1
|
Qadeer S, Ashraf A, Farooq MU, Ullah S, Asad M, Muneeb A, Adil M. Evaluation of Kappa-carrageenan supplementation in extender for post-thaw Kajli ram sperm quality. Reprod Domest Anim 2024; 59:e14551. [PMID: 38462999 DOI: 10.1111/rda.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Cryopreservation is one of the reliable techniques for long-term storage of sperm. The success of this technique depends on the choice of cryoprotectant; therefore, a plethora of literature has reported the effects of different cryoprotective agents so far. Kappa-carrageenan (κ-carrageenan) is a hydrocolloid polysaccharide extracted from red marine seaweed. Its unique property makes it a promising option as a non-colligative cryoprotectant. The current study aims to evaluate the cryoprotective effect of k-carrageenan along with glycerol on ram sperm quality both after equilibration and freezing. Nine Kajli rams were utilized in this experiment for semen collection through an artificial vagina maintained at 42°C. Qualified samples were diluted in tris egg yolk glycerol (TEYG) extender containing different concentrations of k-carrageenan as 0 mg/mL (control), 0.2, 0.5, 0.8 and 1 mg/mL. Post-thaw assessment was done at 37°C after 24 h of storage, which showed a significant improvement (p < .05) in sperm viability, motility, membrane and acrosome integrity in an extender containing k-carrageenan at a concentration of 0.5 mg/mL compared to control. It is concluded from the current study that the combination of glycerol and 0.5 mg/mL concentration of k-carrageenan improved the sperm post-thaw quality.
Collapse
Affiliation(s)
- Saima Qadeer
- Department of Zoology, Division of Sciences and Technology, University of Education, Lahore, Pakistan
| | - Asma Ashraf
- Department of Zoology, Division of Sciences and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Umer Farooq
- Department of Zoology, Division of Sciences and Technology, University of Education, Lahore, Pakistan
| | - Sana Ullah
- Department of Zoology, Division of Sciences and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Asad
- Department of Zoology, Division of Sciences and Technology, University of Education, Lahore, Pakistan
| | - Ahmad Muneeb
- Department of Botany, Division of Sciences and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Adil
- Department of Zoology, Division of Sciences and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
2
|
Kim YS, Lee AS, Hur HJ, Lee SH, Na HJ, Sung MJ. Renoprotective Effect of Chrysanthemum coronarium L. Extract on Adenine-Induced Chronic Kidney Disease in Mice. Pharmaceuticals (Basel) 2023; 16:1048. [PMID: 37513959 PMCID: PMC10383626 DOI: 10.3390/ph16071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic kidney disease (CKD) gradually leads to loss of renal function and is associated with inflammation and fibrosis. Chrysanthemum coronarium L., a leafy vegetable, possesses various beneficial properties, including anti-oxidative, anti-inflammatory, and antiproliferative effects. In this study, we investigated the renoprotective effect of Chrysanthemum coronarium L. extract (CC) on adenine (AD)-induced CKD in mice. CKD was induced by feeding mice with an AD diet (0.25% w/w) for 4 weeks. Changes in renal function, histopathology, inflammation, and renal interstitial fibrosis were analyzed. The adenine-fed mice were characterized by increased blood urea nitrogen, serum creatinine, and histological changes, including inflammation and fibrosis; however, these changes were significantly restored by treatment with CC. Additionally, CC inhibited the expression of the inflammatory markers, monocyte chemoattractant protein-1, interleukins-6 and -1β, intercellular adhesion molecule-1, and cyclooxygenase 2. Moreover, CC suppressed the expression of the fibrotic markers, type IV collagen, and fibronectin. Furthermore, CC attenuated the expression of profibrotic genes (tumor growth factor-β and α-smooth muscle actin) in AD-induced renal injury mice. Thus, our results suggest that CC has the potential to attenuate AD-induced renal injury and might offer a new option as a renoprotective agent or functional food supplement to manage CKD.
Collapse
Affiliation(s)
- Yi-Seul Kim
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Ae-Sin Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Haeng-Jeon Hur
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Sang-Hee Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Hyun-Jin Na
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Mi-Jeong Sung
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| |
Collapse
|
3
|
Cui J, Wang Y, Kim E, Zhang C, Zhang G, Lee Y. Structural Characteristics and Immunomodulatory Effects of a Long-Chain Polysaccharide From Laminaria japonica. Front Nutr 2022; 9:762595. [PMID: 35419391 PMCID: PMC8996131 DOI: 10.3389/fnut.2022.762595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Polysaccharides derived from Laminaria japonica (LJPS) have shown a variety of beneficial effects on improving human health; however, the structural features and bioactivities of long-chain LJPS remain unclear. This study aimed to investigate the structural characteristics and bioactivities of a novel long-chain LJPS. Results showed that the LJPS was composed of Fuc, Rha, Ara, Gal, Glc, Xyl, Man, Fru, Rib, GalA, GluA, GlcA, and ManA, with a molar ratio of 35.71:1.48:0.28:13.16:0.55:2.97:6.92:0.58:0.41:0.14:3.16:15.84:18.79. Of these, Fuc, Gal, Man, GlcA, and ManA were the predominant components with an accumulated proportion of 93.6%. The LJPS was found to consist of seven types of the monomer residues, and the main interchain glycosidic linkages were β -D-(1 → 2), α -D-(1 → 3), (1 → 4), and (1 → 6), and the molecular mass was 5.79 × 104 g/mol. Regarding the molecular conformation, LJPS was a multi-branched, long-chain macromolecule, and appeared in a denser crosslinking network with highly branched and helix domains in the terms of morphology. Additionally, the LJPS had no toxicity to mouse macrophage cells and exhibited biphasic immuno-modulating capacity. The present findings suggested that the long-chain LJPS might be an attractive candidate as an immunopotentiating and anti-inflammatory functional food, and this study also provides a feasible approach to decipher the structural characteristics and spatial conformations of plant-derived polysaccharides.
