1
|
Desai K, Dobruchowska JM, Elbers K, Cybulska J, Zdunek A, Porbahaie M, Jansen E, Van Neerven J, Albers R, Wennekes T, Mercenier A, Schols HA. Associating structural characteristics to immunomodulating properties of carrot rhamnogalacturonan-I fractions. Carbohydr Polym 2025; 347:122730. [PMID: 39486960 DOI: 10.1016/j.carbpol.2024.122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 11/04/2024]
Abstract
Carrot rhamnogalacturonan-I (cRG-I) is a polydisperse polysaccharide with molecular weights of 7-250 kDa. Using size exclusion chromatography cRG-I was fractionated and pooled in fractions (PF1-6). All fractions contained the same RG-I monosaccharides and similar glycosidic linkages although in varying relative amounts. The main differences were in rhamnose substitution, arabinan- and galactan side chain length and in levels of acetylation and methyl esterification. Atomic force microscopy showed either spheric or elongated structures for cRG-I and its derived fractions. To gain insight in the structure-function relationship of cRG-I, the immunomodulatory effect of the six fractions and their saponified derivatives was assessed in vitro. All fractions, except PF2, dose-dependently stimulated TNFα, IL-6, IL-1β, IL-8 and IL-10 production in peripheral blood mononuclear cells (PBMCs) of three healthy donors. Cytokine levels were largely influenced by the Mw and degree of esterification of the individual fractions. Notably, the highest Mw fraction (100 kDa) displayed the most potent activity, which was strongly reduced after the removal of ester residues by saponification. In contrast, the 75 kDa Mw population (PF2) proved inactive while its saponified counterpart exhibited substantial immunomodulatory activity. This confirmed the role of ester residues on the immune profile of RG-I subpopulations.
Collapse
Affiliation(s)
- Krishna Desai
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands; Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; NutriLeads B.V., Bronland 12N, 6708 WH Wageningen, the Netherlands.
| | - Justyna M Dobruchowska
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Kari Elbers
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Ul Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Ul Doświadczalna 4, 20-290 Lublin, Poland
| | - Mojtaba Porbahaie
- Cell Biology and Immunology, Wageningen University & Research, De Elst 1, 6700 HB Wageningen, the Netherlands
| | - Erik Jansen
- Cell Biology and Immunology, Wageningen University & Research, De Elst 1, 6700 HB Wageningen, the Netherlands
| | - Joost Van Neerven
- Cell Biology and Immunology, Wageningen University & Research, De Elst 1, 6700 HB Wageningen, the Netherlands
| | - Ruud Albers
- NutriLeads B.V., Bronland 12N, 6708 WH Wageningen, the Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Annick Mercenier
- NutriLeads B.V., Bronland 12N, 6708 WH Wageningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
2
|
Yang X, Liu X, Zhao S, Huo M, Tian G, Sang Y. Pectin from steam explosion-treated citrus peel exhibits good emulsion properties and bioavailability-promoting effect in vitro of nobiletin. Int J Biol Macromol 2024; 278:134758. [PMID: 39151846 DOI: 10.1016/j.ijbiomac.2024.134758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/07/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Steam explosion (SE) is a potential method to modify pectin structure, which might be connected to its emulsifying characteristics and the bioavailability of encapsulated polymethoxyflavone like nobiletin. However, the relationship between SE-modified pectin and the bioavailability of encapsulated nobiletin is still unclear. In this study, nobiletin-loaded emulsion was fabricated using citrus pectin modified with SE (0.15-0.9 MPa, 3 min) as emulsifier for in vitro digestion study, and the transport and absorption of nobiletin in Caco-2 cells to investigate the bioavailability-promoting effect. The results showed that SE treatment lowered the droplet size of emulsion from 21.38 ± 2.30 μm to 2.14 ± 0.12 μm, enhanced the nobiletin encapsulation efficiency from 23.73 ± 0.78% to 86.27 ± 3.81%, improved the nobiletin bioaccessibility in vitro from 2.48 ± 0.10% to 25.42 ± 0.10% and increased the intracellular accumulation of nobiletin by over 10 times, even higher than that of Tween 80. In conclusion, pectin from SE-treated citrus peel exhibited good emulsion properties and bioavailability-promoting effect in vitro of nobiletin.
