1
|
Tan M, Zhong X, Xue H, Cao Y, Tan G, Li K. Polysaccharides from pineapple peel: Structural characterization, film-forming properties and its effect on strawberry preservation. Int J Biol Macromol 2024; 279:135192. [PMID: 39216587 DOI: 10.1016/j.ijbiomac.2024.135192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The growing demand for food safety has stimulated the development of new environmentally friendly food packaging. It is the development trend of food packaging in recent years by using natural polysaccharides as carriers and adding bioactive ingredients extracted from plants to prepare multifunctional films with antioxidant, antimicrobial and biodegradable properties. Herein, three polysaccharide components (PPE40, PPE60, and PPE80) from pineapple peel were extracted by ultrasound-assisted hot water extraction combined with gradient ethanol precipitation method, which all showed a certain scavenging activities against DPPH, ABTS, and hydroxyl radical. Then, the composite films were prepared by adding PPE40, PPE60 and PPE80 to chitosan. The results of SEM, FT-IR and XRD analysis showed that PPE40, PPE60 and PPE80 could interact with chitosan matrix. Furthermore, the addition of PPE40, PPE60, and PPE80 could improve the mechanical properties of the films, and promote the antibacterial activity of the films against B. subtilis, S. aureus and E. coli. Finally, the application of the composite films to strawberries showed that the addition of PPE40, PPE60 and PPE80 could delay the rapid decay of strawberries during storage. The results of this study showed that pineapple polysaccharides have a potential to be applied in the field of food packaging.
Collapse
Affiliation(s)
- Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xinping Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hongxin Xue
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yinyin Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Guangdong Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Tao X, Chen X, Dong R, Wang G, Xu X, Yu Q, Chen Y, Wang X, Xie J. Characterization and antioxidant properties of three exopolysaccharides produced by the Cyclocarya paliurus endophytic fungus. Int J Biol Macromol 2024; 271:132110. [PMID: 38816295 DOI: 10.1016/j.ijbiomac.2024.132110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
In recent years, the considerable potential of endophytic bacteria and fungi as prolific producers of exopolysaccharides (EPSs) have attracted interest. In this study, 56 endophytes were isolated from Cyclocarya paliurus, and the secondary metabolites of EPSs were extracted from Monascus purpureus, Penicillium citrinum and Aspergillus versicolor, screened, and named MPE, PCE and AVE, respectively. In this work, the physicochemical properties and antioxidant activities of three EPSs, their cell proliferation activity on IEC-6 and RAW264.7 were investigated. The three EPSs were mainly composed of neutral sugar and differ in microstructure. However, MPE had a loose structure, and PCE exhibited a dense and sheet-like structure. In addition, the three EPSs performed ordinary antioxidant activity in vitro but showed excellent cell proliferation activity on IEC-6 and RAW264.7. The cell proliferation activity of PCE was 1.4-fold that of the controls at a concentration of 800 μg/mL on IEC-6, and MPE exhibited 1.3-fold increase on RAW264.7. This study provided scientific evidence and insights into the application of endophytes as a novel plant resource possessing huge application potential.
Collapse
Affiliation(s)
- Xin Tao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ruihong Dong
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xizhe Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xufeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
3
|
Wu N, Ge X, Yin X, Yang L, Chen L, Shao R, Xu W. A review on polysaccharide biosynthesis in Cordyceps militaris. Int J Biol Macromol 2024; 260:129336. [PMID: 38224811 DOI: 10.1016/j.ijbiomac.2024.129336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Cordyceps militaris (C. militaris) is an edible parasitic fungus with medicinal properties. Its bioactive polysaccharides are structurally diverse and exhibit various metabolic and biological activities, including antitumor, hypoglycemic, antioxidant, hypolipidemic, anti-inflammatory, immunostimulatory, and anti-atherosclerotic effects. These properties make C. militaris-derived polysaccharides a promising candidate for future development. Recent advancements in microbial fermentation technology have enabled successful laboratory cultivation and extraction of these polysaccharides. These polysaccharides are structurally diverse and exhibit various biological activities, such as immunostimulatory, antioxidant, antitumor, hypolipidemic, and anti-atherosclerotic effects. This review aims to summarize the structure and production mechanisms of polysaccharides from C. militaris, covering extraction methods, key genes and pathways involved in biosynthesis, and fermentation factors that influence yield and activity. Furthermore, the future potential and challenges of utilizing polysaccharides in the development of health foods and pharmaceuticals are addressed. This review serves as a valuable reference in the fields of food and medicine, and provides a theoretical foundation for the study of polysaccharides.
Collapse
Affiliation(s)
- Na Wu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xuemei Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lei Yang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong Shao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
4
|
Cao Y, Kou R, Huang X, Wang N, Di D, Wang H, Liu J. Separation of polysaccharides from Lycium barbarum L. by high-speed countercurrent chromatography with aqueous two-phase system. Int J Biol Macromol 2024; 256:128282. [PMID: 38008142 DOI: 10.1016/j.ijbiomac.2023.128282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The traditional method for isolation and purification of polysaccharides is time-consuming. It often involves toxic solvents that destroy the function and structure of the polysaccharides, thus limiting in-depth research on the essential active ingredient of Lycium barbarum L. Therefore, in this study, high-speed countercurrent chromatography (HSCCC) and aqueous two-phase system (ATPS) were combined for the separation of crude polysaccharides of Lycium barbarum L. (LBPs). Under the optimized HSCCC conditions of PEG1000-K2HPO4-KH2PO4-H2O (12:10:10:68, w/w), 1.0 g of LBPs-ILs was successfully divided into three fractions (126.0 mg of LBPs-ILs-1, 109.9 mg of LBPs-ILs-2, and 65.4 mg of LBPs-ILs-3). Moreover, ATPS was confirmed as an efficient alternative method of pigment removal for LBPs purification, with significantly better decolorization (97.1 %) than the traditional H2O2 method (88.5 %). Then, the different partitioning behavior of LBPs-ILs in the two-phase system of HSCCC was preliminarily explored, which may be related to the difference in monosaccharide composition of polysaccharides. LBPs-ILs-1 exhibited better hypoglycemic activities than LBPs-ILs-2 and LBPs-ILs-3 in vitro. Therefore, HSCCC, combined with aqueous two-phase system, was an efficient separation and purification method with great potential for separating and purifying active polysaccharides in biological samples.