Collapse
Affiliation(s)
- Jiamei Cui
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| | - Yunpeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Prevention, Department of Animal Nutrition, Shandong Agricultural University, Taian City, China
| | - Eunyoung Kim
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| | - Chongyu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Prevention, Department of Animal Nutrition, Shandong Agricultural University, Taian City, China
| | - Guiguo Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Prevention, Department of Animal Nutrition, Shandong Agricultural University, Taian City, China
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| |
Collapse
|
4
|
Ma Z, Yang Z, Feng X, Deng J, He C, Li R, Zhao Y, Ge Y, Zhang Y, Song C, Zhong S. The Emerging Evidence for a Protective Role of Fucoidan from Laminaria japonica in Chronic Kidney Disease-Triggered Cognitive Dysfunction. Mar Drugs 2022; 20:258. [PMID: 35447931 PMCID: PMC9025131 DOI: 10.3390/md20040258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the mechanism of fucoidan in chronic kidney disease (CKD)-triggered cognitive dysfunction. The adenine-induced ICR strain CKD mice model was applied, and RNA-Seq was performed for differential gene analysis between aged-CKD and normal mice. As a result, fucoidan (100 and 200 mg kg-1) significantly reversed adenine-induced high expression of urea, uric acid in urine, and creatinine in serum, as well as the novel object recognition memory and spatial memory deficits. RNA sequencing analysis indicated that oxidative and inflammatory signaling were involved in adenine-induced kidney injury and cognitive dysfunction; furthermore, fucoidan inhibited oxidative stress via GSK3β-Nrf2-HO-1 signaling and ameliorated inflammatory response through regulation of microglia/macrophage polarization in the kidney and hippocampus of CKD mice. Additionally, we clarified six hallmarks in the hippocampus and four in the kidney, which were correlated with CKD-triggered cognitive dysfunction. This study provides a theoretical basis for the application of fucoidan in the treatment of CKD-triggered memory deficits.
Collapse
Affiliation(s)
- Zhihui Ma
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyue Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Jiahang Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Chuantong He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Yuntao Zhao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Yuewei Ge
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yongping Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Cai Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Kim E, Almubarak A, Talha N, Yu IJ, Jeon Y. The Use of κ-Carrageenan in Egg Yolk Free Extender Improves the Efficiency of Canine Semen Cryopreservation. Animals (Basel) 2021; 12:88. [PMID: 35011194 PMCID: PMC8749662 DOI: 10.3390/ani12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
κ-Carrageenan is a plant polysaccharide derived from red seaweeds reported to possess potential medicinal and antioxidants activities. The present study aimed to identify the cryoprotective effects of κ-carrageenan on the quality of frozen-thawed canine semen. Twenty-eight ejaculates were collected and diluted in a Tris egg-yolk-free extender supplemented with various concentrations of κ-carrageenan (0.0%, 0.1%, 0.2%, 0.3%, and 0.5%). The addition of κ-carrageenan to the extender at a 0.2% concentration induced a significant increase in the total motility (TM) and the rapid progressive motility (RPM) of canine sperm. Among the experimental groups, the highest percentage of sperms with intact acrosomes was found in the 0.5% κ-carrageenan group (p < 0.05). Apoptosis levels were significantly lower in the 0.1% and 0.2% κ-carrageenan treatment. Moreover, sperm in the κ-carrageenan supplemented group showed a significantly higher expression of antiapoptotic (Bcl-2) and lower expression of NADPH oxidase (NOX5), spermine synthase (SMS), and spermine oxidase (SMOX) genes than those in the control group. In conclusion, the addition of κ-carrageenan to the freezing extender improved the overall efficiency of frozen-thawed dog spermatozoa.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (E.K.); (A.A.); (I.-J.Y.)
| | - Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (E.K.); (A.A.); (I.-J.Y.)
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North 11111, Sudan;
| | - Nabeel Talha
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North 11111, Sudan;
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (E.K.); (A.A.); (I.-J.Y.)
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (E.K.); (A.A.); (I.-J.Y.)
