1
|
Kaulpiboon J, Rudeekulthamrong P. Maltotriosyl-erythritol, a transglycosylation product of erythritol by Thermus sp. amylomaltase and its application to prebiotic. Food Chem 2025; 472:142937. [PMID: 39827568 DOI: 10.1016/j.foodchem.2025.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
In this study, maltotriosyl-erythritol (EG3) was synthesized as a novel prebiotic candidate via transglycosylation using recombinant amylomaltase (AMase) from Thermus sp. Tapioca starch served as the glucosyl donor, and erythritol as the acceptor. High-performance liquid chromatography (HPLC) revealed an EG3 yield of 14.0 % with a concentration of 2.8 mg/mL. Mass spectrometry confirmed the molecular weight of EG3 as 608 Da, and its strucopture was verified by 1H and 13C NMR analysis. EG3 exhibited greater resistance to acid, heat, and digestive enzymes compared to erythritol glucosides (EG1-2) and significantly promoted the growth of Lactobacillus casei BCC36987. Fermentation of EG3 resulted in the highest levels of lactic acid and total short-chain fatty acids, which may contribute to reduced pH levels. These findings suggest that erythritol-receptor products formed via AMase-catalyzed reactions, particularly EG3, are promising prebiotic ingredients, with the prebiotic activity of erythritol derivatives being influenced by the length of the carbohydrate chain.
Collapse
Affiliation(s)
- Jarunee Kaulpiboon
- Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Prakarn Rudeekulthamrong
- Department of Biochemistry, Phramongkutklao College of Medicine, Phramongkutklao Hospital, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Compart J, Singh A, Fettke J, Apriyanto A. Customizing Starch Properties: A Review of Starch Modifications and Their Applications. Polymers (Basel) 2023; 15:3491. [PMID: 37631548 PMCID: PMC10459083 DOI: 10.3390/polym15163491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Starch has been a convenient, economically important polymer with substantial applications in the food and processing industry. However, native starches present restricted applications, which hinder their industrial usage. Therefore, modification of starch is carried out to augment the positive characteristics and eliminate the limitations of the native starches. Modifications of starch can result in generating novel polymers with numerous functional and value-added properties that suit the needs of the industry. Here, we summarize the possible starch modifications in planta and outside the plant system (physical, chemical, and enzymatic) and their corresponding applications. In addition, this review will highlight the implications of each starch property adjustment.
Collapse
Affiliation(s)
| | | | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Golm, 14476 Potsdam, Germany; (J.C.); (A.S.); (A.A.)
| | | |
Collapse
|
3
|
Wang Y, Wu Y, Christensen SJ, Janeček Š, Bai Y, Møller MS, Svensson B. Impact of Starch Binding Domain Fusion on Activities and Starch Product Structure of 4-α-Glucanotransferase. Molecules 2023; 28:molecules28031320. [PMID: 36770986 PMCID: PMC9920598 DOI: 10.3390/molecules28031320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
A broad range of enzymes are used to modify starch for various applications. Here, a thermophilic 4-α-glucanotransferase from Thermoproteus uzoniensis (TuαGT) is engineered by N-terminal fusion of the starch binding domains (SBDs) of carbohydrate binding module family 20 (CBM20) to enhance its affinity for granular starch. The SBDs are N-terminal tandem domains (SBDSt1 and SBDSt2) from Solanum tuberosum disproportionating enzyme 2 (StDPE2) and the C-terminal domain (SBDGA) of glucoamylase from Aspergillus niger (AnGA). In silico analysis of CBM20s revealed that SBDGA and copies one and two of GH77 DPE2s belong to well separated clusters in the evolutionary tree; the second copies being more closely related to non-CAZyme CBM20s. The activity of SBD-TuαGT fusions increased 1.2-2.4-fold on amylose and decreased 3-9 fold on maltotriose compared with TuαGT. The fusions showed similar disproportionation activity on gelatinised normal maize starch (NMS). Notably, hydrolytic activity was 1.3-1.7-fold elevated for the fusions leading to a reduced molecule weight and higher α-1,6/α-1,4-linkage ratio of the modified starch. Notably, SBDGA-TuαGT and-SBDSt2-TuαGT showed Kd of 0.7 and 1.5 mg/mL for waxy maize starch (WMS) granules, whereas TuαGT and SBDSt1-TuαGT had 3-5-fold lower affinity. SBDSt2 contributed more than SBDSt1 to activity, substrate binding, and the stability of TuαGT fusions.
Collapse
Affiliation(s)
- Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yazhen Wu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Stefan Jarl Christensen
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia
| | - Yuxiang Bai
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- Correspondence: (M.S.M.); (B.S.)