Collapse
Affiliation(s)
- Xiaohan Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shaojie Zhao
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Man Huo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
3
|
Niu H, Dou Z, Hou K, Wang W, Chen X, Chen X, Chen H, Fu X. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Crit Rev Food Sci Nutr 2023; 64:8911-8931. [PMID: 37114929 DOI: 10.1080/10408398.2023.2204509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In recent years, RG-I pectin isolated by low-temperature alkaline extraction methods has attracted the attention of a large number of researchers due to its huge health benefits. However, studies on other applications of RG-I pectin are still lacking. In this study, we summarized the sources (e.g. potato pulp, sugar beet pulp, okra, apple pomace, citrus peel, pumpkin, grapefruit, ginseng, etc.), extraction methods, fine structure and applications of RG-I pectin in physiological activities (e.g. anti-cancer, anti-inflammatory, anti-obesity, anti-oxidation, immune regulation, prebiotics, etc.), emulsions, gels, etc. These neutral sugar side chains not only endow RG-I pectin with various physiological activities but the entanglement and cross-linking of these side chains also endow RG-I pectin with excellent emulsifying and gelling properties. We believe that this review can not only provide a comprehensive reading for new workers interested in RG-I pectin, but also provide a valuable reference for future research directions of RG-I pectin.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
4
|
Liu H, Deng L, Dai T, Chen J, Liu W, Liu C, Chen M, Liang R. Emulsifying and emulsion stabilization mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds: Comparison with apple and citrus pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Stubley SJ, Cayre OJ, Murray BS, Celigueta Torres I. Pectin-based microgels for rheological modification in the dilute to concentrated regimes. J Colloid Interface Sci 2022; 628:684-695. [DOI: 10.1016/j.jcis.2022.07.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/14/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022]
|
6
|
Guo Q, Shan Z, Shao Y, Wang N, Qian K, Goff HD, Wang Q, Cui SW, Ding HH. Conformational Properties of Flaxseed Rhamnogalacturonan-I and Correlation between Primary Structure and Conformation. Polymers (Basel) 2022; 14:polym14132667. [PMID: 35808711 PMCID: PMC9269093 DOI: 10.3390/polym14132667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 01/30/2023] Open
Abstract
The pectic polysaccharides extracted from flaxseed (Linum usitatissiumum L.) mucilage and kernel were characterized as rhamnogalacturonan-I (RG-I). In this study, the conformational characteristics of RG-I fractions from flaxseed mucilage and kernel were investigated, using a Brookhaven multi-angle light scattering instrument (batch mode) and a high-performance size exclusion chromatography (HPSEC) system coupled with Viscotek tetra-detectors (flow mode). The Mw of flaxseed mucilage RG-I (FM-R) was 285 kDa, and the structure-sensitive parameter (ρ) value of FM-R was calculated as 1.3, suggesting that the FM-R molecule had a star-like conformation. The Mw of flaxseed kernel RG-I (FK-R) was 550 kDa, and the structure-sensitive parameter (ρ) values ranged from 0.90 to 1.21, suggesting a sphere to star-like conformation with relatively higher segment density. The correlation between the primary structure and conformation of RG-I was further discussed to better understand the structure–function relationship, which helps the scale-up applications of pectins in food, pharmaceutical, or cosmetic industries.
Collapse
Affiliation(s)
- Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.G.); (Z.S.); (Y.S.); (N.W.)
| | - Zhengxin Shan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.G.); (Z.S.); (Y.S.); (N.W.)
| | - Yanhui Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.G.); (Z.S.); (Y.S.); (N.W.)
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.G.); (Z.S.); (Y.S.); (N.W.)
| | - Keying Qian
- Department of Food Science, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada; (K.Q.); (H.D.G.); (S.W.C.)
| | - H. Douglas Goff
- Department of Food Science, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada; (K.Q.); (H.D.G.); (S.W.C.)
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, ON N1G 5C9, Canada;
| | - Steve W. Cui
- Department of Food Science, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada; (K.Q.); (H.D.G.); (S.W.C.)
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, ON N1G 5C9, Canada;
| | - Huihuang H. Ding
- Department of Food Science, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada; (K.Q.); (H.D.G.); (S.W.C.)