| |
Collapse
|
6
|
Piner Benli P, Kaya M, Coskun C. Fucoidan Modulated Oxidative Stress and Caspase-3 mRNA Expression Induced by Sulfoxaflor in the Brain of Mice. Neurotox Res 2021; 39:1908-1919. [PMID: 34570347 DOI: 10.1007/s12640-021-00415-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022]
Abstract
The current study aimed to investigate the role of fucoidan in the oxidative and apoptotic effects of sulfoxaflor, a neonicotinoid sulfoximine insecticide, in the brain of Swiss albino mice (Mus musculus). Sulfoxaflor and fucoidan were administered to mice at doses of 15 mg/kg/day (1/50 oral LD50) and 50 mg/kg/day, respectively, by oral gavage for 24 h or 7 days. The tGSH, TBARS and protein levels, and GPx, GR, and GST enzyme activities were determined by spectrophotometric methods. Caspase-3 gene expression level was determined by RT-PCR. Data analysis showed that brains of sulfoxaflor-treated mice exhibited higher TBARS levels; GPx, GR, and GST enzyme activities; and caspase-3 expression levels, as well as lower levels of tGSH. Co-administration of fucoidan and sulfoxaflor reduced the TBARS levels, increased tGSH levels, and increased GPx, GR, and GST enzyme activities. Fucoidan also decreased the sulfoxaflor-induced up-regulation of caspase-3 mRNA expression. Results of the present study showed that sulfoxaflor caused oxidative stress by inducing lipid peroxidation and altering GSH-dependent antioxidants in the brain of mice. In addition, sulfoxaflor may trigger apoptotic cell death shown by the up-regulation of caspase-3. Fucoidan treatment modulated all the aforementioned alterations in the brain of mice. It was concluded that fucoidan might have antioxidant effects that support the GSH-dependent antioxidant system and can play a modulator role in oxidative stress and caspase-3 expression in the brain of sulfoxaflor treated-mice.
Collapse
Affiliation(s)
- Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, 01330, Adana, Turkey.
| | - Merve Kaya
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, 01330, Adana, Turkey
| | - Cagil Coskun
- Department of Biophysics, Faculty of Medicine, Cukurova University, 01330, Adana, Turkey
| |
Collapse
|
7
|
Abdel-Daim MM, Abdeen A, Jalouli M, Abdelkader A, Megahed A, Alkahtane A, Almeer R, Alhoshani NM, Al-Johani NS, Alkahtani S, Aleya L. Fucoidan supplementation modulates hepato-renal oxidative stress and DNA damage induced by aflatoxin B1 intoxication in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144781. [PMID: 33444861 DOI: 10.1016/j.scitotenv.2020.144781] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Aflatoxins are a common food contaminant of global concern. Aflatoxin B1 (AFB1) intoxication is associated with serious health hazards. Recently, fucoidan (FUC) has gained much attention from pharmaceutical industry due to its promising therapeutic effects. The impacts of FUC on AFB1-induced liver and kidney injures have not been sufficiently addressed. This research was conducted to evaluate the ameliorative effect of FUC in AFB1-induced hepatorenal toxicity model in rats over 14 days. Five groups were assigned; control, FUC (200 mg/kg/day, orally), AFB1 (50 μg/kg, i.p.), and AFB1 plus a low or high dose of FUC. AFB1 induced marked hepatorenal injury elucidated by substantial alterations in biochemical tests and histological pictures. The oxidative distress instigated by AFB1 enhanced production of malondialdehyde (MDA) and nitric oxide (NO) along with reduction in the reduced-glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities. DNA damage in the liver and kidney tissues has been demonstrated by overexpression of proliferating cell nuclear antigen (PCNA). Unambiguously, FUC consumption alleviates the AFB1-induced mitochondrial dysfunction, oxidative harm, and apoptosis. These ameliorated effects are proposed to be attributed to fucoidan's antioxidant and anti-apoptotic activities. Our results recommend FUC supplementation to food because it exerts both preventive and therapeutic effects against AFB1-induced toxicity.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh 13736, Egypt
| | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afaf Abdelkader
- Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh 13736, Egypt; Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Ameer Megahed
- Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Abdullah Alkahtane
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah M Alhoshani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S Al-Johani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon Cedex, France
| |
Collapse
|
8
|
Song X, Pang H, Cui W, Zhang J, Li J, Jia L. Renoprotective effects of enzyme-hydrolyzed polysaccharides from Auricularia polytricha on adenine-induced chronic kidney diseases in mice. Biomed Pharmacother 2021; 135:111004. [PMID: 33433361 DOI: 10.1016/j.biopha.2020.111004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022] Open
Abstract
The present work was aimed to investigate the protective effects of enzymatic-hydrolyzed Auricularia polytricha polysaccharides (EnAPS) on renal functions. The characterizations were analyzed by physicochemical methods, and the renoprotections were processed in adenine-induced chronic kidney diseases (CKD) models of mice. Animal experiments exhibited that EnAPS showed superior renal-protections contributing to its antioxidant effects of increasing the enzyme activities and decreasing the lipid contents, and anti-inflammatory effects of reducing proinflammatory cytokines than A. polytricha polysaccharides (APS). Besides, the anti-apoptosis effects of EnAPS was proved by down-regulating Bax and Caspase-3 expressions and up-regulating Bcl-2 expressions by molecular biotechnology, and the anti-fibrosis effects was confirmed by histopathological observations of staining. The characterizations indicated that lower molecular weights possibly contributed to the superior renoprotective effects. These results suggested that enzymatic hydrolysis had potential effects in enhancing the bioactivities, and the polysaccharides could be used in the development of functional foods supplement against CKD.
