1
|
Wang Q, Zhong L, Zhou Y, Feng S, Liu J, Liu H, Zhu Q. Regioselective functionalization of cellulose nanomaterial for advanced application. Carbohydr Polym 2025; 348:122889. [PMID: 39567165 DOI: 10.1016/j.carbpol.2024.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Cellulose nanomaterials (CNMs) with their remarkable properties and abundant natural sources have emerged as a versatile platform for material science. However, their widespread adoption to develop novel applications often hinges on precise control over their surface chemistry. Regioselective functionalization, i.e., the ability to modify specific hydroxy groups on the cellulose backbone or aldehyde reducing end group (REG), offers unparalleled control on their surface chemistry. This review highlights the exciting developments in regioselective functionalization of CNMs and their impacts on structure-property relationships. Key factors that influence regioselectivity are examined and exciting applications of regioselectively functionalized CNMs are reviewed. This review also highlights the need for efficient, large-scale regioselective functionalization techniques and identifies key areas for future research.
Collapse
Affiliation(s)
- Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; Multidimensional Spectral Traceability Monitoring Technology and Equipment Anhui Engineering Research Center, Hefei, Anhui 230051, China.
| | - Lin Zhong
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhou
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Shixuan Feng
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Analysis and Testing Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Zhang Y, Deng W, Wu M, Rahmaninia M, Xu C, Li B. Tailoring Functionality of Nanocellulose: Current Status and Critical Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091489. [PMID: 37177034 PMCID: PMC10179792 DOI: 10.3390/nano13091489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Nanocellulose (NC) isolated from natural cellulose resources, which mainly includes cellulose nanofibril (CNF) and cellulose nanocrystal (CNC), has garnered increased attention in recent decades due to its outstanding physical and chemical properties. Various chemical modifications have been developed with the aim of surface-modifying NC for highly sophisticated applications. This review comprehensively summarizes the chemical modifications applied to NC so far in order to introduce new functionalities to the material, such as silanization, esterification, oxidation, etherification, grafting, coating, and others. The new functionalities obtained through such surface-modification methods include hydrophobicity, conductivity, antibacterial properties, and absorbability. In addition, the incorporation of NC in some functional materials, such as films, wearable sensors, cellulose nanospheres, aerogel, hydrogels, and nanocomposites, is discussed in relation to the tailoring of the functionality of NC. It should be pointed out that some issues need to be addressed during the preparation of NC and NC-based materials, such as the low reactivity of these raw materials, the difficulties involved in their scale-up, and their high energy and water consumption. Over the past decades, some methods have been developed, such as the use of pretreatment methods, the adaptation of low-cost starting raw materials, and the use of environmentally friendly chemicals, which support the practical application of NC and NC-based materials. Overall, it is believed that as a green, sustainable, and renewable nanomaterial, NC is will be suitable for large-scale applications in the future.
Collapse
Affiliation(s)
- Yidong Zhang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wangfang Deng
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Meiyan Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mehdi Rahmaninia
- Wood and Paper Science and Technology Department, Faculty of Natural Resources, Tarbiat Modares University, Noor 46417-76489, Iran
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
3
|
Afolabi F, Mahmood SM, Sharifigaliuk H, 'Izzat Hazim Bin Kamarozaman M, Natasha Najwa Binti Mohamed Mansor F. Investigations on the Enhanced Oil Recovery Capacity of Novel Bio-Based Polymeric Surfactants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Shen X, Jiang G, Li X, He Y, Yang L, Cui K, Li W. Application of carboxylated cellulose nanocrystals as eco-friendly shale inhibitors in water-based drilling fluids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
6
|
