgery, and 10% were irradiated after neurosurgery. The MRI response at 3, 6, 12 and 24 months after SRT was stable regardless of the SRT session. At 6, 12 and 24 months, the rates of local control were 96.3, 90.1, and 85.8%, respectively. In multivariate analysis, P‑LR was statistically associated with kidney (HR = 0.08) and lung cancer (HR = 0.3), ECOG 1 (HR = 0.5), and high BMV grade (HR = 5.6). The median C‑PFS after SRT1, SRT2, SRT3 and SRT4 and more were 6.6, 5.1, 6.7, and 7.7 months, respectively. C‑PFS after SRT2 was significantly longer among patients in good general condition (HR = 0.39), patients with high KPS (HR = 0.91), patients with no extracerebral progression (HR = 1.8), and patients with a low BMV grade (low vs. high: HR = 3.8). CONCLUSION Objective MRI response rate after repeated SRT is stable from session to session. Patients who survive longer, such as patients with breast cancer or with low BMV grade, are at risk of local reirradiation. C‑PFS after SRT2 is better in patients in good general condition, without extracerebral progression and with low BMV grade.
Collapse
|
7
|
Rojas-López JA, Díaz Moreno RM, Venencia CD. Use of genetic algorithm for PTV optimization in single isocenter multiple metastases radiosurgery treatments with Brainlab Elements™. Phys Med 2021; 86:82-90. [PMID: 34062337 DOI: 10.1016/j.ejmp.2021.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To optimize PTV margins for single isocenter multiple metastases stereotactic radiosurgery through a genetic algorithm (GA) that determines the maximum effective displacement of each target (GTV) due to rotations. METHOD 10 plans were optimized. The plans were created with Elements Multiple Mets™ (Brainlab AG, Munchen, Germany) from a predefined template. The mean number of metastases per plan was 5 ± 2 [3,9] and the mean volume of GTV was 1.1 ± 1.3 cc [0.02, 5.1]. PTV margin criterion was based on GTV-isocenter distance and target dimensions. The effective displacement to perform specific rotational combination (roll, pitch, yaw) was optimized by GA. The original plans were re-calculated using the PTV optimized margin and new dosimetric variations were obtained. The Dmean, D99, Paddick conformity index (PCI), gradient index (GI) and dose variations in healthy brain were studied. RESULTS Regarding targets located shorter than 50 mm from the isocenter, the maximum calculated displacement was 2.5 mm. The differences between both PTV margin criteria were statistically significant for Dmean (p = 0.0163), D99 (p = 0.0439), PCI (p = 0.0242), GI (p = 0.0160) and for healthy brain V12 (p = 0.0218) and V10 (p = 0.0264). CONCLUSION The GA allows to determine an optimized PTV margin based on the maximum displacement. Optimized PTV margins reduce the detriment of dosimetric parameters. Greater PTV margins are associated with an increase in healthy brain volume.
Collapse
|
8
|
Chea M, Fezzani K, Jacob J, Cuttat M, Croisé M, Simon JM, Feuvret L, Valery CA, Maingon P, Benadjaoud MA, Jenny C. Dosimetric study between a single isocenter dynamic conformal arc therapy technique and Gamma Knife radiosurgery for multiple brain metastases treatment: impact of target volume geometrical characteristics. Radiat Oncol 2021; 16:45. [PMID: 33639959 PMCID: PMC7912819 DOI: 10.1186/s13014-021-01766-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose To compare linac-based mono-isocentric radiosurgery with Brainlab Elements Multiple Brain Mets (MBM) SRS and the Gamma Knife using a specific statistical method and to analyze the dosimetric impact of the target volume geometric characteristics. A dose fall-off analysis allowed to evaluate the Gradient Index relevancy for the dose spillage characterization. Material and methods Treatments were planned on twenty patients with three to nine brain metastases with MBM 2.0 and GammaPlan 11.0. Ninety-five metastases ranging from 0.02 to 9.61 cc were included. Paddick Index (PI), Gradient Index (GI), dose fall-off, volume of healthy brain receiving more than 12 Gy (V12Gy) and DVH were used for the plan comparison according to target volume, major axis diameter and Sphericity Index (SI). The multivariate regression approach allowed to analyze the impact of each geometric characteristic keeping all the others unchanged. A parallel study was led to evaluate the impact of the isodose line (IDL) prescription on the MBM plan quality. Results For mono-isocentric linac-based radiosurgery, the IDL around 70–75% was the best compromise found. For both techniques, the GI and the dose fall-off decreased with the target volume. In comparison, PI was slightly improved with MBM for targets < 1 cc or SI > 0.78. GI was improved with GP for targets < 2.5 cc. The V12Gy was higher with MBM for lesions > 0.4 cc or SI < 0.84 and exceeded 10 cc for targets > 5 cc against 6.5 cc with GP. The presence of OAR close to the PTV had no impact on the dose fall off values. The dose fall-off was higher for volumes < 3.8 cc with GP which had the sharpest dose fall-off in the infero-superior direction up to 30%/mm. The mean beam-on time was 94 min with GP against 13 min with MBM. Conclusions The dose fall-off and the V12Gy were more relevant indicators than the GI for the low dose spillage assessment. Both evaluated techniques have comparable plan qualities with a slightly improved selectivity with MBM for smaller lesions but with a healthy tissues sparing slightly favorable to GP at the expense of a considerably longer irradiation time. However, a higher healthy tissue exposure must be considered for large volumes in MBM plans.
Collapse
Affiliation(s)
- Michel Chea
- Radiation Oncology Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
| | - Karen Fezzani
- Radiation Oncology Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Julian Jacob
- Radiation Oncology Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Marguerite Cuttat
- Neurosurgery Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, Paris, France
| | - Mathilde Croisé
- Radiation Oncology Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Jean-Marc Simon
- Radiation Oncology Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Loïc Feuvret
- Radiation Oncology Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Charles-Ambroise Valery
- Neurosurgery Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, Paris, France
| | - Philippe Maingon
- Radiation Oncology Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Mohamed-Amine Benadjaoud
- PSE-SANTE/SERAMED, Radiation Protection and Nuclear Safety Institute, Fontenay aux Roses, France
| | - Catherine Jenny
- Radiation Oncology Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| |
Collapse
|