Collapse
Affiliation(s)
- Xinling Song
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China; College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Hui Pang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Weijun Cui
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
9
|
Nephroprotective Effect of Pleurotus ostreatus and Agaricus bisporus Extracts and Carvedilol on Ethylene Glycol-Induced Urolithiasis: Roles of NF-κB, p53, Bcl-2, Bax and Bak. Biomolecules 2020; 10:biom10091317. [PMID: 32937925 PMCID: PMC7565610 DOI: 10.3390/biom10091317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
This study was designed to assess the nephroprotective effects of Pleurotus ostreatus and Agaricus bisporus aqueous extracts and carvedilol on hyperoxaluria-induced urolithiasis and to scrutinize the possible roles of NF-κB, p53, Bcl-2, Bax and Bak. Phytochemical screening and GC-MS analysis of mushrooms’ aqueous extracts were also performed and revealed the presence of multiple antioxidant and anti-inflammatory components. Hyperoxaluria was induced in Wistar rats through the addition of 0.75% (v/v) ethylene glycol in drinking water for nine weeks. The ethylene glycol-administered rats were orally treated with Pleurotus ostreatus and Agaricus bisporus aqueous extracts (100 mg/kg) and carvedilol (30 mg/kg) daily during the last seven weeks. The study showed that Pleurotus ostreatus, Agaricus bisporus and carvedilol all successfully inhibited ethylene glycol-induced histological perturbations and the elevation of serum creatinine, serum urea, serum and urinary uric acid, serum, urinary and kidney oxalate, urine specific gravity, kidney calcium, kidney NF-κB, NF-κB p65, NF-κB p50, p53, Bax and Bak expressions as well as serum TNF-α and IL-1β levels. Moreover, the treatment decreased the reduction in urinary creatinine, urinary urea, ratios of urinary creatinine to serum creatinine and urinary urea to serum urea, Fex Urea and Bcl-2 expression in kidney. In conclusion, although Pleurotus ostreatus and Agaricus bisporus extracts and carvedilol all significantly inhibited the progression of nephrolithiasis and showed nephroprotective effects against ethylene glycol-induced kidney dysfunction, Pleurotus ostreatus and Agaricus bisporus seemed to be more effective than carvedilol. Moreover, the nephroprotective effects may be mediated via affecting NF-κB activation, extrinsic apoptosis and intrinsic apoptosis pathways.
Collapse
|
10
|
Li W, Appiah MO, Zhao J, Liu H, Wang J, Lu W. Effects of k-carrageenan supplementation or in combination with cholesterol-loaded cyclodextrin following freezing-thawing process of rooster spermatozoa. Cryobiology 2020; 95:36-43. [PMID: 32598945 DOI: 10.1016/j.cryobiol.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 01/14/2023]
Abstract
This experimental research purposely seeks to explore the effect of supplementing k-carrageenan (k-CRG) or CLC (cholesterol-loaded cyclodextrins) or the combined effect of k-CRG and CLC as supplements of antioxidants to an extender for rooster semen freezing. A total of 75 neat pooled ejaculates were collected twice a week from twenty-five (25) commercial line arbor acres broiler roosters (30 wks) during the experimental period. In each replicate, semen samples (n= 15, three ejaculates per rooster) were pooled and divided into nine equal aliquots, and each aliquot was diluted with one of the following extender supplemented with k-CRG, CLC, and k-CRG + CLC after which it was subjected to cryopreservation process using the "pellet" method. In study I, the supplementation of extenders with k-CRG was in five equal aliquots as follows; (0.2, 0.4, 0.6, 0.8) mg/mL and control group (k-CRG 0) mg/mL while in Study II, there was a combination of both k-CRG + CLC (0.4 mg/mL + 1.5 mg/mL, respectively), 0.4 mg/mL k-CRG, 1.5 mg/mL CLC and control group. Sperm quality parameters, endogenous antioxidant enzymes, lipid peroxidation (MDA) and ROS were all assessed after the freeze-thaw process. Our findings in study I indicated that at post-thaw, an optimum 0.4 mg/mL k-CRG supplementation in the extender improved semen quality parameters, endogenous enzymes, MDA and ROS in comparison to the control group. Interestingly prior to the freeze-thaw process, it was depicted in study II that combined k-CRG + CLC (0.4 mg/mL+1.5 mg/mL) inclusion in the extender provided maximum protection to sperm quality parameters, endogenous enzymes, MDA and ROS in comparison to 1.5 mg/mL CLC and control group at post-thaw. Besides, there was also a significant difference observed in the extenders supplemented with combined k-CRG + CLC (0.4 mg/mL +1.5 mg/mL) when compared to 0.4 mg/mL k-CRG for semen quality parameters and endogenous antioxidant enzymes (SOD, CAT, and GPx) but no significant difference was observed for MDA and ROS. Also, there was a significant difference observed in the extender supplemented with 1.5 mg/mL CLC when compared to the control group for semen quality parameters, SOD, CAT, and MDA but no significant difference for GPx and ROS at post-thaw. In conclusion, k-CRG at an optimal dosage of 0.4 mg/mL proved effective for improving post-thaw sperm quality but its combined addition k-CRG + CLC at an optimal concentration of (0.4 + 1.5) mg/mL in the extender provided greater protection to the rooster spermatozoa at post-thaw.
