1
|
Haseeb MT, Muhammad G, Hussain MA, Bukhari SNA, Sheikh FA. Flaxseed (Linum usitatissimum) mucilage: A versatile stimuli-responsive functional biomaterial for pharmaceuticals and healthcare. Int J Biol Macromol 2024; 278:134817. [PMID: 39154696 DOI: 10.1016/j.ijbiomac.2024.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The present review is novel as it discusses the main findings of researchers on the topic and their implications, as well as highlights the emerging research in this particular area and its future prospective. The seeds of Flax (Linum usitatissimum) extrude mucilage (FSM) that has a diverse and wide range of applications, especially in the food industry and as a pharmaceutical ingredient. FSM has been blended with several food and dairy products to improve gelling ability, optical properties, taste, and user compliance. The FSM is recognized as a foaming, encapsulating, emulsifying, suspending, film-forming, and gelling agent for several pharmaceutical preparations and healthcare materials. Owing to stimuli (pH) -responsive swelling-deswelling characteristics, high swelling indices at different physiological pHs of the human body, and biocompatibility, FSM is considered a smart material for intelligent, targeted, and controlled drug delivery applications through conventional and advanced drug delivery systems. FSM has been modified through carboxymethylation, acetylation, copolymerization, and electrostatic complexation to get the desired properties for pharma, food, and healthcare products. The present review is therefore devoted to the isolation techniques, structural characterization, highly valuable properties for food and pharmaceutical industries, preclinical and clinical trials, pharmacological aspects, biomedical attributes, and patents of FSM.
Collapse
Affiliation(s)
| | - Gulzar Muhammad
- Department of Chemistry, GC University, Lahore 54000, Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Fatima Akbar Sheikh
- College of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| |
Collapse
|
2
|
Oraç A, Konak Göktepe Ç, Demirci T, Akın N. Biodegradable Edible Film Based on Basil Seed Gum: The Effect of Gum and Plasticizer Concentrations. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023. [DOI: 10.1007/s10924-023-02923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 09/01/2023]
|
3
|
Hasanin M, Abdel Kader AH, Abd El‐Sayed ES, Kamel S. Green Chitosan‐Flaxseed Gum Film Loaded with ZnO for Packaging Applications. STARCH-STARKE 2023; 75. [DOI: 10.1002/star.202200132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 09/02/2023]
Abstract
AbstractThe possibility of manufacturing edible packaging materials with tailored properties and low cost has attracted much interest. This work presents a new material for edible packaging made from flaxseed gum (FSG) and chitosan (Ch) loaded with zinc oxide nanoparticles (ZnO‐NPs). ZnO‐NPs are synthesized in situ during the preparation of the edible film. The Ch/FSG/ZnO‐NPs films are prepared by casting Ch in different ratios of FSG (12.5%, 25%, 37.5%, and 50%). The resulting films are evaluated for their physicochemical, mechanical, and barrier properties to determine their suitability for coating or packaging food or bioproducts. By studying the antimicrobial activities of the ZnO‐NPs loaded films, we can see that ZnO‐NP's concentration highly affects these activities. In addition, the FSG improves mechanical properties. Films developed by incorporating ZnO‐NPs are proposed to be appropriate for low‐moisture food and pharmaceutical products, which can reduce environmental problems associated with synthetic packaging. Consequently, Ch/FSG composite films have the potential to replace conventional packaging.
Collapse
Affiliation(s)
- Mohamed Hasanin
- Cellulose and Paper Department National Research Centre Cairo 12622 Egypt
| | | | | | - Samir Kamel
- Cellulose and Paper Department National Research Centre Cairo 12622 Egypt
| |
Collapse
|
4
|
Edible Pleurotus eryngii Papery Food Prepared by Papermaking Process. Foods 2022; 11:foods11213514. [DOI: 10.3390/foods11213514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The objective of the current study was to evaluate the feasibility of papery food with Pleurotus eryngii (P. eryngii) as a raw material using the papermaking process. The physical, chemical, structural, and thermal degradation properties were studied as well as the sensory evaluation of the papery food from P. eryngii mycelia (PMP), stems (PSP), caps (PCP), and whole fruiting bodies (PEP). The results indicated that the colors from PSP, PCP, and PEP were clearly different from PMP. Thicker PSP and PMP had a smoother surface and better crispness compared to PCP. Moreover, PSP had better moisture resistance and thermal decomposition performance compared to the other groups. Nutritional composition and Fourier-transform infrared spectroscopy suggested abundant polysaccharide and protein content in all of the papery food. Finally, sensory evaluation showed that the formability, mouth feel, and overall palatability of PSP and PMP were more popular among consumers. Overall, this study provides a novel method for the preparation of papery food and provides a potential new mechanism for the further development and utilization of the fruiting bodies and mycelium of P. eryngii.