Collapse
Affiliation(s)
- Yu Cao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Renbo Kou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Xinyi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ningli Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Han Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
5
|
Song L, Yang J, Kong W, Liu Y, Liu S, Su L. Cordyceps militaris polysaccharide alleviates ovalbumin-induced allergic asthma through the Nrf2/HO-1 and NF-κB signaling pathways and regulates the gut microbiota. Int J Biol Macromol 2023; 238:124333. [PMID: 37030458 DOI: 10.1016/j.ijbiomac.2023.124333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Polysaccharides, as one of the main types of bioactive components of Cordyceps militaris, have anti-allergic asthma effects. Herein, an ovalbumin-induced allergic asthma mouse model was established to assess the potential mechanisms of the separated and purified Cordyceps militaris polysaccharide (CMP). CMP is an α-pyranose with a molecular weight of 15.94 kDa that consists of Glc, Man, Gal, Xyl, Ara and GlcA in a molar ratio of 81.25:21.96:13.88:3.92:3.58:1.00. CMP improved inflammatory cytokine levels, alleviated the histopathological changes in the lung and intestinal tissues, regulated the expression of mRNA and proteins related to oxidative stress and inflammatory pathways, reversed gut dysbiosis at the phylum and family levels and improved microbiota function in allergic asthma mice. Moreover, it was found that the levels of inflammatory cytokines in lung tissue of mice were significantly correlated with some intestinal microbial communities. Overall, CMP improved oxidative stress and the inflammatory response in allergic asthma mice by regulating the Nrf2/HO-1 and NF-κB signaling pathways, which may be closely correlation with maintaining the stability of the gut microbiota.
Collapse
Affiliation(s)
- Lanyue Song
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jintao Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Weihan Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
6
|
Lai LH, Zong MH, Huang Z, Ni ZF, Xu P, Lou WY. Purification, structural elucidation and biological activities of exopolysaccharide produced by the endophytic Penicillium javanicum from Millettia speciosa Champ. J Biotechnol 2023; 362:54-62. [PMID: 36592666 DOI: 10.1016/j.jbiotec.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
An acid polysaccharide, named HP, was produced by endophytic Penicillium javanicum MSC-R1 isolated from southern medicine Millettia speciosa Champ. The molecular weight of HP was 37.8 kDa and consisted of Ara f, Galр, Glcр, Manр, and GlcрA with a molar ratio of 1.09: 3.47: 68.48: 16.59: 8.85. The glycosidic linkage of HP was proven to be →3, 4)-α-D-Glcр-(1→6)-α-D-Manр-(1→, →3, 4)-α-D-Glcр-(1→4)-α-D-Glcр-(1→, →3), →6)-α-D-Manр-(1→4)-α-D-Glcр-(1→, →3), β-D-Galр-(1→3)-α-D-Glcр-(1→, →4), →5)-α-L-Ara f -(1→3)-α-D-Glcр-(1→, →4), →6)-α-D-Manр-(1→4)-α-D-GlcAр-(1→ and →4)-α-D-GlcAр-(1→4)-α-D-Glcр-(1→, →3). Additionally, 250 μg/mL of HP possessed nontoxicity to RAW 264.7 cells and exhibited anti-inflammation activity. HP could significantly restrain the amount of tumor necrosis factor-α, interleukin-6 and NO release in RAW264.7, which property is possibly associated with its abundant glucosidic linkage. These results indicated that HP could be regarded as a ponderable ingredient for the health-beneficial functional foods.
Collapse
Affiliation(s)
- Lin-Hao Lai
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Zhi Huang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Zi-Fu Ni
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Pei Xu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
7
|
Bioactive compounds from mushrooms: Emerging bioresources of food and nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Qu SL, Li SS, Li D, Zhao PJ. Metabolites and Their Bioactivities from the Genus Cordyceps. Microorganisms 2022; 10:1489. [PMID: 35893547 PMCID: PMC9330831 DOI: 10.3390/microorganisms10081489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023] Open
Abstract
The Cordyceps genus is a group of ascomycete parasitic fungi, and all known species of this genus are endoparasites; they mainly feed on insects or arthropods and a few feed on other fungi. Fungi of this genus have evolved highly specific and complex mechanisms to escape their host's immune system and coordinate their life cycle coefficients with those of their hosts for survival and reproduction; this mechanism has led to the production of distinctive metabolites in response to the host's defenses. Herein, we review approximately 131 metabolites discovered in the genus Cordyceps (including mycelium, fruiting bodies and fungal complexes) in the past 15 years, which can be used as an important source for new drug research and development. We summarize chemical structures, bioactivity and the potential application of these natural metabolites. We have excluded some reports that originally belonged to Cordyceps, but whose taxonomic attribution is no longer the Cordyceps genus. This can and will serve as a resource for drug discovery.
Collapse
Affiliation(s)
| | | | | | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (S.-L.Q.); (S.-S.L.); (D.L.)
| |
Collapse
|
9
|
Prospects of Cordycepin and Polysaccharides Produced by Cordyceps. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Biosynthesis of exopolysaccharide and structural characterization by Lacticaseibacillus paracasei ZY-1 isolated from Tibetan kefir. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 3:100054. [PMID: 35415646 PMCID: PMC8991806 DOI: 10.1016/j.fochms.2021.100054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 01/17/2023]
|
11
|
Barido FH, Jang A, Pak JI, Kim YJ, Lee SK. The Effect of Pre-Treated Black Garlic Extracts on the Antioxidative Status and Quality Characteristics of Korean Ginseng Chicken Soup (Samgyetang). Food Sci Anim Resour 2021; 41:1036-1048. [PMID: 34796329 PMCID: PMC8564326 DOI: 10.5851/kosfa.2021.e54] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
This study investigated the possible improvement in the antioxidative status and
quality characteristics of ready-to-eat (RTE) Samgyetang after adding various
black garlic (BG) extracts. The antioxidant activity, total phenolic content
(TPC), total flavonoid content (TFC), meat quality indexes, and lipid oxidation
rates were measured after receiving one of five different treatments consisting
of conventional Samgyetang broth as a negative control, raw garlic (RG) extract
as a positive control, BG, oven-dried BG, and maltodextrin-encapsulated BG
extract as treatments. Employing retort cooking, fat trimmed carcasses were
added to the initially prepared broth together with a phenolic extract that was
set at 5% (w/w). A significant intensification of red and yellow color
was observed in breast and thigh meat treated with BG extracts, regardless of
pretreatment, compared to the negative control and RG. The moisture percentage
was affected by the addition of BG extracts, where the encapsulation group
retained the highest water content after retorting. In terms of antioxidative
status, maltodextrin-encapsulated BG extract was as effective as an oven-dried
extract to scavenge free radicals and showed the highest score among samples
(p<0.01). The concentration of TFC was found to be the highest and did
not differ between encapsulation and oven-dried groups, followed by BG, RG, and
the negative control. However, the addition of encapsulated BG extract was the
most effective in delaying the formation of malondialdehyde among the samples.