Collapse
Affiliation(s)
- Wanlu Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Michael Osei Appiah
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
11
|
Hou G, Jin M, Ye Z, Zhang X, Huang Q, Ye M. Ameliorate effects of soybean soluble polysaccharide on adenine-induced chronic renal failure in mice. Int J Biol Macromol 2020; 149:158-164. [PMID: 31931056 DOI: 10.1016/j.ijbiomac.2020.01.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/03/2023]
Abstract
In the present study, the kidney protection effects of soluble soybean polysaccharide (SSPS) were evaluated. To address the issues, a mice model of Chronic renal failure (CRF) was established by gavage 0.2% (w/w) adenine for 3 weeks. In vivo results showed that SSPS could change the concentrations of blood urea nitrogen (BUN), creatinine (CRE), total protein (TP) and albumin (ALB), thereby affecting kidney function. In addition, Masson histopathology analysis indicated that SSPS could decrease the area of collagen fiber in the kidney tissues of CRF mice. Moreover, the results of mRNA expression and western experiment suggested that SSPS treatment could increase the expression of transforming growth factor-β (TGF-β), Smad3 and P-Smad3, while reduce the expression of α smooth muscle actin (α-SMA) when compared with the model group. These results indicated that SSPS potentially improve kidney function through TGF/Smad pathway in CRF mice.
Collapse
Affiliation(s)
- Guohua Hou
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mingzhi Jin
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ziyang Ye
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmiao Zhang
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qianli Huang
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Ming Ye
- Microbial Resources and Application Laboratory, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
12
|
Li XY, Chen HR, Zha XQ, Chen S, Pan LH, Li QM, Luo JP. Prevention and possible mechanism of a purified Laminaria japonica polysaccharide on adriamycin-induced acute kidney injury in mice. Int J Biol Macromol 2020; 148:591-600. [PMID: 31958563 DOI: 10.1016/j.ijbiomac.2020.01.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
The present work aims to investigate the effects and underlying mechanism of a homogeneous Laminaria japonica polysaccharide (LJP61A) on acute kidney injury (AKI) in mice. According to the results of biochemical and pathological analysis, we concluded that LJP61A could protect kidney from the damage of adriamycin in AKI mice. Compared to the model group, the mRNA level of cytokines (TNF-α, IL-1β and MCP-1) and protein level of mesenchymal markers demsin were decrease by the treatment of LJP61A while the protein levels of podocyte structure markers (Nephrin and WT-1) were increased. Moreover, the adriamycin-induced enhancement of phosphor-p65, phosphor-p38, phosphor-ERK1/2 and phosphor-JNK in the kidney of AKI mice were significantly suppressed by LJP61A. Similar variation was observed in the mRNA and protein levels of TGF-β1 and Smad3. These results suggested that LJP61A prevented acute kidney injury possibly via regulating TGF-β1-mediated Smad3, MAPKs and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Hao-Ran Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, People's Republic of China.
| | - Shun Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
13
|
Wang J, Zhang Q, Li S, Chen Z, Tan J, Yao J, Duan D. Low molecular weight fucoidan alleviates diabetic nephropathy by binding fibronectin and inhibiting ECM-receptor interaction in human renal mesangial cells. Int J Biol Macromol 2020; 150:304-314. [PMID: 32057847 DOI: 10.1016/j.ijbiomac.2020.02.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD). Currently, approximately 20-40% of individuals with diabetes are diagnosed with DN. Mesangial cells (MCs) are critical for maintaining and regulating glomerular filtration, and the abnormal proliferation of MCs causes the accumulation of mesangial extracellular matrix (ECM), further promoting glomerular dysfunction and renal diseases. Low molecular weight fucoidan (LMWF) extracted from Saccharina japonica could alleviate DN, but the mechanism was not analysed. Based on the ability of LMWF to ameliorate the human renal mesangial cell (HRMC) injury caused by advanced glycation end products (AGEs), we identified fibronectin (FN) as the most obviously impacted protein in the ECM-receptor interaction by proteomic analysis. The co-localization of LMWF and FN indicated direct interaction between them, and surface plasmon resonance (SPR) analysis confirmed the specific binding with a KD of 453.7 μmol L-1. Positively charged protamine sulfate (PS) promoted the combination of LMWF and HRMCs and further enhanced the effect of LMWF on HRMC injury. Our results indicated that LMWF alleviates the HRMC injury caused by AGEs via binding FN and inhibiting the ECM-receptor interaction pathway. These results provide a foundation for the in-depth analysis of the mechanism of polysaccharide functions.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Shuang Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihang Chen
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Tan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianting Yao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; State Key Laboratory of Bioactive Seaweed Substances, Qingdao, 266400, China.
| |
Collapse
|
14
|
Zhang D, Liu H, Luo P, Li Y. Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice. Mar Drugs 2018; 16:E472. [PMID: 30486413 PMCID: PMC6315909 DOI: 10.3390/md16120472] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022] Open
Abstract
This work aims to explore the amelioration of fucoidan on adenine-induced hyperuricemia and hepatorental damage. Adenine-induced hyperuricemic mice were administered with fucoidan, allopurinol and vehicle control respectively to compare the effects of the drugs. Serum uric acid, urea nitrogen, hepatorenal functions, activities of hepatic adenosine deaminase (ADA), xanthine oxidase (XOD), renal urate transporter 1 (URAT1) and NF-κB p65 were assessed. As the serum uric acid, urea nitrogen, creatinine, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) data demonstrated, the adenine not only mediated hepatorenal function disorders, but also induced hyperuricemia in mice. Meanwhile, activities of hepatic ADA and XOD were markedly augmented by adenine, and the expression of URAT1 was promoted, which was conducive to the reabsorption of urate. However, exposure to fucoidan completely reversed those adenine-induced negative alternations in mice, and the activities of hepatic ADA and XOD were recovered to the normal level. It was obvious that hepatic and renal functions were protected by fucoidan treatment. The expression of URAT1 was returned to normal, resulting in an increase of renal urate excretion and consequent healing of adenine-induced hyperuricemia in mice. Expression and activation of NF-κB p65 was promoted in kidneys of adenine treated mice, but suppressed in kidneys of mice exposed to fucoidan from Laminaria japonica or allopurinol. In conclusion, the fucoidan is a potential therapeutic agent for the treatment of hyperuricemia through dual regulatory roles on inhibition of hepatic metabolism and promotion of renal excretion of urate.