Collapse
|
5
|
Zein inclusion changes the rheological, hydrophobic and mechanical properties of agar/konjac glucomannan based system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Su CY, Li D, Wang LJ, Wang Y. Biodegradation behavior and digestive properties of starch-based film for food packaging - a review. Crit Rev Food Sci Nutr 2022; 63:6923-6945. [PMID: 35142240 DOI: 10.1080/10408398.2022.2036097] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-degradable plastic places a serious burden on the environment, so consumers and researchers are working to develop biodegradable, safe, and sustainable food packaging materials. The starch-based film has become emerging material for food packaging. Not only does it shows excellent physicochemical properties, but also provides the desired degradation characteristics after use or the digestive properties after consumption, thus needing to comprehensively evaluate the quality of starch-based food packaging materials. This review summarizes the degradation behavior of the starch-based film in different degradation environments, and compares the suitability of degradation environments. Besides, the physicochemical properties of the composite or blend film during the degradation process were further discussed. The factors affecting the digestibility of starch-based edible film were reviewed and analyzed. Finally, the application and the future trend of the biodegradable starch-based film in the food packaging field were proposed. Future studies should combine and evaluate the physical properties and biodegradability of the composite/blend film, to develop food packaging materials with good characteristics and biodegradability.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
7
|
Olawuyi IF, Kim SR, Lee WY. Application of plant mucilage polysaccharides and their techno-functional properties' modification for fresh produce preservation. Carbohydr Polym 2021; 272:118371. [PMID: 34420702 DOI: 10.1016/j.carbpol.2021.118371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
The use of edible coating/film to improve fresh produce's quality and shelf life is an old but reliable and popular method of preservation. Recently, plant-derived mucilages have been extensively used to prepare edible packages (MEPs). This review focuses on recent studies that characterize mucilages from different plants, and examine their specific applications as edible packages in preserving fruits and vegetables. Structure-function relations and corresponding influence on film-forming properties are discussed. This review also surveys the additive-modifications of MEPs techno-functional properties. MEPs from a range of plant sources are effective in preventing quality loss and improving the storability of various fruits and vegetables. The preservative mechanisms and essential techno-functional properties of MEPs required for fruit and vegetable packaging were summarized. The key findings summarized in this study will help promote the utilization of mucilages and draw attention to other novel applications of this valuable polymer.
Collapse
Affiliation(s)
- Ibukunoluwa Fola Olawuyi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Cheng Y, Wang W, Zhang R, Zhai X, Hou H. Effect of gelatin bloom values on the physicochemical properties of starch/gelatin–beeswax composite films fabricated by extrusion blowing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Robust multiphase and multilayer starch/polymer (TPS/PBAT) film with simultaneous oxygen/moisture barrier properties. J Colloid Interface Sci 2021; 593:290-303. [PMID: 33744538 DOI: 10.1016/j.jcis.2021.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022]
Abstract
The demands for bioplastics that provide good barrier properties against moisture and oxygen while simultaneously displaying good physical properties without compromising their biodegradability is ever-increasing. In this work, a multiphase and multilayer film assembly composed of thermoplastic starch (TPS) and its maleated counterpart (MTPS) with poly(butylene adipate-co-terephthalate) (PBAT) was constructed as a suitable barrier film with excellent mechanical properties. The bioplastic film assemblies were fabricated through reactive extrusion, compression molding, and dip-coating process. The incorporation of PBAT co-blend with TPS in the core layer enhanced the multilayer film's interfacial bond. The MTPS/PBAT film assembly provided 86.8% and 74.3% improvement in moisture barrier and oxygen barrier as compared to the baseline TPS and PBAT films, respectively. Overall, the multiphase and multilayer film assembly displayed good mechanical properties in conjuncture with excellent barrier properties indicating their potential as a biodegradable and cost effective alternative to conventional plastics used in the packaging industry.