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- Correspondence: (M.S.M.); (B.S.)
| |
Collapse
|
4
|
Ngawiset S, Ismail A, Murakami S, Pongsawasdi P, Rungrotmongkol T, Krusong K. Identification of crucial amino acid residues involved in large ring cyclodextrin synthesis by amylomaltase from Corynebacterium glutamicum. Comput Struct Biotechnol J 2023; 21:899-909. [PMID: 36698977 PMCID: PMC9860158 DOI: 10.1016/j.csbj.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Amylomaltase can be used to synthesize large ring cyclodextrins (LR-CDs), applied as drug solubilizer, gene delivery vehicle and protein aggregation suppressor. This study aims to determine the functional amino acid positions of Corynebacterium glutamicum amylomaltase (CgAM) involved in LR-CD synthesis by site-directed mutagenesis approach and molecular dynamic simulation. Mutants named Δ167, Y23A, P228Y, E231Y, A413F and G417F were constructed, purified, and characterized. The truncated CgAM, Δ167 exhibited no starch transglycosylation activity, indicating that the N-terminal domain of CgAM is necessary for enzyme activity. The P228Y, A413F and G417F produced larger LR-CDs from CD36-CD40 as compared to CD29 by WT. A413F and G417F mutants produced significantly low LR-CD yield compared to the WT. The A413F mutation affected all tested enzyme activities (starch tranglycosylation, disproportionation and cyclization), while the G417F mutation hindered the cyclization activity. P228Y mutation significantly lowered the k cat of disproportionation activity, while E231Y mutant exhibited much higher k cat and K m values for starch transglycosylation, compared to that of the WT. In addition, Y23A mutation affected the kinetic parameters of starch transglycosylation and cyclization. Molecular dynamic simulation further confirmed these mutations' impacts on the CgAM and LR-CD interactions. Identified functional amino acids for LR-CD synthesis may serve as a model for future modification to improve the properties and yield of LR-CDs.
Collapse
Affiliation(s)
- Sirikul Ngawiset
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abbas Ismail
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shuichiro Murakami
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki-shi, Kanagawa 214–8571, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,Program in Bioinformatics and Computational Chemistry, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author.
| |
Collapse
|
5
|
Molecular weight, chain length distribution and long-term retrogradation of cassava starch modified by amylomaltase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Mondal S, Mondal K, Halder SK, Thakur N, Mondal KC. Microbial Amylase: Old but still at the forefront of all major industrial enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
A 4-α-Glucanotransferase from Thermus thermophilus HB8: Secretory Expression and Characterization. Curr Microbiol 2022; 79:202. [PMID: 35604453 DOI: 10.1007/s00284-022-02856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
4-α-glucanotransferase (4GT, EC 2.4.1.25) catalyzes the breakdown of the α-1,4 glycosidic bonds of the starch main chain and forms new α-1,4 glycosidic bonds in the side chain, which is often used to optimize the physical and chemical properties of starch and to improve the quality of starch-based food. However, the low enzyme activity of 4GT limits its production and widespread application. Herein, the 4GT gene encoding 500 amino acids from Thermus thermophilus HB8 was cloned and expressed in Escherichia coli. The purified 4GT exhibited maximum activity at pH 7.0 and 60 °C and had a good stability at pH 6.0-8.0 and 30-60 °C. It was confirmed that 4GT possessed the catalytic function of extending the branch length of potato starch. Furthermore, the 4GT gene was successfully expressed extracellularly in Bacillus subtilis. Then, the enzyme yield of 4GT increased by 4.1 times through screening of different plasmids and hosts. Additionally, the fermentation conditions were optimized to enhance 4GT extracellular enzyme yield. Finally, a recombinant Bacillus subtilis with 299.9 U/mL enzyme yield of 4GT was obtained under the optimized fermentation process. In conclusion, this study provides a valuable reference for characterization and expression of food-grade enzymes.
Collapse
|
8
|
Wang Y, Tian Y, Ban X, Li C, Hong Y, Cheng L, Gu Z, Li Z. Substrate Selectivity of a Novel Amylo-α-1,6-glucosidase from Thermococcus gammatolerans STB12. Foods 2022; 11:1442. [PMID: 35627012 PMCID: PMC9142091 DOI: 10.3390/foods11101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Amylo-α-1,6-glucosidase (EC 3.2.1.33, AMY) exhibits hydrolytic activity towards α-1,6-glycosidic bonds of branched substrates. The debranching products of maltodextrin, waxy corn starch and cassava starch treated with AMY, pullulanase (EC 3.2.1.41, PUL) and isoamylase (EC 3.2.1.68, ISO), were investigated and their differences in substrate selectivity and debranching efficiency were compared. AMY had a preference for the branched structure with medium-length chains, and the optimal debranching length was DP 13-24. Its optimum debranching length was shorter than ISO (DP 25-36). In addition, the debranching rate of maltodextrin treated by AMY for 6 h was 80%, which was 20% higher than that of ISO. AMY could decompose most of the polymerized amylopectin in maltodextrin into short amylose and oligosaccharides, while it could only decompose the polymerized amylopectin in starch into branched glucan chains and long amylose. Furthermore, the successive use of AMY and β-amylase increased the hydrolysis rate of maltodextrin from 68% to 86%. Therefore, AMY with high substrate selectivity and a high catalytic capacity could be used synergistically with other enzyme preparations to improve substrate utilization and reduce reaction time. Importantly, the development of a novel AMY provides an effective choice to meet different production requirements.