Therefore, pre-treatment of BG extract through encapsulation is recommended to
develop a higher antioxidative status and quality characteristics of
Samgyetang.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | - Aera Jang
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jae In Pak
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | | | - Sung Ki Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
12
|
Jo MH, Kim B, Ju JH, Heo SY, Ahn KH, Lee HJ, Yeom HS, Jang H, Kim MS, Kim CH, Oh BR. Tremella fuciformis TFCUV5 Mycelial Culture-derived Exopolysaccharide Production and Its Anti-aging Effects on Skin Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0361-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Jędrejko KJ, Lazur J, Muszyńska B. Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity. Foods 2021; 10:2634. [PMID: 34828915 PMCID: PMC8622900 DOI: 10.3390/foods10112634] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Cordyceps spp. mushrooms have a long tradition of use as a natural raw material in Asian ethnomedicine because of their adaptogenic, tonic effects and their ability to reduce fatigue and stimulate the immune system in humans. This review aims to present the chemical composition and medicinal properties of Cordyceps militaris fruiting bodies and mycelium, as well as mycelium from in vitro cultures. The analytical results of the composition of C. militaris grown in culture media show the bioactive components such as cordycepin, polysaccharides, γ-aminobutyric acid (GABA), ergothioneine and others described in the review. To summarize, based on the presence of several bioactive compounds that contribute to biological activity, C. militaris mushrooms definitely deserve to be considered as functional foods and also have great potential for medicinal use. Recent scientific reports indicate the potential of cordycepin in antiviral activity, particularly against COVID-19.
Collapse
Affiliation(s)
| | | | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30–688 Kraków, Poland; (K.J.J.); (J.L.)
| |
Collapse
|
14
|
Wang YX, Xin Y, Yin JY, Huang XJ, Wang JQ, Hu JL, Geng F, Nie SP. Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chem 2021; 368:130772. [PMID: 34399182 DOI: 10.1016/j.foodchem.2021.130772] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
Macrolepiota albuminosa (Berk.) Pegler is abundant in active polysaccharides, but little is known about their structures and solution properties. In this study, water-extracted polysaccharides from M. albuminosa (MAWP) were purified into three fractions with structural heterogeneity, which was attributed to the diversity in molecular weight, monosaccharide composition and linkage patterns, further affecting their solution properties. Methylation and NMR analysis revealed MAWP-60p and MAWP-70 were a 3-O-methylated glucomannogalactan and a previously unreported glucomannogalactan, whereas MAWP-80 was elucidated as a branched galactoglucan. Besides, three fractions exhibited random coil conformation in aqueous solution, while MAWP-60p had the highest viscosity due to its highest molecular weight, mean square radius of gyration (Rg) and O-methyl group attached to the backbone. The molecular weight, monosaccharide composition and glycosidic linkages might be the major contributors to the flexibility, molecular size and stereochemistry of mushroom polysaccharide chains.
Collapse
Affiliation(s)
- Yu-Xiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yue Xin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Jun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jie-Lun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| |
Collapse
|
15
|
Zhang Q, Liu M, Li L, Chen M, Puno PT, Bao W, Zheng H, Wen X, Cheng H, Fung H, Wong T, Zhao Z, Lyu A, Han Q, Sun H. Cordyceps polysaccharide marker CCP modulates immune responses via highly selective TLR4/MyD88/p38 axis. Carbohydr Polym 2021; 271:118443. [PMID: 34364580 DOI: 10.1016/j.carbpol.2021.118443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Cordyceps, one of the most expensive natural health supplements, is popularly used to modulate immune function. However, little is known regarding the underlying mechanism of its immunomodulatory activity. We newly reported a Cordyceps quality marker CCP (Mw 433.778 kDa) which was characterized as a 1,4-α glucan by chemical and spectral analysis and is able to induce significant immune responses of macrophages. Herein, we further investigated the molecular mechanism of CCP's immunomodulatory effects. The results indicate that CCP modulates the TLR4/MyD88/p38 signaling pathway of macrophages, where TLR4 plays a crucial role as verified on TLR4-deficient (TLR4-/-) bone marrow-derived macrophages (BMDMs) and TLR4-/- mice. These findings provide a precise understanding of the molecular mechanism of Cordyceps' immunomodulatory benefits.
Collapse
Affiliation(s)
- Quanwei Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Man Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lifeng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Miaomiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Pema Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wanrong Bao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hongming Zheng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xin Wen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Huiyuan Cheng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hauyee Fung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tinlong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Handong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Liu H, Xu J, Xu X, Yuan Z, Song H, Yang L, Zhu D. Structure/function relationships of bean polysaccharides: A review. Crit Rev Food Sci Nutr 2021; 63:330-344. [PMID: 34256630 DOI: 10.1080/10408398.2021.1946480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Beans are a rich source of high quality protein and oil, and have attracted increasing interest from both nutrition researchers and health-conscious consumers. This review aims to provide a foundation for the future research and development of bean polysaccharides, by summarizing the sources, structure, and functions of bioactive bean polysaccharides. Structure/function relationships are described, for biological activities, such as immunological, antioxidant and anti-diabetes. This will provide useful guidance for further optimization of polysaccharide structure and the development of bean polysaccharides as a novel functional material.
Collapse
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
17
|
Structural analysis and biological effects of a neutral polysaccharide from the fruits of Rosa laevigata. Carbohydr Polym 2021; 265:118080. [PMID: 33966844 DOI: 10.1016/j.carbpol.2021.118080] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
A neutral water-soluble polysaccharide (RLP50-2) was extracted and purified from the fruits of Rosa laevigata. The absolute molecular weight was determined as 1.26 × 104 g/mol. Monosaccharide composition analysis showed that RLP50-2 mainly consisted of glucose, arabinose, and galactose. Structural analysis revealed that RLP50-2 consisted of →5)-α-L-Araf-(1→, →2,5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →3,6)-β-D-Glcp-(1→, →4)-α-D-Galp-(1→, →6)-β-D-Galp-(1→, →2)-β-D-Xylp-(1→, terminal α-L-arabinose, and terminal β-D-mannose. Biological assays showed that RLP50-2 had immunomodulatory activities using cell and zebrafish models. Moreover, RLP50-2 showed significantly antitumor activities by inhibiting tumor cell proliferation and migration and blocking angiogenesis. These results suggested that RLP50-2 could be developed as a potential immunomodulatory agent or antitumor candidate drug in biomedicine field.