Collapse
Affiliation(s)
- Dayan Zhang
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
- College of Food Science & Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Huazhong Liu
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ping Luo
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yanqun Li
- College of Food Science & Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
15
|
Zhang T, Yang Y, Liang Y, Jiao X, Zhao C. Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients 2018; 10:E1055. [PMID: 30096921 PMCID: PMC6116026 DOI: 10.3390/nu10081055] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of modern society, many chronic diseases are increasing including diabetes, obesity, cardiovascular diseases, etc., which further cause an increased death rate worldwide. A high caloric diet with reduced natural polysaccharides, typically indigestible polysaccharides, is considered a health risk factor. With solid evidence accumulating that indigestible polysaccharides can effectively prevent and/or ameliorate symptoms of many chronic diseases, we give a narrative review of many natural polysaccharides extracted from various food resources which mainly contribute their health beneficial functions via intestinal fermentation.
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yang Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xu Jiao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
16
|
Geng L, Zhang Q, Wang J, Jin W, Zhao T, Hu W. Glucofucogalactan, a heterogeneous low-sulfated polysaccharide from Saccharina japonica and its bioactivity. Int J Biol Macromol 2018; 113:90-97. [PMID: 29408416 DOI: 10.1016/j.ijbiomac.2018.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/13/2018] [Accepted: 02/01/2018] [Indexed: 01/12/2023]
Abstract
Crude polysaccharide obtained from Saccharina japonica using acid hydrolysis and precipitation was separated into sulfated fuco-oligosaccharide (HDF1) and heteropolysaccharide (HDF2). To further explore the bioactive fraction, HDF2 was successfully separated using membrane filtration into HDF2A and HDF2B, which differed in chemical composition and molecular weight. The bioactivity of all the fractions was tested in vitro, including immunomodulatory activity in RAW 264.7 cells and the protective activity in aristolochic acid (AA)-induced NRK-52E cell injury. HDF1 and HDF2B (low-molecular weight sulfated fucans/fuco-oligosaccharides) did not increase the nitric oxide production in RAW 264.7 cells, whereas HDF2 and HDF2A exhibited potential immunomodulatory activity. All the tested compounds showed different degrees of protective activity in AA-induced injury; HDF2A exhibited superior protective activity. Through chemical analysis, HPLC analysis, and IR spectroscopy and MS, it was determined that HDF2A was a galactose-enriched heteropolysaccharide- glucofucogalactan with a distinctive 2:1 ratio of galactose to fucose. In addition, HDF2A also contained a high amount of glucose and minor amounts of mannose, rhamnose, and xylose, with a low content of sulfate. Thus, HDF2A, a complex heterogeneous polysaccharide mixture with a unique monosaccharide composition, could be studied for further structural characterization and pharmaceutical applications.
Collapse
Affiliation(s)
- Lihua Geng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| |
Collapse
|
17
|
Li QM, Chena HR, Zha XQ, Lu CQ, Pan LH, Luo JP. Renoprotective effect of Chinese chive polysaccharides in adenine-induced chronic renal failure. Int J Biol Macromol 2018; 106:988-993. [DOI: 10.1016/j.ijbiomac.2017.08.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
18
|
Li X, Li X, Zhang Q, Zhao T. Low molecular weight fucoidan and its fractions inhibit renal epithelial mesenchymal transition induced by TGF-β1 or FGF-2. Int J Biol Macromol 2017. [DOI: 10.1016/j.ijbiomac.2017.06.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
The Structure and Nephroprotective Activity of Oligo-Porphyran on Glycerol-Induced Acute Renal Failure in Rats. Mar Drugs 2017; 15:md15050135. [PMID: 28486425 PMCID: PMC5450541 DOI: 10.3390/md15050135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022] Open
Abstract
Porphyran is a sulfate galactan in the cell wall of Porphyra. Its acid hydrolysis product, oligo-porphyran (OP), was prepared and the structure studied by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). This oligosaccharide was mainly composed of monosulfate-oligo-galactan, disufate-oligo-galactan, trisulfate-oligo-galactan, trisulfate oligo-methyl-galactan, and 3,6-anhydrogalactose with the degree of polymerization ranging from 1 to 8. The effects of OP were investigated in the glycerol-induced acute renal failure (ARF) model. Compared with the normal group, rats from the glycerol-induced group exhibited collecting duct and medullary ascending limb dilation and casts. The OP-treated group exerted a protective effect against glycerol-induced changes. The results showed that the administration of OP markedly decreased mortality in female ARF rats. For male ARF rats, all of which survived, OP significantly decreased the blood urea nitrogen and serum creatinine levels. Ion levels in plasma and urine were significantly changed in ARF rats, whereas OP treatment almost recovered ion levels back to normal. This study showed a noticeable renal morphologic and functional protection by OP in glycerol-induced ARF rats.