Collapse
Affiliation(s)
- Yamei Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
| | - Yixiong Tian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Ryu JJ, Li X, Lee ES, Li D, Lee BH. Slowly digestible property of highly branched α-limit dextrins produced by 4,6-α-glucanotransferase from Streptococcus thermophilus evaluated in vitro and in vivo. Carbohydr Polym 2022; 275:118685. [PMID: 34742415 DOI: 10.1016/j.carbpol.2021.118685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Starch molecules are first degraded to slowly digestible α-limit dextrins (α-LDx) and rapidly hydrolyzable linear malto-oligosaccharides (LMOs) by salivary and pancreatic α-amylases. In this study, we designed a slowly digestible highly branched α-LDx with maximized α-1,6 linkages using 4,6-α-glucanotransferase (4,6-αGT), which creates a short length of α-1,4 side chains with increasing branching points. The results showed that a short length of external chains mainly composed of 1-8 glucosyl units was newly synthesized in different amylose contents of corn starches, and the α-1,6 linkage ratio of branched α-LDx after the chromatographical purification was significantly increased from 4.6% to 22.1%. Both in vitro and in vivo studies confirmed that enzymatically modified α-LDx had improved slowly digestible properties and extended glycemic responses. Therefore, 4,6-αGT treatment enhanced the slowly digestible properties of highly branched α-LDx and promises usefulness as a functional ingredient to attenuate postprandial glucose homeostasis.
Collapse
Affiliation(s)
- Jae-Jin Ryu
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Xiaolei Li
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities, Education Department of Jilin Provincial Government, Changchun University, Changchun 130022, People's Republic of China
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dan Li
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities, Education Department of Jilin Provincial Government, Changchun University, Changchun 130022, People's Republic of China
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
11
|
Leoni C, Gattulli BAR, Pesole G, Ceci LR, Volpicella M. Amylomaltases in Extremophilic Microorganisms. Biomolecules 2021; 11:biom11091335. [PMID: 34572549 PMCID: PMC8465469 DOI: 10.3390/biom11091335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Amylomaltases (4-α-glucanotransferases, E.C. 2.4.1.25) are enzymes which can perform a double-step catalytic process, resulting in a transglycosylation reaction. They hydrolyse glucosidic bonds of α-1,4'-d-glucans and transfer the glucan portion with the newly available anomeric carbon to the 4'-position of an α-1,4'-d-glucan acceptor. The intramolecular reaction produces a cyclic α-1,4'-glucan. Amylomaltases can be found only in prokaryotes, where they are involved in glycogen degradation and maltose metabolism. These enzymes are being studied for possible biotechnological applications, such as the production of (i) sugar substitutes; (ii) cycloamyloses (molecules larger than cyclodextrins), which could potentially be useful as carriers and encapsulating agents for hydrophobic molecules and also as effective protein chaperons; and (iii) thermoreversible starch gels, which could be used as non-animal gelatin substitutes. Extremophilic prokaryotes have been investigated for the identification of amylomaltases to be used in the starch modifying processes, which require high temperatures or extreme conditions. The aim of this article is to present an updated overview of studies on amylomaltases from extremophilic Bacteria and Archaea, including data about their distribution, activity, potential industrial application and structure.
Collapse
Affiliation(s)
- Claudia Leoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Bruno A. R. Gattulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Luigi R. Ceci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| | - Mariateresa Volpicella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| |
Collapse
|
12
|
Rho SJ, Mun S, Park J, Kim YR. Retarding Oxidative and Enzymatic Degradation of Phenolic Compounds Using Large-Ring Cycloamylose. Foods 2021; 10:foods10071457. [PMID: 34201816 PMCID: PMC8303965 DOI: 10.3390/foods10071457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The phenolic compounds (PCs) abundant in fruits and vegetables are easily browned by oxygen and browning enzymes, with subsequent destruction of nutrients during food processing and storage. Therefore, natural anti-browning additives are required to control these reactions. The aim of the present study was to investigate the feasibility of cycloamylose (CA) complexation as a way to improve stability of PCs against oxidation and browning enzymes. The complex was prepared by reacting enzymatically produced CA with a degree of polymerization of 23-45 with PCs in aqueous solution. No significant differences were observed between the PCs and their CA complexes in 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging experiments. However, the reduction rate of their antioxidant activity was clearly reduced in the presence of CA for as long as 4 weeks. At the studied concentrations, the activity of polyphenol oxidase on all of the tested PC species was inhibited in the presence of CA, although this effect was less evident as the substrate concentration increased. The higher the CA concentration added to apple juice, the lower the variation in the total color difference (ΔE*) during storage, confirming that CA could be used as an effective natural anti-browning agent. Our study is the first to study the potential of CA as a natural material for browning control. The results obtained will provide useful information for active food applications requiring oxidative stability in fruit products.
Collapse
Affiliation(s)
- Shin-Joung Rho
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea; (S.-J.R.); (J.P.)
| | - Saehun Mun
- Department of Food and Nutrition, Soonchunhyang University, Asan 31538, Korea;
| | - Jiwoon Park
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea; (S.-J.R.); (J.P.)
| | - Yong-Ro Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea; (S.-J.R.); (J.P.)
