1
|
Rank L, Lysakovski P, Major G, Ferrari A, Tessonnier T, Debus J, Mairani A. Development and verification of an electron Monte Carlo engine for applications in intraoperative radiation therapy. Med Phys 2024; 51:6348-6364. [PMID: 38851210 DOI: 10.1002/mp.17180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND In preparation of future clinical trials employing the Mobetron electron linear accelerator to deliver FLASH Intraoperative Radiation Therapy (IORT), the development of a Monte Carlo (MC)-based framework for dose calculation was required. PURPOSE To extend and validate the in-house developed fast MC dose engine MonteRay (MR) for future clinical applications in IORT. METHODS MR is a CPU MC dose calculation engine written in C++ that is capable of simulating therapeutic proton, helium, and carbon ion beams. In this work, development steps are taken to include electrons and photons in MR are presented. To assess MRs accuracy, MR generated simulation results were compared against FLUKA predictions in water, in presence of heterogeneities as well as in an anthropomorphic phantom. Additionally, dosimetric data has been acquired to evaluate MRs accuracy in predicting dose-distributions generated by the Mobetron accelerator. Runtimes of MR were evaluated against those of the general-purpose MC code FLUKA on standard benchmark problems. RESULTS MR generated dose distributions for electron beams incident on a water phantom match corresponding FLUKA calculated distributions within 2.3% with range values matching within 0.01 mm. In terms of dosimetric validation, differences between MR calculated and measured dose values were below 3% for almost all investigated positions within the water phantom. Gamma passing rate (1%/1 mm) for the scenarios with inhomogeneities and gamma passing rate (3%/2 mm) with the anthropomorphic phantom, were > 99.8% and 99.4%, respectively. The average dose differences between MR (FLUKA) and the measurements was 1.26% (1.09%). Deviations between MR and FLUKA were well within 1.5% for all investigated depths and 0.6% on average. In terms of runtime, MR achieved a speedup against reference FLUKA simulations of about 13 for 10 MeV electrons. CONCLUSIONS Validations against general purpose MC code FLUKA predictions and experimental dosimetric data have proven the validity of the physical models implemented in MR for IORT applications. Extending the work presented here, MR will be interfaced with external biophysical models to allow accurate FLASH biological dose predictions in IORT.
Collapse
Affiliation(s)
- Luisa Rank
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Karlsruhe Institute of Technology (KIT), Faculty of Physics, Karlsruhe, Germany
| | - Peter Lysakovski
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerald Major
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alfredo Ferrari
- Karlsruhe Institute of Technology (KIT), Faculty of Physics, Karlsruhe, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
2
|
Franciosini G, Carlotti D, Cattani F, De Gregorio A, De Liso V, De Rosa F, Di Francesco M, Di Martino F, Felici G, Pensavalle JH, Leonardi MC, Marafini M, Muscato A, Paiar F, Patera V, Poortmans P, Sciubba A, Schiavi A, Toppi M, Traini G, Trigilio A, Sarti A. IOeRT conventional and FLASH treatment planning system implementation exploiting fast GPU Monte Carlo: The case of breast cancer. Phys Med 2024; 121:103346. [PMID: 38608421 DOI: 10.1016/j.ejmp.2024.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Partial breast irradiation for the treatment of early-stage breast cancer patients can be performed by means of Intra Operative electron Radiation Therapy (IOeRT). One of the main limitations of this technique is the absence of a treatment planning system (TPS) that could greatly help in ensuring a proper coverage of the target volume during irradiation. An IOeRT TPS has been developed using a fast Monte Carlo (MC) and an ultrasound imaging system to provide the best irradiation strategy (electron beam energy, applicator position and bevel angle) and to facilitate the optimisation of dose prescription and delivery to the target volume while maximising the organs at risk sparing. The study has been performed in silico, exploiting MC simulations of a breast cancer treatment. Ultrasound-based input has been used to compute the absorbed dose maps in different irradiation strategies and a quantitative comparison between the different options was carried out using Dose Volume Histograms. The system was capable of exploring different beam energies and applicator positions in few minutes, identifying the best strategy with an overall computation time that was found to be completely compatible with clinical implementation. The systematic uncertainty related to tissue deformation during treatment delivery with respect to imaging acquisition was taken into account. The potential and feasibility of a GPU based full MC TPS implementation of IOeRT breast cancer treatments has been demonstrated in-silico. This long awaited tool will greatly improve the treatment safety and efficacy, overcoming the limits identified within the clinical trials carried out so far.