Collapse
|
20
|
Li S, Li J, Shi F, Yang L, Ye M. Protection effect of intracellular melanin from Lachnum YM156 and Haikunshenxi capsule combination on adenine-induced chronic renal failure in mice. MEDCHEMCOMM 2017; 8:917-923. [PMID: 30108807 DOI: 10.1039/c6md00646a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/07/2017] [Indexed: 11/21/2022]
Abstract
This study aimed to elucidate the therapeutic effects of oral administration of intracellular melanin from Lachnum YM156 (LIM) on chronic renal failure (CRF) in mice. The cytotoxicity of LIM was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. CRF was induced in mice by chronic dietary adenine intake. We have used this intervention to explore the effects of oral treatment with LIM (100 and 200 mg kg-1) in CRF mice. The treatment with LIM alone and a combination of Haikunshenxi capsule (HC) add LIM increased the concentration levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and glutathione reductase (GSH), reduced malonaldehyde (MDA) in the nephridial tissues and also reduced the nephridial levels of tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β), and interleukin (IL)-6, and the activities of inducible nitric oxide synthase (iNOS). Interestingly, the HC and LIM combination produced a higher therapeutic effect than HC alone. The mechanism of the reported salutary effects of LIM in adenine-induced CRF is associated with amelioration of the adenine induced inflammation and oxidative stress. The present findings recommend that LIM is a useful natural product which can be used to enhance the protection function of HC in CRF mice.
Collapse
Affiliation(s)
- Shenglan Li
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| | - Jinglei Li
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| | - Fang Shi
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| | - Liuqing Yang
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| | - Ming Ye
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| |
Collapse
|
21
|
Li X, Wang J, Zhang H, Zhang Q. Renoprotective effect of low-molecular-weight sulfated polysaccharide from the seaweed Laminaria japonica on glycerol-induced acute kidney injury in rats. Int J Biol Macromol 2017; 95:132-137. [PMID: 27865951 DOI: 10.1016/j.ijbiomac.2016.11.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023]
Abstract
We investigated the renal protective effect of low-molecular-weight sulfated polysaccharide (LMWSP) fractions extracted from Laminaria japonica on glycerol-induced acute kidney injury (AKI) in rats. Glycerol treatment significantly increased serum creatinine (SCr) and blood urea nitrogen (BUN) levels. Intraperitoneal injection of LMWSP fractions markedly decreased SCr and BUN levels and reduced renal swelling. The fraction of 1.0M NaCl displayed the best renal protective effect of all fractions in attenuating AKI and maintaining blood glucose.
Collapse
Affiliation(s)
- Xinpeng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hong Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
22
|
Bhadja P, Lunagariya J, Ouyang JM. Seaweed sulphated polysaccharide as an inhibitor of calcium oxalate renal stone formation. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
23
|
Xu Y, Zhang Q, Luo D, Wang J, Duan D. Low molecular weight fucoidan modulates P-selectin and alleviates diabetic nephropathy. Int J Biol Macromol 2016; 91:233-40. [PMID: 27234491 DOI: 10.1016/j.ijbiomac.2016.05.081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/09/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication that can lead to chronic and end-stage renal failure. It is understood that inflammation is associated with the onset and process of DN. Low molecular weight fucoidan (LMWF) isolated from Saccharina japonica has anti-inflammatory properties. Therefore, this study aimed to explore the mechanism of LMWF in DN model induced by streptozotocin. The biochemical indices levels showed LMWF reduced the DN diagnostic indices to protect renal function. The HE stained sections exhibited LMWF protected normal morphological structures and reduced inflammatory cell infiltration in the kidneys of DN rats. Furthermore, the levels of P-selectin and selectin-dependent inflammatory cytokines resulting from LMWF were obviously decreased at both the transcriptional and protein levels. Thus, our results found that LMWF protected the renal function in DN rats and alleviated inflammation through the modulation of P-selectin and inflammatory cytokines. LMWF may have therapeutic potential against DN.
Collapse
Affiliation(s)
- Yingjie Xu
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology. Qingdao 266071, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology. Qingdao 266071, China; State Key Lab of Seaweed Bioactive Substances, Qingdao 266000, China.
| | - Dali Luo
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Wang
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology. Qingdao 266071, China
| | - Delin Duan
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology. Qingdao 266071, China; State Key Lab of Seaweed Bioactive Substances, Qingdao 266000, China.