- Department of Biosystems Engineering, Research Institute of Agriculture and Life Sciences, Global Smart Farm Convergence Major, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-4607
| |
Collapse
|
13
|
Characterization of gluten-free rice bread prepared using a combination of potato tuber and ramie leaf enzymes. Food Sci Biotechnol 2021; 30:521-529. [PMID: 33936843 DOI: 10.1007/s10068-021-00891-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022] Open
Abstract
A combination of freeze-dried powder of disproportionating enzyme (D-enzyme)-containing potato tuber and β-amylase-containing ramie leaf was used to improve the gluten-free (GF) bread, and its physicochemical properties were characterized. The presence of D-enzyme and β amylase in the potato tuber and ramie leaf was confirmed. Sixty five percent of partially gelatinized rice flour and 20% corn starch was combined with 10% freeze-dried potato tuber and 1% ramie leaf powder, and baked. The specific volume increased by 23% compared to the control with improved internal characteristics. Texture profile analysis revealed that retrogradation of the bread was retarded when stored for 90 h at 4 °C. The bread crumb amylose content was reduced from 14 to 9% and amylopectin branch chain-length distribution was rearranged, whereby the proportions of the branch chains with Degree of polymerization (DP) < 9 and DP > 19 decreased. The results suggest that D-enzyme and β-amylase cooperatively altered amylose/amylopectin ratio and amylopectin structure.
Collapse
|
14
|
Kim JE, Tran PL, Ko JM, Kim SR, Kim JH, Park JT. Comparison of Catalyzing Properties of Bacterial 4-α-Glucanotransferases Focusing on Their Cyclizing Activity. J Microbiol Biotechnol 2021; 31:43-50. [PMID: 33046683 PMCID: PMC9705980 DOI: 10.4014/jmb.2009.09016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
A newly cloned 4-α-glucanotransferase (αGT) from Deinococcus geothermalis and two typical bacterial αGTs from Thermus scotoductus and Escherichia coli (MalQ) were investigated. Among 4 types of catalysis, the cyclization activity of αGTs that produces cycloamylose (CA), a valuable carbohydrate making inclusion complexes, was intensively studied. The new αGT, DgαGT, showed close protein sequence to the αGT from T. scotoductus (TsαGT). MalQ was clearly separated from the other two αGTs in the phylogenetic and the conserved regions analyses. The reaction velocities of disproportionation, cyclization, coupling, and hydrolysis of three αGTs were determined. Intriguingly, MalQ exhibited more than 100-fold lower cyclization activity than the others. To lesser extent, the disproportionation activity of MalQ was relatively low. DgαGT and TsαGT showed similar kinetics results, but TsαGT had nearly 10-fold lower hydrolysis activity than DgαGT. Due to the very low cyclizing activity of MalQ, DgαGT and TsαGT were selected for further analyses. When amylose was treated with DgαGT or TsαGT, CA with a broad DP range was generated immediately. The DP distribution of CA had a bimodal shape (DP 7 and 27 as peaks) for the both enzymes, but larger DPs of CA quickly decreased in the DgαGT. Cyclomaltopentaose, a rare cyclic sugar, was produced at early reaction stage and accumulated as the reactions went on in the both enzymes, but the increase was more profound in the TsαGT. Taken together, we clearly demonstrated the catalytic differences between αGT groups from thermophilic and pathogenic bacteria that and showed that αGTs play different roles depending on their lifestyle.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34734, Republic of Korea
| | - Phuong Lan Tran
- Department of Food Science and Technology, Chungnam National University, Daejeon 34734, Republic of Korea,Department of Food Technology, An Giang University, An Giang, Vietnam,Vietnam National University, Ho Chi Minh, Vietnam
| | - Jae-Min Ko
- Department of Food Science and Technology, Chungnam National University, Daejeon 34734, Republic of Korea
| | - Sa-Rang Kim
- Department of Food Nutrition, Chungnam National University, Daejeon 373, Republic of Korea
| | - Jae-Han Kim
- Department of Food Nutrition, Chungnam National University, Daejeon 373, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34734, Republic of Korea,Corresponding author Phone: +82-42-821-6728 Fax: +82-42-821-8785 E-mail:
| |
Collapse
|
15
|
Kang J, Kim YH, Choi SJ, Rho SJ, Kim YR. Improving the Stability and Curcumin Retention Rate of Curcumin-Loaded Filled Hydrogel Prepared Using 4αGTase-Treated Rice Starch. Foods 2021; 10:150. [PMID: 33450818 PMCID: PMC7828239 DOI: 10.3390/foods10010150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/29/2022] Open
Abstract
In this study, 4-α-glucanotransferase (4αGTase)-treated rice starch (GS) was added after 1-h (1 GS) and 96-h (96 GS) treatments to the aqueous phase of a curcumin-loaded emulsion to produce filled hydrogels (1 GS-FH and 96 GS-FH, respectively). The relative protective effects of the FH system, native rice starch-based filled hydrogel (RS-FH), and emulsion without starch (EM), on curcumin were evaluated based on ultraviolet (UV) stability and simulated gastrointestinal studies. The UV stability and curcumin retention after in vitro digestion of the filled hydrogels (FH) samples were greater than those of the EM samples. RS-FH showed a 2.28-fold improvement in UV stability over EM due to the higher viscosity of RS. 1 GS-FH and 96 GS-FH increased curcumin retention by 2.31- and 2.60-fold, respectively, and the microstructure of 96 GS-FH, determined using confocal laser microscopy, remained stable even after the stomach phase. These effects were attributed to the molecular structure of GS, with decreased amylopectin size and amylose content resulting from the enzyme treatment. The encapsulation of lipids within the GS hydrogel particles served to protect and deliver the curcumin component, suggesting that GS-FH can be applied to gel-type food products and improve the chemical stability of curcumin.