Collapse
Affiliation(s)
- G Franciosini
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - D Carlotti
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitatio Campus-Bio Medico, Rome, Italy
| | - F Cattani
- Unit of Medical Physics, European Institute of Oncology IRCCS, Milan, Italy
| | - A De Gregorio
- National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy; Sapienza, University of Rome, Department of Physics, Rome, Italy
| | - V De Liso
- S.I.T. Sordina IORT Technologies S.p.A, Aprilia, Italy
| | - F De Rosa
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy
| | | | - F Di Martino
- Centro Pisano Multidisciplinare sulla Ricerca e Implementazione Clinica della Flash Radiotherapy (CPFR), Pisa, Italy; University of Pisa, Department of Physics, Pisa, Italy; Azienda Ospedaliero Universitaria Pisa (AOUP), Fisica Sanitaria, Pisa, Italy; National Institute of Nuclear Physics, INFN, Section of Pisa, Pisa, Italy
| | - G Felici
- S.I.T. Sordina IORT Technologies S.p.A, Aprilia, Italy
| | - J Harold Pensavalle
- S.I.T. Sordina IORT Technologies S.p.A, Aprilia, Italy; Centro Pisano Multidisciplinare sulla Ricerca e Implementazione Clinica della Flash Radiotherapy (CPFR), Pisa, Italy; National Institute of Nuclear Physics, INFN, Section of Pisa, Pisa, Italy
| | - M C Leonardi
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - M Marafini
- National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Rome, Italy
| | - A Muscato
- National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy; Specialty School of Medical Physics, La Sapienza University of Rome, Rome, Italy
| | - F Paiar
- Centro Pisano Multidisciplinare sulla Ricerca e Implementazione Clinica della Flash Radiotherapy (CPFR), Pisa, Italy; Azienda Ospedaliero Universitaria Pisa (AOUP), Fisica Sanitaria, Pisa, Italy
| | - V Patera
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - P Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - A Sciubba
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Frascati National Laboratories (LNF), Rome, Italy
| | - A Schiavi
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - M Toppi
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - G Traini
- National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - A Trigilio
- Sapienza, University of Rome, Department of Physics, Rome, Italy; National Institute of Nuclear Physics, INFN, Frascati National Laboratories (LNF), Rome, Italy
| | - A Sarti
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy.
| |
Collapse
|
3
|
Baghani HR, Robatjazi M. Evaluating the induced photon contamination by different breast IOERT shields using Monte Carlo simulation. J Appl Clin Med Phys 2023; 24:e14098. [PMID: 37461859 PMCID: PMC10647956 DOI: 10.1002/acm2.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Avoiding the underlying healthy tissue over-exposure during breast intraoperative electron radiotherapy (IOERT) is owing to the use of some dedicated radioprotection disks during patient irradiation. The originated contaminant photons from some widely used double-layered shielding disks including PMMA+Cu, PTFE+steel, and Al+Pb configurations during the breast IOERT have been evaluated through a Monte Carlo (MC) simulation approach. METHODS Produced electron beam with energies of 6, 8, 10, and 12 MeV by a validated MC model of Liac12 dedicated IOERT accelerator was used for disk irradiations. Each of above-mentioned radioprotection disks was simulated inside a water phantom, so that the upper disk surface was positioned at R90 depth of each considered electron energy. Simulations were performed by MCNPX (version 2.6.0) MC code. Then, the energy spectra of the contaminant photons at different disk surfaces (upper, middle, and lower one) and relevant contaminant dose beneath the studied disks were determined and compared. RESULTS None of studied shielding disks show significant photon contamination up to 10 MeV electron energy, so that the induced photon dose by the contaminant X-rays was lower than those observed in the disk absence under the same conditions. In return, the induced photon dose at a close distance to the lower disk surface exceeded from calculated values in the disk absence at 12 MeV electron energy. The best performance in contaminant dose reduction at the energy range of 6-10 MeV belonged to the Al+Pb disk, while the PMMA+Cu configuration showed the best performance in this regard at 12 MeV energy. CONCLUSION Finally, it can be concluded that all studied shielding disks not only don't produce considerable photon contamination but also absorb the originated X-rays from electron interactions with water at the electron energy range of 6-10 MeV. The only concern is related to 12 MeV energy where the induced photon dose exceeds the dose values in the disk absence. Nevertheless, the administered dose by contaminant photons to underlying healthy tissues remains beneath the tolerance dose level by these organs at the entire range of studied electron energies.
Collapse
Affiliation(s)
| | - Mostafa Robatjazi
- Medical Physics and Radiological Sciences DepartmentSabzevar University of Medical SciencesSabzevarIran
- Non‐communicable Disease Research CenterSabzevar University of Medical SciencesSabzevarIran
| |
Collapse
|
4
|
Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go? Cancers (Basel) 2022; 14:cancers14143532. [PMID: 35884591 PMCID: PMC9319593 DOI: 10.3390/cancers14143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
As opposed to external beam radiation therapy (EBRT), treatment planning systems (TPS) dedicated to intraoperative radiation therapy (IORT) were not subject to radical modifications in the last two decades. However, new treatment regimens such as ultrahigh dose rates and combination with multiple treatment modalities, as well as the prospected availability of dedicated in-room imaging, call for important new features in the next generation of treatment planning systems in IORT. Dosimetric accuracy should be guaranteed by means of advanced dose calculation algorithms, capable of modelling complex scattering phenomena and accounting for the non-tissue equivalent materials used to shape and compensate electron beams. Kilovoltage X-ray based IORT also presents special needs, including the correct description of extremely steep dose gradients and the accurate simulation of applicators. TPSs dedicated to IORT should also allow real-time imaging to be used for treatment adaptation at the time of irradiation. Other features implemented in TPSs should include deformable registration and capability of radiobiological planning, especially if unconventional irradiation schemes are used. Finally, patient safety requires that the multiple features be integrated in a comprehensive system in order to facilitate control of the whole process.
Collapse
|