Preparation and evaluation of alpha‐cellulose sulfate based new heterogeneous catalyst for production of biodiesel. J Appl Polym Sci 2020. [DOI: 10.1002/app.49658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Zeng K, Groth T, Zhang K. Recent Advances in Artificially Sulfated Polysaccharides for Applications in Cell Growth and Differentiation, Drug Delivery, and Tissue Engineering. Chembiochem 2018; 20:737-746. [DOI: 10.1002/cbic.201800569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Kui Zeng
- Wood Technology and Wood ChemistryGeorg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Thomas Groth
- Biomedical Materials GroupMartin Luther University Halle-Wittenberg Heinrich-Damerow-Strasse 4 06120 Halle/Saale Germany
| | - Kai Zhang
- Wood Technology and Wood ChemistryGeorg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| |
Collapse
|
8
|
|
9
|
Li Z, Ma J, Li R, Yin X, Dong W, Pan C. Fabrication of a blood compatible composite membrane from chitosan nanoparticles, ethyl cellulose and bacterial cellulose sulfate. RSC Adv 2018; 8:31322-31330. [PMID: 35548235 PMCID: PMC9085638 DOI: 10.1039/c8ra05536j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/27/2018] [Indexed: 01/14/2023] Open
Abstract
A heparin-like composite membrane was fabricated through electrospinning chitosan nanoparticles (CN) together with an ethylcellulose (EC) ethanol solution onto a bacterial cellulose sulfate membrane (BCS). Scanning electron microscopy images revealed that there were no chitosan particles in the obtained composite CN-EC/BCS membranes (CEB), indicating CN had been stretched to nanofibers. X-ray photoelectron spectroscopy verified the existence of –NH2 from chitosan and –SO3− from BCS on the surface of CEB membranes. Positively charged CN in the electrospinning solution and negatively charged BCS on the collector increased the electrostatic force and the electrospinning ability of the EC was increased. The membrane was hydrophobic, with a water contact angle higher than 120°. CEB membranes expressed good blood compatibility according to the results of coagulation time and platelet adhesion experiments. No platelets adhered on the surface of the CEB membranes. An inflammatory response was investigated according to activation of the macrophages seeded onto the membranes. Macrophages seeded on CEB membranes are not activated after 24 h incubation. A blood compatible membrane was fabricated through electrospinning a solution of chitosan nanoparticles and ethylcellulose onto a bacterial cellulose sulfate membrane to mimic heparin's structure.![]()
Collapse
Affiliation(s)
- Zhiming Li
- Hainan Provincial Fine Chemical Engineering Research Center
- School of Materials and Chemical Engineering
- Hainan University
- Haikou
- P. R. China
| | - Jiazhi Ma
- Hainan Provincial Fine Chemical Engineering Research Center
- School of Materials and Chemical Engineering
- Hainan University
- Haikou
- P. R. China
| | - Rongguo Li
- Hainan Provincial Fine Chemical Engineering Research Center
- School of Materials and Chemical Engineering
- Hainan University
- Haikou
- P. R. China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center
- School of Materials and Chemical Engineering
- Hainan University
- Haikou
- P. R. China
| | - Wenyuan Dong
- Hainan Provincial Fine Chemical Engineering Research Center
- School of Materials and Chemical Engineering
- Hainan University
- Haikou
- P. R. China
| | - Changjiang Pan
- Faculty of Mechanical and Materials Engineering
- Huaiyin Institute of Technology
- Huai'an
- P. R. China
| |
Collapse
|
10
|
Pierre G, Punta C, Delattre C, Melone L, Dubessay P, Fiorati A, Pastori N, Galante YM, Michaud P. TEMPO-mediated oxidation of polysaccharides: An ongoing story. Carbohydr Polym 2017; 165:71-85. [PMID: 28363578 DOI: 10.1016/j.carbpol.2017.02.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 01/30/2023]
Abstract
The oxidation of natural polysaccharides by TEMPO has become by now an "old chemical reaction" which led to numerous studies mainly conducted on cellulose. This regioselective oxidation of primary alcohol groups of neutral polysaccharides has generated a new class of polyuronides not identified before in nature, even if the discovery of enzymes promoting an analogous oxidation has been more recently reported. Around the same time, the scientific community discovered the surprising biological and techno-functional properties of these anionic macromolecules with a high potential of application in numerous industrial fields. The objective of this review is to establish the state of the art of TEMPO chemistry applied to polysaccharide oxidation, its history, the resulting products, their applications and the associated modifying enzymes.
Collapse
Affiliation(s)
- Guillaume Pierre
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France.