Collapse
|
18
|
Nguyen CD, Pham TMN, Ha TBH, Nguyen TP, Nguyen HH, Phan HVT, Duong TH, Dinh MH. Chemical Constituents of Cordyceps neovolkiana DL0004. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03369-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Das G, Shin HS, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Singh YD, Panda MK, Mishra AP, Nigam M, Saklani S, Chaturi PK, Martorell M, Cruz-Martins N, Sharma V, Garg N, Sharma R, Patra JK. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front Pharmacol 2021; 11:602364. [PMID: 33628175 PMCID: PMC7898063 DOI: 10.3389/fphar.2020.602364] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 01/31/2023] Open
Abstract
In recent decades, interest in the Cordyceps genus has amplified due to its immunostimulatory potential. Cordyceps species, its extracts, and bioactive constituents have been related with cytokine production such as interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor (TNF)-α, phagocytosis stimulation of immune cells, nitric oxide production by increasing inducible nitric oxide synthase activity, and stimulation of inflammatory response via mitogen-activated protein kinase pathway. Other pharmacological activities like antioxidant, anti-cancer, antihyperlipidemic, anti-diabetic, anti-fatigue, anti-aging, hypocholesterolemic, hypotensive, vasorelaxation, anti-depressant, aphrodisiac, and kidney protection, has been reported in pre-clinical studies. These biological activities are correlated with the bioactive compounds present in Cordyceps including nucleosides, sterols, flavonoids, cyclic peptides, phenolic, bioxanthracenes, polyketides, and alkaloids, being the cyclic peptides compounds the most studied. An organized review of the existing literature was executed by surveying several databanks like PubMed, Scopus, etc. using keywords like Cordyceps, cordycepin, immune system, immunostimulation, immunomodulatory, pharmacology, anti-cancer, anti-viral, clinical trials, ethnomedicine, pharmacology, phytochemical analysis, and different species names. This review collects and analyzes state-of-the-art about the properties of Cordyceps species along with ethnopharmacological properties, application in food, chemical compounds, extraction of bioactive compounds, and various pharmacological properties with a special focus on the stimulatory properties of immunity.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
| | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | - Sarla Saklani
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, Alameda Prof. Hernani Monteiro, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Vineet Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
20
|
Li Y, Ban L, Meng S, Huang L, Sun N, Yang H, Wang Y, Wang L. Bioactivities of crude polysaccharide extracted from fermented soybean curd residue by Cordyceps militaris. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1875874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yiting Li
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Litong Ban
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Shili Meng
- Department of Life Science and Bioengineering, Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Liang Huang
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Ning Sun
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Hongpeng Yang
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Yu Wang
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Linbo Wang
- Department of Life Science and Bioengineering, Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Effects of Cultured Cordycep militaris on Sexual Performance and Erectile Function in Streptozotocin-Induced Diabetic Male Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4198397. [PMID: 33274209 PMCID: PMC7683110 DOI: 10.1155/2020/4198397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 11/18/2022]
Abstract
Cordyceps militaris (CM), a valuable edible and medicinal fungus, has been used as traditional medicine to treat health conditions, as well as hyposexuality in Asian societies for over a century. Due to the high demand, several artificial cultivation methods have been developed for their biological activities. In this study, CM was cultured on medium that contained white rice and silkworm pupae, and the levels of cordycepin and adenosine, as well as its aphrodisiac effects in diabetes-induced erectile dysfunction (DIED), were evaluated. Diabetic rats were induced by streptozotocin (STZ) injection and administered orally with CM (0.1, 0.5, and 1.0 g/kg BW/day) for 3 weeks. Diabetic rats in negative and positive control groups received vehicle and sildenafil citrate (5 mg/kg), respectively. Results showed the changes in mating behaviour in which mount latency and intromission latency were significantly increased in diabetic rats, compared with the normal control group. Diabetic rats also showed a significant reduction in intracavernosal pressure (ICP) response to cavernous nerve stimulation, sperm count, testosterone level, penile nitric oxide synthase (NOS), and testicular superoxide dismutase (SOD) activities, when compared to the normal control group. Administration of CM (0.1, 0.5, and 1.0 g/kg BW/day) reversed the effects of diabetes on the mating behaviour, and the ICP responses to electrical stimulation. Moreover, the levels of penile NOS, testicular SOD activities, testosterone, and sperm count were significantly increased, and testicular malondialdehyde (MDA) levels were significantly decreased in these treated diabetic rats. Diabetic rats treated with sildenafil showed a significant induction in intromission frequency and NOS and SOD activities, as well as a marked increase in ICP responses. These results suggest that CCM exerts its aphrodisiac effect, possibly through activating testosterone production and suppressing oxidative stress to enhance erectile function in diabetic rats.
Collapse
|
22
|
Barido FH, Jang A, Pak JI, Kim DY, Lee SK. Investigation of Taste-Related Compounds and Antioxidative Profiles of Retorted Samgyetang Made from Fresh and Dried Cordyceps militaris Mushrooms. Food Sci Anim Resour 2020; 40:772-784. [PMID: 32968729 PMCID: PMC7492179 DOI: 10.5851/kosfa.2020.e53] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/06/2022] Open
Abstract
This study was performed to investigate the effects of taste-related compounds and antioxidatve profiles of retorted samgyetang made from fresh and dried Cordyceps militaris (C. militaris) mushrooms. A total of 48 carcasses were prepared from commercial broilers (CB; Ross, 4 weeks old) and randomly distributed into eight different treatments. Each treatment group consisted of 6 chicken carcasses made with the addition of broth in different condition and concentration of C. militaris mushrooms. The addition concentration was based on the broth volume (v/w) under either fresh or dried conditions ranging from 0% as a control to 1%, 2%, and 3% of C. militaris mushrooms. C. militaris mushrooms contributed to an improvement of meat tenderness and the antioxidative profile that led to a greater suppression of lipid oxidation. The addition of C. militaris mushrooms at 2% could also enrich the flavor and taste-related compounds, particularly the increase in 5'-AMP and umami-related free amino acid compounds, L-aspartic acid and L-glutamic acid. Different addition forms of C. militaris mushrooms, particularly fresh or dried mushrooms, had only small effects on bioactive compounds, where the dried addition could possibly enrich samgyetang broth with higher cordycepin and adenosine contents than the fresh addition. Besides, the addition of C. militaris mushrooms in the dried form could also contribute to a higher antioxidative profile. Eventually, the addition of C. militaris mushrooms with a minimum addition of 2% contributed to an improvement of meat quality, antioxidative profile and flavor improvement of samgyetang.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Jae In Pak
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Do Yeong Kim
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sung Ki Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
23
|
A sustainable and nondestructive method to high-throughput decolor Lycium barbarum L. polysaccharides by graphene-based nano-decoloration. Food Chem 2020; 338:127749. [PMID: 32805690 DOI: 10.1016/j.foodchem.2020.127749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 01/19/2023]
Abstract
Lycium barbarum L. polysaccharides (LBPs) with outstanding biological activities are of increasing interest. Traditional purification approaches are time-consuming and often involve toxic solvents that destroy the functionality and structure of polysaccharides. Herein, we report a sustainable and nondestructive strategy for purifying LBPs using graphene-based nano-decoloration. The amination of graphene oxide (GO) enables the resulted aminated reduced GO (NH2-rGO) with abundant sp2-hybridized carbon domains, displaying high adsorption capacity toward pigments in crude polysaccharides. As such, within 5 min, NH2-rGO can highly effectively and fast to decolor LBPs, with a high decoloration ratio of 98.72% and a high polysaccharides retention ratio of 95.62%. Importantly, compared with traditional decoloration methods, NH2-rGO is nondestructive toward LBPs and has good reusability. Moreover, it exhibited widespread-use decoloration performance to decolor several common plant species. Overall, our proposed nano-decoloration approach is a general-purpose, sustainable, and nondestructive method to purify LBPs.