Collapse
|
10
|
Effects of high starch content on the physicochemical properties of starch/PBAT nanocomposite films prepared by extrusion blowing. Carbohydr Polym 2020; 239:116231. [DOI: 10.1016/j.carbpol.2020.116231] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022]
|
11
|
Fang S, Qiu W, Mei J, Xie J. Effect of Sonication on the Properties of Flaxseed Gum Films Incorporated with Carvacrol. Int J Mol Sci 2020; 21:E1637. [PMID: 32121050 PMCID: PMC7084845 DOI: 10.3390/ijms21051637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023] Open
Abstract
Carvacrol is a natural compound known to be a highly effective antibacterial; however, it is a hydrophobic molecule, which is a limitation to its use within food packaging. Flaxseed gum (FG) films containing different contents of carvacrol (C) were produced by a film-casting method with sonication. The effects of sonication power and time on the properties of the FG-C films were investigated by measuring the film thickness, mechanical properties, contact angle, opacity, water vapor permeability (WVP), water sorption isotherm, Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry (DSC), antibacterial and antioxidant activities, and microstructure. The results showed that sonication power and time had significant effects on mechanical and barrier properties, film opacity, and degradability (p < 0.05). The tensile strength (TS) and elongation at break (EB) values exhibited an obvious improvement after sonication, and FG-0.5C-6030 had the lowest TS (33.40 MPa) and EB (4.46%) values. FG-C films formed a denser structure and the contact angle was improved as a result of sonication, which improved the integration of carvacrol into the FG matrix. In terms of microstructure, sonication resulted in a homogeneous and continuous crosssection of FG-C films, and regular surface and cross-sectional images were obtained through the highest acoustic intensity and longest time treatment. The FG films incorporated with carvacrol displayed antibacterial properties against Staphylococcus aureus, Vibrio parahaemolyticus, Shewanella putrefaciens, and Pseudomonas fluorescens, as well as increased antioxidant properties, and sonication was proven to enhance both of them.
Collapse
Affiliation(s)
- Shiyuan Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.F.); (W.Q.)
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.F.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.F.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.F.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
12
|
Salehi F. Characterization of New Biodegradable Edible Films and Coatings Based on Seeds Gum: A Review. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s41783-019-00061-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Wang W, Zhang H, Jia R, Dai Y, Dong H, Hou H, Guo Q. High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Liu R, Cong X, Song Y, Wu T, Zhang M. Edible Gum-Phenolic-Lipid Incorporated Gluten Films for Food Packaging. J Food Sci 2018; 83:1622-1630. [PMID: 29786838 DOI: 10.1111/1750-3841.14151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/23/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
The aim of this investigation was to improve the barrier and mechanical properties of gluten films and further explore their application in the packaging of seasonings. The effects of flaxseed gum (FG), oligomeric procyanidins (OPCs), and lauric acid (LA) on the water vapor permeability (WVP), mechanical properties, and peroxide value (POV) were determined. FG and OPCs improved the WVP properties of the gluten films, whereas LA significantly improved the oxygen-barrier properties. The FG/OPCs/LA/GP composite film was then optimized, and the morphological, microstructural, and thermal properties of the composite gluten film were investigated by scanning electron microscopy, atomic force microscopy, surface hydrophobicity analysis; Fourier transform infrared spectroscopy; thermal gravimetric analysis, respectively. The results confirmed that gluten is compatible with FG, OPCs, and LA, thereby leading to the formation of a more uniform, dense, and hydrophobic film. The changes in the preservation properties (appearance, POV, and acid value) of the composite gluten film for oil, salt, and vegetable packaging were also examined. The composite gluten film maintained some degree of seasoning packaging capacity over a 75-day storage period, indicating its potential for uses as a packaging material for seasonings in food production. PRACTICAL APPLICATION The edible composite film will be produced in industry according to the data provided in our paper; the film can be used as packaging material for seasonings in food production.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology), Tianjin, 300457, China.,Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology), Ministry of Education, Tianjin, 300457, China.,Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin, 300457, China
| | - Xu Cong
- State Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology), Tianjin, 300457, China
| | - Yingshi Song
- State Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology), Tianjin, 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology), Tianjin, 300457, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology), Tianjin, 300457, China.,Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology), Ministry of Education, Tianjin, 300457, China.,Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin, 300457, China
| |
Collapse
|
15
|
Yousuf B, Srivastava AK. Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils. Int J Biol Macromol 2017; 104:1030-1038. [PMID: 28687388 DOI: 10.1016/j.ijbiomac.2017.07.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023]
Abstract
Flaxseed gum (FSG) in combination with lemongrass essential oil (LGEO) was investigated for coating of ready-to-eat pomegranate arils. FSG was used at 0.3% and 0.6% concentrations and with both concentrations LGEO was incorporated at levels of 0ppm, 200ppm, 500ppm and 800ppm. Changes in headspace gases, physicochemical, microbiological and sensory attributes of pomegranate arils stored at 5°C were studied on different days of analysis during the 12day storage period. Coatings containing LGEO were effective in reducing total plate count and yeast and mold populations. Increasing LGEO concentrations in the coatings resulted in more decline in microbial populations. Reduced weight loss occurred in coated samples as compared to uncoated (control) sample. Coated samples showed a gradual decrease in ripening index in contrast with control where a significantly higher decline was observed. Total soluble solids, pH and titratable acidity significantly varied over the storage period. Color change (ΔE) for control increased steeply over the storage time in comparison to coated samples. Furthermore, chroma decreased while as hue angle increased over time.