Collapse
Affiliation(s)
- Jihyun Kang
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea;
| | - Ye-Hyun Kim
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea; (Y.-H.K.); (S.-J.C.)
| | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea; (Y.-H.K.); (S.-J.C.)
| | - Shin-Joung Rho
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Yong-Ro Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea;
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Global Smart Farm Convergence Major, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Park HR, Kang J, Rho SJ, Kim YR. Structural and physicochemical properties of enzymatically modified rice starch as influenced by the degree of enzyme treatment. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1788574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hye Rin Park
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jihyun Kang
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Shin-Joung Rho
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Yong-Ro Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Jeong DW, Jeong HM, Shin YJ, Woo SH, Shim JH. Properties of recombinant 4-α-glucanotransferase from Bifidobacterium longum subsp. longum JCM 1217 and its application. Food Sci Biotechnol 2019; 29:667-674. [PMID: 32419965 DOI: 10.1007/s10068-019-00707-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022] Open
Abstract
To determine the physiochemical properties of the 4-α-glucanotransferase from Bifidobacterium sp., the bllj_0114 gene encoding 4-α-glucanotransferase was cloned from Bifidobacterium longum subsp. longum JCM 1217 and expressed in Escherichia coli. The amino acid sequence alignment indicated that the recombinant protein, named BL-αGTase, belongs to the glycoside hydrolase (GH) family 77. BL-αGTase was purified using nickel-nitrilotriacetic acid affinity chromatography and characterized using various substrates. The enzyme catalyzed the disproportionation activity, which transfers a glucosyl unit from oligosaccharides to acceptor molecules, and had the highest activity at 40 °C and pH 6.0. In the presence of 5 mM metal ions, in particular Cu2+, Zn2+, and Fe2+, BL-αGTase activity was reduced. To determine whether BL-αGTase can be used to generate thermoreversible gels, potato starch was treated with BL-αGTase for various reaction times. The BL-αGTase-treated starches showed sol-gel reversibility and melted at 59.6-75.7 °C.
Collapse
Affiliation(s)
- Da-Woon Jeong
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Hyun-Mo Jeong
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Yu-Jeong Shin
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Seung-Hye Woo
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| |
Collapse
|
18
|
Solubility, stability, and bioaccessibility improvement of curcumin encapsulated using 4-α-glucanotransferase-modified rice starch with reversible pH-induced aggregation property. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Guo L, Tao H, Cui B, Janaswamy S. The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chem 2019; 277:504-514. [DOI: 10.1016/j.foodchem.2018.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/17/2018] [Accepted: 11/01/2018] [Indexed: 11/26/2022]
|
20
|
Boonna S, Rolland-Sabaté A, Lourdin D, Tongta S. Macromolecular characteristics and fine structure of amylomaltase-treated cassava starch. Carbohydr Polym 2019; 205:143-150. [DOI: 10.1016/j.carbpol.2018.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 11/27/2022]
|
21
|
Park J, Rho SJ, Kim YR. Feasibility and characterization of the cycloamylose production from high amylose corn starch. Cereal Chem 2018. [DOI: 10.1002/cche.10102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiwoon Park
- Department of Biosystems & Biomaterials Science and Engineering; Seoul National University; Seoul Korea
| | - Shin-Joung Rho
- Center for Food and Bioconvergence; Seoul National University; Seoul Korea
| | - Yong-Ro Kim
- Department of Biosystems & Biomaterials Science and Engineering; Seoul National University; Seoul Korea
- Center for Food and Bioconvergence; Seoul National University; Seoul Korea
| |
Collapse
|
22
|
Miao M, Jiang B, Jin Z, BeMiller JN. Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Compr Rev Food Sci Food Saf 2018; 17:1238-1260. [PMID: 33350152 DOI: 10.1111/1541-4337.12381] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Bo Jiang
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Zhengyu Jin
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - James N. BeMiller
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
- Dept. of Food Science; Whistler Center for Carbohydrate Research, Purdue Univ.; 745 Agriculture Mall Drive West Lafayette IN 47907-2009 U.S.A
| |
Collapse
|
23
|
Park SH, Na Y, Kim J, Kang SD, Park KH. Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci Biotechnol 2018; 27:299-312. [PMID: 30263753 PMCID: PMC6049653 DOI: 10.1007/s10068-017-0261-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022] Open
Abstract
Enzyme technology has many potential applications in the baking industry because carbohydrate-active enzymes specifically react with carbohydrate components, such as starch, in complex food systems. Amylolytic enzymes are added to starch-based foods, such as baking products, to retain moisture more efficiently and to increase softness, freshness, and shelf life. The major reactions used to modify the structure of food starch include: (1) hydrolysis of α-1, 4 or α-1, 6 glycosidic linkages, (2) disproportionation by the transfer of glucan moieties, and (3) branching by formation of α-1, 6 glycosidic linkage. The catalytic reaction of a single enzyme or a mixture of more than two enzymes has been applied, generating novel starches, with chemical changes in the starch structure, in which the changes of molecular mass, branch chain length distribution, and the ratio of amylose to amylopectin may occur. These developments of enzyme technology highlight the potential to create various structured-starches for the food and baking industry.