Collapse
|
24
|
Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity. Carbohydr Polym 2020; 240:116301. [DOI: 10.1016/j.carbpol.2020.116301] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
25
|
Feng Y, Zhang J, Wen C, Sedem Dzah C, Chidimma Juliet I, Duan Y, Zhang H. Recent advances in Agaricus bisporus polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Yang Y, Ji J, Di L, Li J, Hu L, Qiao H, Wang L, Feng Y. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages. Carbohydr Polym 2020; 241:116355. [PMID: 32507196 DOI: 10.1016/j.carbpol.2020.116355] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
Abstract
Many natural polysaccharides from bio-resources hold advantages of multi-functions, high efficiency, non-toxicity or low side effect, and have strong potentials in protection against alcoholic liver damages. This review summarized the bio-resources, chemical and structural characteristics of natural polysaccharides with potentials in inhibition against alcoholic liver damages, and also emphasized knowledge on correlations between their chemical structure and function. Approximately 95 species were confirmed in generation of hepatoprotective polysaccharides. Products as crude polysaccharides originated from 17 species were sum up despite the indetermination of their accurate structure. Additional four polysaccharides were described for their known chemical structures. Possible roles of hepatoprotective polysaccharides were provided with evidence on antioxidant promotion, lipids regulation, apoptosis inhibition and anti-inflammation, as well as confirmations in immune enhancement, iron removal and anti-fibrosis when currently treated against the alcoholic liver damages. To sum up, this overview could serve to guide development and utilization of natural hepatoprotective polysaccharides.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Jing Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
27
|
Zhang Y, Zeng Y, Cui Y, Liu H, Dong C, Sun Y. Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley. Carbohydr Polym 2020; 235:115969. [DOI: 10.1016/j.carbpol.2020.115969] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/19/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
|
28
|
Structure, thermal and rheological properties of different soluble dietary fiber fractions from mushroom Lentinula edodes (Berk.) Pegler residues. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Review of isolation, structural properties, chain conformation, and bioactivities of psyllium polysaccharides. Int J Biol Macromol 2019; 139:409-420. [DOI: 10.1016/j.ijbiomac.2019.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
|
30
|
Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int J Biol Macromol 2019; 132:906-914. [DOI: 10.1016/j.ijbiomac.2019.04.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
|
31
|
Lu Y, Zhi Y, Miyakawa T, Tanokura M. Metabolic profiling of natural and cultured Cordyceps by NMR spectroscopy. Sci Rep 2019; 9:7735. [PMID: 31118439 PMCID: PMC6531489 DOI: 10.1038/s41598-019-44154-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
Cordyceps, a type of Chinese herbal medicine that exhibits anti-angiogenesis and tumor growth suppression effects, has recently gained increasing popularity. However, high-quality, natural Cordyceps, such as Ophiocordyceps sinensis, is very rare and difficult to obtain in large amounts. Cordyceps is cultured instead of harvested from natural sources, but the quality with respect to the ingredients has not been fully studied. In this study, we performed an NMR metabolic profiling of aqueous extracts of Cordyceps without any sample treatment to evaluate the proper species and medium and influence of two different disinfection methods. It was discovered that Cordyceps militaris fungus and silkworm chrysalis medium were suitable for cultivation of Cordyceps. Furthermore, cordycepin, a Cordyceps-specific functional compound, was produced at different growth stages during different cultivation processes, even at the mycelial stage, and was found at three times higher concentrations in cultured C. militaris compared to that in naturally occurring C. militaris.
Collapse
Affiliation(s)
- Yi Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuee Zhi
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
32
|
He B, Guo L, Zheng Q, Lin S, Lin J, Wei T, Ye Z. A simple and effective method using macroporous resins for the simultaneous decoloration and deproteinisation of
Cordyceps militaris
polysaccharides. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao‐Lin He
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Li‐Qiong Guo
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Qian‐Wang Zheng
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Shuo‐Xin Lin
- James Clark School of Engineering University of Maryland College Park MD 20742 USA
| | - Jun‐Fang Lin
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Zhi‐Wei Ye
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| |
Collapse
|
33
|
An J, Yang C, Li Z, Finn PW, Perkins DL, Sun J, Bai Z, Gao L, Zhang M, Ren D. In vitro antioxidant activities of Rhodobacter sphaeroides and protective effect on Caco-2 cell line model. Appl Microbiol Biotechnol 2018; 103:917-927. [DOI: 10.1007/s00253-018-9497-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
|
34
|
Liang L, Liu G, Yu G, Song Y, Li Q. Simultaneous decoloration and purification of crude oligosaccharides from pumpkin (Cucurbita moschata Duch) by macroporous adsorbent resin. Food Chem 2018; 277:744-752. [PMID: 30502211 DOI: 10.1016/j.foodchem.2018.10.138] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/20/2023]
Abstract
This study investigated an efficient and recyclable approach for purification of crude pumpkin oligosaccharide (POS) by macroporous resins. Five resins with different physical and chemical properties were tested for decoloration of POS. In virtue of its higher decoloration ratio (92.6%) and POS recovery ratio (81.3%), the macroporous resin DM28 was considered to a better selection. Depending on the changes of molecular weight, part of the monosaccharides in crude POS were removed simultaneously after decoloration by DM28. Operating conditions were also determined by the dynamic breakthrough and desorption curves. Moreover, UV/vis spectroscopy and Fourier transform infrared results revealed that most of the colored impurities and proteins can be removed, but the characteristic groups of the POS exhibited no significant difference. Compared with traditional methods, DM28 resin is superior in decoloration efficiency, pigment recovery and oligosaccharide recovery. This research contributes to further exploration on the structure and function of POS.