| |
Collapse
|
24
|
Estaphan S, Eissa H, Elattar S, Rashed L, Farouk M. A study on the effect of cimetidine and L-carnitine on myoglobinuric acute kidney injury in male rats. Injury 2015; 46:1223-30. [PMID: 25930980 DOI: 10.1016/j.injury.2015.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/16/2015] [Accepted: 03/30/2015] [Indexed: 02/06/2023]
Abstract
Myoglobinuric acute renal failure is the most important life threatening complication of rhabdomyolysis. Iron, free radicals, nitric oxide and cytochrome p450 are involved in the pathogenesis of mARF. The aim of this study is to compare the effect of cimetidine, l-carnitine and both agents together on mARF in rats. Forty rats were divided into 5 groups; group I: control rats, group II: myoglobinuric ARF rats, group III: mARF rats received l-carnitine (200mg/kg, i.p.), group IV: mARF rats received cimetidine (150mg/kg i.p.) and group V: mARF rats received both agents together. 48h after glycerol injection, systolic blood pressure was measured. Urine and blood samples were collected to evaluate urine volume, GFR, BUN, creatinine, K, Na, serum creatine kinase, NO and glutathione levels. Kidney specimens were taken to investigate renal cytochrome p450 and for histological examinations. Cimetidine treatment significantly decreased creatinine, BUN, K, Na, SBP and creatine kinase and increased GFR and urine volume compared to group II. l-carnitine exerted similar changes except for the effect on K and GFR. NO was significantly decreased, while renal glutathione and cytochrome p450 were significantly increased in groups treated with l-carnitine or cimetidine as compared to group II. Combined treatment further improved renal functions, creatine kinase, oxidative stress parameters and SBP as compared to each therapy alone. The histological changes confirmed the biochemical findings. Cimetidine and l-carnitine have protective effects - almost equally - against mARF. Using both agents together, minimises the renal injury.
Collapse
Affiliation(s)
- Suzanne Estaphan
- Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Hassan Eissa
- Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Samah Elattar
- Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Laila Rashed
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Mira Farouk
- Histology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
25
|
Carboxymethylation of an exopolysaccharide from Lachnum and effect of its derivatives on experimental chronic renal failure. Carbohydr Polym 2014; 114:190-195. [PMID: 25263881 DOI: 10.1016/j.carbpol.2014.07.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/10/2014] [Accepted: 07/26/2014] [Indexed: 01/11/2023]
Abstract
Carboxymethylated polysaccharide CLEP-1b was prepared from a single component (LEP-1b) of Lachnum YM281 exopolysaccharides by molecular modification with a degree of substitution (DS) of 0.286. Infrared result proved that the carboxymethylation of LEP-1b succeeded and (13)C NMR result showed that the carboxymethyl group (CH2COOH) was chemically linked to an oxygen (O) atom of the hydroxyl on C-3 of LEP-1b. LEP-1b could improve the histopathological status of kidney and significantly reduce the contents of serum creatinine (Scr) and blood urea nitrogen (BUN), and increase the contents of total protein and albumin. It could also enhance the activity of SOD, GSH-PX, CAT, GSH and decrease MDA contents in the nephridial and hepatic tissues. What's more, CLEP-1b showed more significant effects than LEP-1b at the same dosage. The research indicated that LEP-1b and CLEP-1b could mitigate the chronic renal failure of mice and the effects were closely associated with antioxidant activity.
Collapse
|
26
|
The protective effect of fucoidan in rats with streptozotocin-induced diabetic nephropathy. Mar Drugs 2014; 12:3292-306. [PMID: 24886867 PMCID: PMC4071577 DOI: 10.3390/md12063292] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/13/2023] Open
Abstract
Diabetic nephropathy (DN) has long been recognized as the leading cause of end-stage renal disease, but the efficacy of available strategies for the prevention of DN remains poor. The aim of this study was to investigate the possible beneficial effects of fucoidan (FPS) in streptozotocin (STZ)-induced diabetes in rats. Wistar rats were made diabetic by injection of STZ after removal of the right kidney. FPS was administered to these diabetic rats for 10 weeks. Body weight, physical activity, renal function, and renal morphometry were measured after 10 weeks of treatment. In the FPS-treated group, the levels of blood glucose, BUN, Ccr and Ucr decreased significantly, and microalbumin, serum insulin and the β2-MG content increased significantly. Moreover, the FPS-treated group showed improvements in renal morphometry. In summary, FPS can ameliorate the metabolic abnormalities of diabetic rats and delay the progression of diabetic renal complications.
Collapse
|
27
|
Wang J, Wang F, Yun H, Zhang H, Zhang Q. Effect and mechanism of fucoidan derivatives from Laminaria japonica in experimental adenine-induced chronic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:807-13. [PMID: 22210052 DOI: 10.1016/j.jep.2011.12.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 12/08/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laminaria japonica is a popular seafood and medicinal plant in China, Chinese people use them as a traditional medicine for curing edema disease, a symptom of kidney diseases. MATERIALS AND METHODS The renal protective activity and mechanism of fucoidan derivatives was studied against adenine induced CKD in rats. The fucoidan derivatives were administered at dose of 50 and 150 mg/kg body weight. The serum urea nitrogen (SUN), serum creatinine (SCR) and some enzymic activity were detected. RESULTS The SUN and SCR level decreased significantly with fucoidan derivatives administration. Histopathological changes of renal tubules and interstitium were markedly alleviated by fucoidan derivatives and the mesangial areas were also greatly reduced. Alterations were observed in the activities/levels of serum enzymic (CAT, GSH-PX) and non-enzymic (GSH) antioxidants, along with high level of malondialdehyde (MDA) in the CKD rats. However, normalized lipid peroxidation and antioxidant defenses occurred with fucoidan derivatives administration. CONCLUSION This study exhibited a new mechanism of fucoidan derivatives on CKD rats, that was the samples could alleviate renal tubules, interstitium and mesangial areas mediated by replacing the electronegative content of the glomerular cells and inhibition of mesangial cell proliferation. The study also proved the mechanism of fucoidan derivatives on the CKD rats had relationship with their antioxidant activities, the samples which could enhance the activity of antioxidant enzymes and reduce the LPO level could alleviate the symptom of CKD.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | | | |
Collapse
|