Collapse
Affiliation(s)
- Basharat Yousuf
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Abhaya Kumar Srivastava
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
16
|
Saha A, Tyagi S, Gupta RK, Tyagi YK. Natural gums of plant origin as edible coatings for food industry applications. Crit Rev Biotechnol 2017; 37:959-973. [DOI: 10.1080/07388551.2017.1286449] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Anuradha Saha
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Shvetambri Tyagi
- Bhaskarcharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Rajinder K. Gupta
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Yogesh K. Tyagi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
17
|
Sheng SY, Wang LJ, Li D, Mao ZH, Adhikari B. Viscoelastic behavior of maize kernel studied by dynamic mechanical analyzer. Carbohydr Polym 2014; 112:350-8. [DOI: 10.1016/j.carbpol.2014.05.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|
18
|
Liu M, Zhou Y, Zhang Y, Yu C, Cao S. Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol. Int J Biol Macromol 2014; 70:340-6. [PMID: 24984024 DOI: 10.1016/j.ijbiomac.2014.06.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/11/2014] [Accepted: 06/14/2014] [Indexed: 11/30/2022]
Abstract
The effect of sorbitol on the physicochemical, mechanical and thermal properties of chitosan films with different degrees of deacetylation (DD; i.e., DD85% and DD95%) was investigated. The thickness, moisture content (MC), water solubility (WS) and water-vapor permeability (WVP) of the films were evaluated. Sorbitol addition reduced MC, increased WS and significantly (p<0.01) reduced WVP of both film types. DD95% films had lower MC and WVP, and higher WS than DD85% films. Static (thermomechanical analysis) and dynamic (dynamic mechanical analysis) tests indicated that sorbitol increased the strain and decreased stress for both DD films, but DD95% could sustain higher strain and DD85% could sustain higher stress. Thermogravimetrics analysis and differential scanning calorimetry showed that sorbitol elicited a lower degradation temperature for both films, and that DD95% films exhibited higher thermal stability than DD85% films.
Collapse
Affiliation(s)
- Mei Liu
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei 230036, China.
| | - Yibin Zhou
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei 230036, China.
| | - Yang Zhang
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei 230036, China
| | - Chen Yu
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei 230036, China
| | - Shengnan Cao
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei 230036, China
| |
Collapse
|
19
|
Lepidium perfoliatum seed gum: A new source of carbohydrate to make a biodegradable film. Carbohydr Polym 2014; 101:349-58. [DOI: 10.1016/j.carbpol.2013.09.072] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/31/2013] [Accepted: 09/19/2013] [Indexed: 11/20/2022]
|
20
|
Thakhiew W, Devahastin S, Soponronnarit S. Physical and mechanical properties of chitosan films as affected by drying methods and addition of antimicrobial agent. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.05.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Jiang X, Jiang T, Gan L, Zhang X, Dai H, Zhang X. The plasticizing mechanism and effect of calcium chloride on starch/poly(vinyl alcohol) films. Carbohydr Polym 2012; 90:1677-84. [DOI: 10.1016/j.carbpol.2012.07.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/30/2012] [Accepted: 07/21/2012] [Indexed: 11/25/2022]
|