Collapse
Affiliation(s)
- Li Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Guimei Liu
- School of Food Sciences and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Guoyong Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Yi Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Quanhong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| |
Collapse
|
35
|
Yang WW, Wang LM, Gong LL, Lu YM, Pan WJ, Wang Y, Zhang WN, Chen Y. Structural characterization and antioxidant activities of a novel polysaccharide fraction from the fruiting bodies of Craterellus cornucopioides. Int J Biol Macromol 2018; 117:473-482. [DOI: 10.1016/j.ijbiomac.2018.05.212] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
|
36
|
Ma Q, Yuan L, Zhuang Y. Preparation, characterization and in vivo antidiabetic effects of polysaccharides from Pachyrrhizus erosus. Int J Biol Macromol 2018; 114:97-105. [PMID: 29572140 DOI: 10.1016/j.ijbiomac.2018.03.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/25/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
Abstract
Polysaccharides were extracted from Pachyrrhizus erosus (PEP) and three fractions (PEP60, PEP80 and PEP95) were separated by ethanol precipitation. Antidiabetic activities of three fractions were evaluated by streptozotocin-induced diabetic mouse model. Three PEP fractions reduced fasting blood glucose levels in mice, and regulated the levels of glycated serum protein, total triglyceride and total cholesterol in serum. In liver, the levels of glycogen content, glutathione peroxidase and superoxide dismutase activities and lipid peroxidation were recovered by PEP fractions. The histological analysis indicated that PEP fractions could protect the tissue structures of pancreas, liver and kidney from diabetic damages. In kidney, PEP fractions decreased the mesangial matrix index and inhibited the expression of transforming growth factor-β1. PEP95 showed stronger antidiabetic activity than PEP60 and PEP80. PEP95-DS was separated from PEP95 by DEAE-cellulose and Sephadex G-100 column chromatography. The chemical characteristics of PEP95-DS were evaluated. The average molecular weight of PEP95-DS was 11.4kDa, and it was composed of mannose: rhamnose: glucosamine: glucose: galactose: xylose: arabinose was 5.4:1.7:8.5:160.7:11.8:1:2.7. Furthermore, the spectral characteristics of PEP95-DS were analyzed. Our results indicated PEP could be used as a function ingredient in foods to prevent oxidation and diabetes.
Collapse
Affiliation(s)
- Qingyu Ma
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Ling Yuan
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
37
|
Zhai X, Yang X, Zou P, Shao Y, Yuan S, Abd El-Aty AM, Wang J. Protective Effect of Chitosan Oligosaccharides Against Cyclophosphamide-Induced Immunosuppression and Irradiation Injury in Mice. J Food Sci 2018; 83:535-542. [PMID: 29350748 DOI: 10.1111/1750-3841.14048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/05/2017] [Accepted: 12/16/2017] [Indexed: 12/22/2022]
Abstract
Chitosan oligosaccharides (COS), hydrolyzed products of chitosan, was found to display various biological activities. Herein, we assessed the immunostimulatory activity of COS both in in vitro and in vivo studies. In vitro cytotoxicity studies to murine macrophage RAW264.7 revealed that COS is safe even at the maximum tested concentration of 1000 μg/mL. It also stimulates the production of nitric oxide (NO) and tumor necrosis factor (TNF-α) and enhances the phagocytosis in COS-stimulated RAW264.7. We have shown that the COS could significantly (P < 0.05) restore the reduced immune organs indices, phagocytic index, lymphocyte proliferation, natural killer cell activity, and antioxidant enzyme activities in a cyclophosphamide-induced immunosuppressed mice model. COS can also improve the survival rate in irradiation injury mice and significantly (P < 0.05) increased the spleen indices and up-regulates the CD4+/CD8+ ratio in splenocytes. In sum, the aforementioned results suggest that COS might has the potential to be used as an immunostimulatory agent in patients with immune dysfunctions or be a model for functional food development. PRACTICAL APPLICATION COS might has the potential to be used as an immunostimulatory agent in patients with immune dysfunctions or be a model for functional food development.
Collapse
Affiliation(s)
- Xingchen Zhai
- Dept. of Food Sciences and Engineering, School of Chemistry and Chemical Engineering, Harbin Inst. of Technology, 150090 Harbin, PR China.,Key Lab. of Agro-Product Quality and Safety, Inst. of Quality Standard and Testing Technology for Agro-Product, Chinese Acad. of Agricultural Sciences, 100081 Beijing, PR China.,the Dept. of Pharmacology and Toxicology, Beijing Inst. of Radiation Medicine, 100081 Beijing, PR China
| | - Xin Yang
- Dept. of Food Sciences and Engineering, School of Chemistry and Chemical Engineering, Harbin Inst. of Technology, 150090 Harbin, PR China
| | - Pan Zou
- Dept. of Food Sciences and Engineering, School of Chemistry and Chemical Engineering, Harbin Inst. of Technology, 150090 Harbin, PR China.,Key Lab. of Agro-Product Quality and Safety, Inst. of Quality Standard and Testing Technology for Agro-Product, Chinese Acad. of Agricultural Sciences, 100081 Beijing, PR China
| | - Yong Shao
- Key Lab. of Agro-Product Quality and Safety, Inst. of Quality Standard and Testing Technology for Agro-Product, Chinese Acad. of Agricultural Sciences, 100081 Beijing, PR China
| | - Shoujun Yuan
- the Dept. of Pharmacology and Toxicology, Beijing Inst. of Radiation Medicine, 100081 Beijing, PR China
| | - A M Abd El-Aty
- Dept. of Pharmacology, Faculty of Veterinary Medicine, Cairo Univ., 12211 Giza, Egypt
| | - Jing Wang
- Dept. of Food Sciences and Engineering, School of Chemistry and Chemical Engineering, Harbin Inst. of Technology, 150090 Harbin, PR China.,Key Lab. of Agro-Product Quality and Safety, Inst. of Quality Standard and Testing Technology for Agro-Product, Chinese Acad. of Agricultural Sciences, 100081 Beijing, PR China
| |
Collapse
|
38
|
Preliminary structural characterization and hypoglycemic effects of an acidic polysaccharide SERP1 from the residue of Sarcandra glabra. Carbohydr Polym 2017; 176:140-151. [DOI: 10.1016/j.carbpol.2017.08.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 08/15/2017] [Indexed: 11/23/2022]
|
39
|
Doan HV, Hoseinifar SH, Tapingkae W, Chitmanat C, Mekchay S. Effects of Cordyceps militaris spent mushroom substrate on mucosal and serum immune parameters, disease resistance and growth performance of Nile tilapia, (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2017; 67:78-85. [PMID: 28578127 DOI: 10.1016/j.fsi.2017.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