Collapse
Affiliation(s)
- Sung Hoon Park
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Yerim Na
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Jungwoo Kim
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Shin Dal Kang
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Kwan-Hwa Park
- Center for Food and Bioconvergence and Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
24
|
High-efficiency production of γ-cyclodextrin using β-cyclodextrin as the donor raw material by cyclodextrin opening reactions using recombinant cyclodextrin glycosyltransferase. Carbohydr Polym 2018; 182:75-80. [DOI: 10.1016/j.carbpol.2017.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/14/2017] [Accepted: 11/02/2017] [Indexed: 12/24/2022]
|
25
|
Yoon SH, Oh YK, Kim YR, Park J, Han SI, Kim YW. Complex formation of a 4-α-glucanotransferase using starch as a biocatalyst for starch modification. Food Sci Biotechnol 2017; 26:1659-1666. [PMID: 30263703 DOI: 10.1007/s10068-017-0203-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/30/2017] [Indexed: 11/26/2022] Open
Abstract
A 4-α-glucanotransferases from Thermus thermophilus (TTαGT) possesses an extra substrate binding site, leading to facile purification of the intact enzyme using amylose as an insoluble binding matrix. Due to the cost of amylose and low recovery yield, starch was replaced for amylose as an alternative capturer in this study. Using gelatinized corn starch at pH 9 with 36-h incubation in the presence of 1 M ammonium sulfate increased the TTαGT-starch complex formation yield from 2 to 56%. In preparative-scale production, TTαGT produced in Bacillus subtilis was recovered by 42.1% with the same specific activity as that of purified TTαGT. Structural and rheological analyses of the enzymatically modified starches revealed that the starch complex exhibited catalytic performance comparable to soluble TTαGT, suggesting that the starch complex can be used as a biocatalyst for modified starch production without elution of the enzyme from the complex.
Collapse
Affiliation(s)
- Sun-Hee Yoon
- 1Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| | - You-Kyung Oh
- 1Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| | - Yong-Ro Kim
- 2Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jiyoung Park
- 3Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Gyeonggi 16613 Korea
| | - Sang-Ick Han
- 4Department of Functional Crop, Functional Crop Resource Development Division, National Institute of Crop Science, Rural Development Administration, Miryang, Gyeongnam 50424 Korea
| | - Young-Wan Kim
- 1Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| |
Collapse
|
26
|
Sorndech W, Tongta S, Blennow A. Slowly Digestible‐ and Non‐Digestible α‐Glucans: An Enzymatic Approach to Starch Modification and Nutritional Effects. STARCH-STARKE 2017. [DOI: 10.1002/star.201700145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Waraporn Sorndech
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Sunanta Tongta
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Andreas Blennow
- Faculty of Sciences Department of Plant and Environmental Sciences University of CopenhagenFrederiksberg C 1871Denmark
| |
Collapse
|
27
|
Physicochemical interactions of cycloamylose with phenolic compounds. Carbohydr Polym 2017; 174:980-989. [DOI: 10.1016/j.carbpol.2017.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 11/23/2022]
|
28
|
Lee BH, Hamaker BR. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases. Carbohydr Polym 2017; 157:207-213. [DOI: 10.1016/j.carbpol.2016.09.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
|
29
|
Chu S, Hong JS, Rho SJ, Park J, Han SI, Kim YW, Kim YR. High-yield cycloamylose production from sweet potato starch using Pseudomonas isoamylase and Thermus aquaticus 4-α-glucanotransferase. Food Sci Biotechnol 2016; 25:1413-1419. [PMID: 30263424 DOI: 10.1007/s10068-016-0220-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/01/2022] Open
Abstract
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.
Collapse
Affiliation(s)
- Sun Chu
- 1Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Korea
| | - Jung Sun Hong
- 1Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Korea
| | - Shin-Joung Rho
- 1Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Korea
| | - Jiyoung Park
- Department of Central Area Crop Science, NICS, Suwon, Gyeonggi, 16613 Korea
| | - Sang-Ik Han
- Department of functional Crop, Functional Crop Resource Development Division, NICS, RDA, Miryang, Gyeongnam, 50424 Korea
| | - Young-Wan Kim
- 4Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| | - Yong-Ro Kim
- 1Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
30
|
Do VH, Mun S, Kim YL, Rho SJ, Park KH, Kim YR. Novel formulation of low-fat spread using rice starch modified by 4-α-glucanotransferase. Food Chem 2016; 208:132-41. [DOI: 10.1016/j.foodchem.2016.03.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/03/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
|
31
|
Kim YL, Mun S, Rho SJ, Do HV, Kim YR. “Influence of physicochemical properties of enzymatically modified starch gel on the encapsulation efficiency of W/O/W emulsion containing NaCl”. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Sorndech W, Meier S, Jansson AM, Sagnelli D, Hindsgaul O, Tongta S, Blennow A. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility. Carbohydr Polym 2015; 132:409-18. [DOI: 10.1016/j.carbpol.2015.05.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
|
33
|
Enzymatic synthesis of 2-deoxyglucose-containing maltooligosaccharides for tracing the location of glucose absorption from starch digestion. Carbohydr Polym 2015; 132:41-9. [DOI: 10.1016/j.carbpol.2015.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/27/2022]
|
34
|
Tran PL, Nguyen DHD, Do VH, Kim YL, Park S, Yoo SH, Lee S, Kim YR. Physicochemical properties of native and partially gelatinized high-amylose jackfruit (Artocarpus heterophyllus Lam.) seed starch. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev 2015; 115:6811-53. [PMID: 26121409 DOI: 10.1021/cr500719h] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angeles Farrán