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Cédric Delattre
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy; Università degli Studi e-Campus, Via Isimbardi 10, 22060, Novedrate, Como, Italy
| | - Pascal Dubessay
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Nadia Pastori
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Yves M Galante
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131, Milano, Italy
| | - Philippe Michaud
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France
| |
Collapse
|
11
|
Zhang Q, Lin D, Yao S. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym 2015; 132:311-22. [DOI: 10.1016/j.carbpol.2015.06.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
|
12
|
Chen C, Xu H, Qian YC, Huang XJ. Glycosylation of polyphosphazenes by thiol-yne click chemistry for lectin recognition. RSC Adv 2015. [DOI: 10.1039/c4ra14012e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Strong carbohydrate–lectin binding interactions in biological systems can be mimicked through the synthesis of glucose containing macromolecules, particularly glycosylated polymers.
Collapse
Affiliation(s)
- Chen Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Huang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yue-Cheng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiao-Jun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
13
|
Multilayer films by blending heparin with semisynthetic cellulose sulfates: Physico-chemical characterization and cell responses. J Biomed Mater Res A 2014; 102:4224-33. [DOI: 10.1002/jbm.a.35095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 11/07/2022]
|
14
|
Jacquemin J, Feder-Kubis J, Zorębski M, Grzybowska K, Chorążewski M, Hensel-Bielówka S, Zorębski E, Paluch M, Dzida M. Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media. COSMO-RS structure characterization and modeling of heat capacities. Phys Chem Chem Phys 2014; 16:3549-57. [DOI: 10.1039/c3cp54533d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Aggarwal N, Altgärde N, Svedhem S, Zhang K, Fischer S, Groth T. Effect of molecular composition of heparin and cellulose sulfate on multilayer formation and cell response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13853-64. [PMID: 24171489 DOI: 10.1021/la4028157] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Here, the layer-by-layer method was applied to assemble films from chitosan paired with either heparin or a semisynthetic cellulose sulfate (CS) that possessed a higher sulfation degree than heparin. Ion pairing was exploited during multilayer formation at pH 4, while hydrogen bonding is likely to occur at pH 9. Effects of polyanions and pH value during layer formation on multilayers properties were studied by surface plasmon resonance ("dry layer mass"), quartz crystal microbalance with dissipation monitoring ("wet layer mass"), water contact angle, and zeta potential measurements. Bioactivity of multilayers was studied regarding fibronectin adsorption and adhesion/proliferation of C2C12 myoblast cells. Layer growth and dry mass were higher for both polyanions at pH 4 when ion pairing occurred, while it decreased significantly with heparin at pH 9. By contrast, CS as polyanion resulted also in high layer growth and mass at pH 9, indicating a much stronger effect of hydrogen bonding between chitosan and CS. Water contact angle and zeta potential measurements indicated a more separated structure of multilayers from chitosan and heparin at pH 4, while CS led to a more fuzzy intermingled structure at both pH values. Cell behavior was highly dependent on pH during multilayer formation with heparin as polyanion and was closely related to fibronectin adsorption. By contrast, CS and chitosan did not show such dependency on pH value, where adhesion and growth of cells was high. Results of this study show that CS is an attractive candidate for multilayer formation that does not depend so strongly on pH during multilayer formation. In addition, such multilayer system also represents a good substrate for cell interactions despite the rather soft structure. As previous studies have shown specific interaction of CS with growth factors, multilayers from chitosan and CS may be of great interest for different biomedical applications.
Collapse
Affiliation(s)
- Neha Aggarwal
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
16
|
Synthesis of new glycosaminoglycans-like families by regioselective oxidation followed by sulphation of glucoglucuronan from Rhizobium sp. T1. Carbohydr Polym 2012; 89:1261-7. [DOI: 10.1016/j.carbpol.2012.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/24/2022]
|
17
|
Zhang K, Fischer S, Geissler A, Brendler E. Analysis of carboxylate groups in oxidized never-dried cellulose II catalyzed by TEMPO and 4-acetamide-TEMPO. Carbohydr Polym 2012; 87:894-900. [DOI: 10.1016/j.carbpol.2011.08.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/23/2011] [Accepted: 08/27/2011] [Indexed: 11/29/2022]
|
18
|
Elboutachfaiti R, Delattre C, Petit E, Michaud P. Polyglucuronic acids: Structures, functions and degrading enzymes. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.10.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|