The aim of present study was determination effects of dietary administration of C. militaris spent mushroom substrate (SMS) on mucosal and serum immune parameters, disease resistance, and growth performance of Nile tilapia (Oreochromis niloticus). Two hundred twenty five fish of similar weight (37.28 ± 0.10 g) were assigned to the following diets [0 (T1- Control), 5 (T2), 10 (T3), 20 (T4) and 40 g kg-1 (T5) SMS]. After 60 days of feeding trial, growth performance, skin mucus lysozyme and peroxidase activities as well as serum innate immune were measured. In addition, survival rate and innate immune responses were calculated after challenge test (15 days) against Streptococcus agalactiae. The results revealed that regardless of inclusion levels, feeding Nile tilapia with SMS supplemented diets significantly increased skin mucus lysozyme and peroxidase activities as well as serum immune parameters (SL, ACH50, PI, RB, and RB) compared control group (P < 0.05). The highest increment of immune parameters was observed in fish fed 10 g kg-1 SMS which was significantly higher than other treatments (P < 0.05). Also, the relative percent survival (RSP) in T2, T3, T4, and T5 was 61.11%, 88.89%, 66.67, and 55.56%, respectively. Among the supplemented groups, fish fed 10 g kg-1 SMS showed significant higher RPS and resistance to S. agalactiae than other groups (P < 0.05). Regarding the growth performance, SGR, WG, FW, and FCR were remarkably improved (P < 0.05) in SMS groups; the highest improvement observed in 10 g kg-1 SMS treatment. According to these finding, administration of 10 g kg-1 SMS is suggested in tilapia to improve growth performance and health status.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 Thailand.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 Thailand
| | - Chanagun Chitmanat
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290 Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 Thailand
| |
Collapse
|
40
|
Awadasseid A, Hou J, Gamallat Y, Xueqi S, Eugene KD, Musa Hago A, Bamba D, Meyiah A, Gift C, Xin Y. Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus Versicolor. PLoS One 2017; 12:e0171270. [PMID: 28178285 PMCID: PMC5298263 DOI: 10.1371/journal.pone.0171270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/17/2017] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of deaths worldwide. Herein, we report an efficient natural anticancer glucan (CVG) extracted from Coriolus Versicolar (CV). CVG was extracted by the hot water extraction method followed by ethanol precipitation and purified using gas exclusion chromatography. Structural analysis revealed that CVG has a linear α-glucan chain composed of only (1→ 6)-α-D-Glcp. The antitumor activity of CVG on Sarcoma-180 cells was investigated in vitro and in vivo. Mice were treated with three doses of CVG (40, 100, 200 mg/kg body weight) for 9 days. Tumor weight, relative spleen, thymus weight, and lymphocyte proliferation were studied. A significant increase (P< 0.01) in relative spleen and thymus weight and a decrease (P< 0.01) in tumor weight at the doses of 100 and 200 mg/kg were observed. The results obtained demonstrate CVG has antitumor activity towards Sarcoma-180 cells by its immunomodulation activity.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
- Department of Biochemistry and Molecular Biology, Northeast Normal University, Changchun, P.R. China
- Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid, The Republic of Sudan
| | - Jie Hou
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Yaser Gamallat
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Shang Xueqi
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Kuugbee D. Eugene
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Ahmed Musa Hago
- Department of pathology and pathophysiology, Dalian Medical University, Dalian, P.R. China
| | - Djibril Bamba
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Abdo Meyiah
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Chiwala Gift
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, P.R. China
- * E-mail:
| |
Collapse
|
41
|
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21:E1705. [PMID: 27983593 PMCID: PMC6273901 DOI: 10.3390/molecules21121705] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Structural characterization of a novel neutral polysaccharide from Lentinus giganteus and its antitumor activity through inducing apoptosis. Carbohydr Polym 2016; 154:231-40. [DOI: 10.1016/j.carbpol.2016.08.059] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|
43
|
Luo X, Duan Y, Yang W, Zhang H, Li C, Zhang J. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydr Polym 2016; 157:794-802. [PMID: 27987993 DOI: 10.1016/j.carbpol.2016.10.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 11/27/2022]
Abstract
Water-soluble polysaccharides were obtained from Cordyceps militaris (C. militaris) (CMP) by subcritical water extraction (SWE). Two polysaccharides fractions, CMP-W1 and CMP-S1, were isolated from CMP using DEAE-52 cellulose and Sephadex G-150 column chromatography. The structural characteristics of CMP-W1 and CMP-S1 were investigated. The results showed that the molecular weight of CMP-W1 and CMP-S1 are 3.66×105Da and 4.60×105Da, respectively, and both of them were heteropolysaccharides composed of d-mannose, d-glucose, d-galactose with the molar ratios of 2.84:1:1.29 and 2.05:1:1.09, respectively. FT-IR spectra analysis suggested that CMP-W1 and CMP-S1 belonged to pyranose form sugar and protein free. For immunostimulatory activity assay in vitro, CMP-W1 and CMP-S1 significantly promoted lymphatic spleen cell proliferation of mice. Therefore, the polysaccharides obtained from C. militaris by SWE can be used as potential natural immunostimulant in functional foods or medicine.
Collapse
Affiliation(s)
- Xiaoping Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Wenya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Changzheng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
44
|
Luo Z, Hu X, Xiong H, Qiu H, Yuan X, Zhu F, Wang Y, Zou Y. A polysaccharide from Huaier induced apoptosis in MCF-7 breast cancer cells via down-regulation of MTDH protein. Carbohydr Polym 2016; 151:1027-1033. [DOI: 10.1016/j.carbpol.2016.06.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 01/02/2023]
|
45
|
Quantitative Structure Activity Relationship Models for the Antioxidant Activity of Polysaccharides. PLoS One 2016; 11:e0163536. [PMID: 27685320 PMCID: PMC5042491 DOI: 10.1371/journal.pone.0163536] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/10/2016] [Indexed: 01/06/2023] Open
Abstract
In this study, quantitative structure activity relationship (QSAR) models for the antioxidant activity of polysaccharides were developed with 50% effective concentration (EC50) as the dependent variable. To establish optimum QSAR models, multiple linear regressions (MLR), support vector machines (SVM) and artificial neural networks (ANN) were used, and 11 molecular descriptors were selected. The optimum QSAR model for predicting EC50 of DPPH-scavenging activity consisted of four major descriptors. MLR model gave EC50 = 0.033Ara-0.041GalA-0.03GlcA-0.025PC+0.484, and MLR fitted the training set with R = 0.807. ANN model gave the improvement of training set (R = 0.96, RMSE = 0.018) and test set (R = 0.933, RMSE = 0.055) which indicated that it was more accurately than SVM and MLR models for predicting the DPPH-scavenging activity of polysaccharides. 67 compounds were used for predicting EC50 of the hydroxyl radicals scavenging activity of polysaccharides. MLR model gave EC50 = 0.12PC+0.083Fuc+0.013Rha-0.02UA+0.372. A comparison of results from models indicated that ANN model (R = 0.944, RMSE = 0.119) was also the best one for predicting the hydroxyl radicals scavenging activity of polysaccharides. MLR and ANN models showed that Ara and GalA appeared critical in determining EC50 of DPPH-scavenging activity, and Fuc, Rha, uronic acid and protein content had a great effect on the hydroxyl radicals scavenging activity of polysaccharides. The antioxidant activity of polysaccharide usually was high in MW range of 4000-100000, and the antioxidant activity could be affected simultaneously by other polysaccharide properties, such as uronic acid and Ara.