- †Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 4, 28040 Madrid, Spain
| | - Chao Cai
- ‡Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Manuel Sandoval
- §Escuela de Química, Universidad Nacional of Costa Rica, Post Office Box 86, 3000 Heredia, Costa Rica
| | - Yongmei Xu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - María J Hernáiz
- ▽Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Pz/Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
36
|
Wang J, Wei R, Tian Y, Yang N, Xu X, Zimmermann W, Jin Z. Multi-wavelength colorimetric determination of large-ring cyclodextrin content for the cyclization activity of 4-α-glucanotransferase. Carbohydr Polym 2015; 122:329-35. [PMID: 25817676 DOI: 10.1016/j.carbpol.2014.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/27/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
Large-ring cyclodextrins (LR-CDs) have a number of intriguing properties for potential use in pharmaceutical and food industry. To date, no colorimetric method has been reported for LR-CD content quantification. In this study, triple wavelength colorimetry (TWC) and orthogonal-function spectrophotometry (OFS) have been successfully applied to determine ingredient concentrations in a mixture of amylose and LR-CDs. Both TWC and OFS yielded precise amylose content data in good agreement with expected values. For quantification of LR-CD content, OFS provided a higher accuracy than TWC, which resulted in a slight over-determination. As a comparison, single-wavelength colorimetry performed at the corresponding absorption maximum led to a significant over-determination of both amylose and LR-CD contents. The validity of TWC and OFS allowed their application for discriminative detection of the cyclization and total activity of a 4-α-glucanotransferase (4 αGTase) from Thermus aquaticus regarding the synthesis of LR-CDs and the conversion of amylose to small molecules, respectively. High pressure size exclusion chromatography analysis of the post-reaction mixtures following 4 αGTase-catalyzed conversion of amylose revealed the presence of linear malto-oligosaccharides in the LR-CD fraction. By introduction of a correction factor, the interference caused by linear malto-oligosaccharides was eliminated for a more accurate determination of LR-CD cyclization activity.
Collapse
Affiliation(s)
- Jinpeng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Ren Wei
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wolfgang Zimmermann
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 21-23, D-04103 Leipzig, Germany.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
37
|
Rachadech W, Nimpiboon P, Naumthong W, Nakapong S, Krusong K, Pongsawasdi P. Identification of essential tryptophan in amylomaltase from Corynebacterium glutamicum. Int J Biol Macromol 2015; 76:230-5. [PMID: 25748841 DOI: 10.1016/j.ijbiomac.2015.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 11/29/2022]
Abstract
This work aims to identify essential tryptophan residue(s) of amylomaltase from Corynebacterium glutamicum (CgAM) through chemical modification and site-directed mutagenesis techniques. The recombinant enzyme expressed by Escherichia coli was purified and treated with N-bromosuccinimide (NBS), a modifying agent for tryptophan. A significant decrease in enzyme activity was observed indicating that tryptophan is important for catalysis. Inactivation kinetics with NBS resulted in pseudo first-order rate constant (kinact) of 2.31 min(-1). Substrate protection experiment confirmed the active site localization of the NBS-modified tryptophan residue(s) in CgAM. Site-directed mutagenesis was performed on W330, W425 and W673 to localize essential tryptophan residues. Substitution by alanine resulted in the loss of intra- and intermolecular transglucosylation activities for all mutated CgAMs. Analysis of circular dichroism spectra showed no change in the secondary structure of W425A but a significant change for W330A and W673A from that of the WT. From these results in combination with X-ray structural data and interpretation from the binding interactions in the active site region, W425 was confirmed to be essential for catalytic activity of CgAM. The hydrophobicity of this tryptophan was thought to be critical for substrate binding and supporting catalytic action of the three carboxylate residues at the active site.
Collapse
Affiliation(s)
- Wanitcha Rachadech
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pitchanan Nimpiboon
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wachiraporn Naumthong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Santhana Nakapong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
38
|
Lee HW, Jeon HY, Choi H, Shim JH. Enzymatic Production of Amylopectin Cluster Using Cyclodextrin Glucanotransferase. ACTA ACUST UNITED AC 2014. [DOI: 10.3746/jkfn.2014.43.9.1388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Modification of rice grain starch for lump-free cooked rice using thermostable disproportionating enzymes. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu. Biochem Biophys Res Commun 2014; 451:541-7. [PMID: 25117441 DOI: 10.1016/j.bbrc.2014.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 11/23/2022]
Abstract
To understand the role of His and Glu in the catalytic activity of Bacillus licheniformis α-amylase (BLA), His235 was replaced with Glu. The mutant enzyme, H235E, was characterized in terms of its mode of action using labeled and unlabeled maltooctaose (Glc8). H235E predominantly produced maltotridecaose (Glc13) from Glc8, exhibiting high substrate transglycosylation activity, with Km=0.38mM and kcat/Km=20.58mM(-1)s(-1) for hydrolysis, and Km2=18.38mM and kcat2/Km2=2.57mM(-1)s(-1) for transglycosylation, while the wild-type BLA exhibited high hydrolysis activity exclusively. Glu235-located on a wide open groove near subsite +1-is likely involved in transglycosylation via formation of an α-1,4-glycosidic linkage and may recognize and stabilize the non-reducing end glucose of the acceptor molecule.
Collapse
|
41
|
Mun S, Choi Y, Park S, Surh J, Kim YR. Release properties of gel-type W/O/W encapsulation system prepared using enzymatically-modified starch. Food Chem 2014; 157:77-83. [DOI: 10.1016/j.foodchem.2014.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/15/2014] [Accepted: 02/04/2014] [Indexed: 11/29/2022]
|
42
|
Watanasatitarpa S, Rudeekulthamrong P, Krusong K, Srisimarat W, Zimmermann W, Pongsawasdi P, Kaulpiboon J. Molecular mutagenesis at Tyr-101 of the amylomaltase transcribed from a gene isolated from soil DNA. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814030168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Jiang H, Miao M, Ye F, Jiang B, Zhang T. Enzymatic modification of corn starch with 4-α-glucanotransferase results in increasing slow digestible and resistant starch. Int J Biol Macromol 2014; 65:208-14. [DOI: 10.1016/j.ijbiomac.2014.01.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
44
|
Tran PL, Lee JS, Park KH. Experimental evidence for a 9-binding subsite of Bacillus licheniformis thermostable α-amylase. FEBS Lett 2014; 588:620-4. [PMID: 24440349 DOI: 10.1016/j.febslet.2013.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/17/2013] [Accepted: 12/27/2013] [Indexed: 11/19/2022]
Abstract
The action pattern of Bacillus licheniformis thermostable α-amylase (BLA) was analyzed using a series of (14)C-labeled and non-labeled maltooligosaccharides from maltose (G2) to maltododecaose (G12). Maltononaose (G9) was the preferred substrate, and yielded the smallest Km=0.36 mM, the highest kcat=12.86 s(-1), and a kcat/Km value of 35.72 s(-1) mM(-1), producing maltotriose (G3) and maltohexaose (G6) as the major product pair. Maltooctaose (G8) was hydrolyzed into two pairs of products: G3 and maltopentaose (G5), and G2 and G6 with cleavage frequencies of 0.45 and 0.30, respectively. Therefore, we propose a model with nine subsites: six in the terminal non-reducing end-binding site and three at the reducing end-binding site in the binding region of BLA.
Collapse
Affiliation(s)
- Phuong Lan Tran
- Department of Foodservice Management and Nutrition, Sangmyung University, Seoul 110-743, Republic of Korea
| | - Jin-Sil Lee
- Department of Foodservice Management and Nutrition, Sangmyung University, Seoul 110-743, Republic of Korea
| | - Kwan-Hwa Park
- Department of Foodservice Management and Nutrition, Sangmyung University, Seoul 110-743, Republic of Korea; Department of Food Science and Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
45
|
Xu Y, Zhou X, Bai Y, Wang J, Wu C, Xu X, Jin Z. Cycloamylose production from amylomaize by isoamylase and Thermus aquaticus 4-α-glucanotransferase. Carbohydr Polym 2014; 102:66-73. [DOI: 10.1016/j.carbpol.2013.10.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/25/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
46
|
Sawasdee K, Rudeekulthamrong P, Zimmermann W, Murakami S, Pongsawasdi P, Kaulpiboon J. Direct cloning of gene encoding a novel amylomaltase from soil bacterial DNA for large-ring cyclodextrin production. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s000368381306015x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Kim YL, Mun S, Park KH, Shim JY, Kim YR. Physicochemical functionality of 4-α-glucanotransferase-treated rice flour in food application. Int J Biol Macromol 2013; 60:422-6. [DOI: 10.1016/j.ijbiomac.2013.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/04/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|
48
|
Molecular structure and rheological character of high-amylose water caltrop (Trapa bispinosa Roxb.) starch. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0173-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
49
|
Kim Y, Kim YL, Trinh KS, Kim YR, Moon TW. Texture properties of rice cakes made of rice flours treated with 4-α-glucanotransferase and their relationship with structural characteristics. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0227-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
50
|
Altered large-ring cyclodextrin product profile due to a mutation at Tyr-172 in the amylomaltase of Corynebacterium glutamicum. Appl Environ Microbiol 2012; 78:7223-8. [PMID: 22865069 DOI: 10.1128/aem.01366-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum amylomaltase (CgAM) catalyzes the formation of large-ring cyclodextrins (LR-CDs) with a degree of polymerization of 19 and higher. The cloned CgAM gene was ligated into the pET-17b vector and used to transform Escherichia coli BL21(DE3). Site-directed mutagenesis of Tyr-172 in CgAM to alanine (Y172A) was performed to determine its role in the control of LR-CD production. Both the recombinant wild-type (WT) and Y172A enzymes were purified to apparent homogeneity and characterized. The Y172A enzyme exhibited lower disproportionation, cyclization, and hydrolysis activities than the WT. The k(cat)/K(m) of the disproportionation reaction of the Y172A enzyme was 2.8-fold lower than that of the WT enzyme. The LR-CD product profile from enzyme catalysis depended on the incubation time and the enzyme concentration. Interestingly, the Y172A enzyme showed a product pattern different from that of the WT CgAM at a long incubation time. The principal LR-CD products of the Y172A mutated enzyme were a cycloamylose mixture with a degree of polymerization of 28 or 29 (CD28 or CD29), while the principal LR-CD product of the WT enzyme was CD25 at 0.05 U of amylomaltase. These results suggest that Tyr-172 plays an important role in determining the LR-CD product profile of this novel CgAM.
Collapse
|