Collapse
|
46
|
Zhu Y, Ding X, Wang M, Hou Y, Hou W, Yue C. Structure and antioxidant activity of a novel polysaccharide derived from Amanita caesarea. Mol Med Rep 2016; 14:3947-54. [PMID: 27600603 DOI: 10.3892/mmr.2016.5693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/10/2016] [Indexed: 11/06/2022] Open
Abstract
A heteropolysaccharide was isolated from the fruiting bodies of Amanita caesarea using a diethylaminoethyl-cellulose column, Sephacryl S‑300 gel column and Sephadex G‑200 column. The Amanita caesarea polysaccharide was predominantly composed of α-D-glucose and α-D-lyxose at a ratio of 2:1, and it had a molecular weight of 19,329 Da. The structural features of the Amanita caesarea polysaccharide were investigated by a combination of total hydrolysis, methylation analysis, gas chromatography-mass spectrometry, and infrared spectra and nuclear magnetic resonance spectroscopy. The results showed that Amanita caesarea polysaccharide (termed AC‑1) had a backbone of 1,4‑linked α‑D‑glucose and 1,3,6‑linked α‑D‑glucose, with branches of one 1‑linked α‑D‑lyxose residue. The antioxidant activity of AC‑1 was evaluated by two biochemical methods, 2,2-azino-bis diammonium (ABTS+) radical scavenging activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH-) radical scavenging activity. The uncontrolled production of free radicals is involved in various diseases, including cancer, atherosclerosis and degenerative aging processes. The results indicated that the Amanita caesarea polysaccharide exhibits strong antioxidant activity, thus, it may be a useful natural product antioxidant.
Collapse
Affiliation(s)
- Yuanxiu Zhu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Mei Wang
- National Center for Sweet Potato Improvement Centre of Nanchong, Nanchong Academy of Agricultural Sciences, Nanchong, Sichuan 637001, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Wanru Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Changwu Yue
- Key Laboratory of Characteristic Microbial Resources & Drug Development of Guizhou Provincial Education Department, Zunyi Medical University, Zunyi, Guizhou 561000, P.R. China
| |
Collapse
|
47
|
Gao X, Yan P, Liu X, Wang J, Yu J. Optimization of Cultural Conditions for Antioxidant Exopolysaccharides from Xerocomus badius Grown in Shrimp Byproduct. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2043787. [PMID: 26998481 PMCID: PMC4779826 DOI: 10.1155/2016/2043787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/09/2023]
Abstract
To optimize the production conditions for exopolysaccharides with higher antioxidant activities from Xerocomus badius cultured in shrimp byproduct medium, Plackett-Burman design, path of steepest ascent, and response surface methodology were explored. Based on the results of Plackett-Burman design and path of steepest ascent, a Box-Behnken design was applied to optimization and the regression models. The optimal cultural condition for high yield and antioxidant activity of the exopolysaccharides was determined to be 10.347% of solid-to-liquid ratio, a 4.322% content of bran powder, and a 1.217% concentration of glacial acetic acid. Culturing with the optimal cultural conditions resulted in an exopolysaccharides yield of 4.588 ± 0.346 g/L and a total antioxidant activity of 2.956 ± 0.105 U/mg. These values are consistent with the values predicted by the corresponding regression models (RSD < 5%).
Collapse
Affiliation(s)
- Xiujun Gao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Peisheng Yan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Xin Liu
- Department of Biological & Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jianbing Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Jiajia Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|
48
|
Ruthes AC, Smiderle FR, Iacomini M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects. Carbohydr Polym 2016; 136:358-75. [DOI: 10.1016/j.carbpol.2015.08.061] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/10/2023]
|
49
|
A novel protein with anti-metastasis activity on 4T1 carcinoma from medicinal fungus Cordyceps militaris. Int J Biol Macromol 2015; 80:385-91. [DOI: 10.1016/j.ijbiomac.2015.06.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 01/13/2023]
|
50
|
Cheng H, Jia Y, Wang L, Liu X, Liu G, Li L, He C. Isolation and structural elucidation of a novel homogenous polysaccharide from Tricholoma matsutake. Nat Prod Res 2015. [PMID: 26208132 DOI: 10.1080/14786419.2015.1034711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A crude polysaccharide possessing antitumour, radiation-resistant and anti-ageing attributes was extracted from Tricholoma matsutake by water extraction and alcohol precipitation. From this crude polysaccharide, a homogeneous polysaccharide, TMP-5II, was successfully purified by Sephacryl S-300 column chromatography. The average molecular weight (Mw) of TMP-5II was 15.76 kDa. Monosaccharide analysis indicated that the homogeneous polysaccharide contained four different residues: d-glucose, d-galactose, d-mannose and d-fucose. Attenuated total reflectance infrared spectroscopy revealed characteristics typical of carbohydrate polymers and a peak typical of a β-type glycosidic bond. TMP-5II was selected for structural characterisation by nuclear magnetic resonance (NMR) analysis. According to (1)H NMR, (13)C NMR and two-dimensional-NMR analysis, TMP-5II contains two kinds of linkages, β and α, at a ratio of 4:1. Preliminary results indicated that the polysaccharide had (1-4)-beta-pyran glucose as the main chain, and a branched chain in the O-6 location with fucose (1-2) mannose (1-3)-alpha-pyran galactose.
Collapse
Affiliation(s)
- Hua Cheng
- a Beijing Key Laboratory of Plants Resource Research and Development, School of Science, Beijing Technology and Business University , Beijing 100048 , P.R. China
| | - Yan Jia
- a Beijing Key Laboratory of Plants Resource Research and Development, School of Science, Beijing Technology and Business University , Beijing 100048 , P.R. China
| | - Ling Wang
- a Beijing Key Laboratory of Plants Resource Research and Development, School of Science, Beijing Technology and Business University , Beijing 100048 , P.R. China
| | - Xiaoying Liu
- b Infinitus International (China) Company, Ltd. , Guangzhou , Guangdong 510665 , P.R. China
| | - Guangrong Liu
- b Infinitus International (China) Company, Ltd. , Guangzhou , Guangdong 510665 , P.R. China
| | - Li Li
- a Beijing Key Laboratory of Plants Resource Research and Development, School of Science, Beijing Technology and Business University , Beijing 100048 , P.R. China
| | - Congfen He
- a Beijing Key Laboratory of Plants Resource Research and Development, School of Science, Beijing Technology and Business University , Beijing 100048 , P.R. China
| |
Collapse
|