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, ON N1G 5C9, Canada;
- Correspondence:
| |
Collapse
|
7
|
Taheri A, Kashaninejad M. Rheological properties for determining the interaction of soluble cress seed mucilage and β-lactoglobulin nanocomplexes under sucrose and lactose treatments. Food Chem 2022; 378:132133. [PMID: 35042116 DOI: 10.1016/j.foodchem.2022.132133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/11/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Protein-polysaccharide complexes are commonly applied in different food products. Their interaction and their functional properties that arise as a consequence of interactions are remarkably influenced by the presence of co-solutes in the system. In this study, general rheological properties and the aggregation behavior of cress seed mucilage (CSM)-β-lactoglobulin (Blg) complexes were studied in the presence of sucrose (5-20% w/v) and lactose (5-20% w/v). The highest values of apparent viscosity and stability (zeta potential) in CSM-Blg complexes were measured when the medium contained 5% w/v lactose (10.00 Pa.s at 0.1 s-1, -25 ± 0.8 mV) and 20% w/v sucrose (12.89 Pa.s at 0.1 s-1, -35 ± 0.2 mV). The results of oscillatory experiments indicated that the gel-like feature of the complexes improved, parallel to a decrease in frequency, which highlighted the shear-induced gelation phenomenon. The thermal analysis test demonstrated that the thermal stability of Blg (70.5◦C), with its complexation to CSM, improved through denaturation. Also, the association of CSM-Blg (82◦C) nanocomplexes with lactose (96◦C) can enhance the thermal stability more effectively. Considering the widespread use of protein-polysaccharide complexes in diverse sugar-containing food formulations, the results of this study can contribute to the creation of new compounds with special techno-functional features.
Collapse
Affiliation(s)
- Afsaneh Taheri
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdi Kashaninejad
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
8
|
Raka AM, Takada A, Hossain KS. Effect of heat treatment on conformational and structural properties of sugar beet pectin. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Kayode OT, Rotimi D, Okoh E, Iyobhebhe M, Kayode AAA, Ojo OA. Novel ketogenic diet formulation improves sucrose-induced insulin resistance in canton strain Drosophila melanogaster. J Food Biochem 2021; 45:e13907. [PMID: 34409649 DOI: 10.1111/jfbc.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/01/2022]
Abstract
This study investigates the antidiabetic effect of a ketogenic diet (KD) on sucrose-induced insulin resistance in the fruit fly model. The fruit flies were divided and grouped into four: Group A, B, C, and D, representing the control, high-sucrose diet (HSD), KD, and HSD + KD, respectively. The administration of the various treatments to the groups proceeded for 7 days. The flies were thereafter immobilized, homogenized, and the homogenates used for biochemical parameters determination. This includes glucose concentration, antioxidant status, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, total cholesterol (TC), triglycerides (TG), and protein concentration. There was a significant increase (p < .05) in weight gain, glucose concentration, TG, HMG-CoA reductase activity, TC, and lipid peroxidation status of the HSD group compared with the control and KD groups. The antioxidant enzymes measured (superoxide dismutase, catalase, and reduced glutathione) and protein concentrations were repressed significantly (p < .05) in the HD groups but significantly elevated (p < .05) in the KD, HSD + KD, and the control groups. The KD improved biochemical parameters altered during the onset of sucrose-induced insulin resistance. With further research on this, KD may emerge as the much-awaited treatment option for diabetes mellitus type 2 (T2DM) with almost reduced toxicity concerns. PRACTICAL APPLICATIONS: Novel KD are sources of dietary phytocompounds with proven antioxidant activities. The antidiabetic activity of the KD was investigated. The results showed that the KD proves to serve as a better effective antidiabetic option in Drosophila melanogaster. The observed results could provide the potential application of the KD as an alternative therapy for diabetes management.
Collapse
Affiliation(s)
- Omowumi T Kayode
- Biochemistry Unit, Department of Biological Sciences, Mountain Top University, Prayercity, Ogun State, Nigeria
| | - Damilare Rotimi
- Medicinal Biochemistry and Molecular Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Elizabeth Okoh
- Medicinal Biochemistry and Molecular Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Matthew Iyobhebhe
- Medicinal Biochemistry and Molecular Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Abolanle A A Kayode
- Department of Biochemistry, Benjamin Carson School of Medicine, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- Medicinal Biochemistry and Molecular Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
10
|
Zdunek A, Pieczywek PM, Cybulska J. The primary, secondary, and structures of higher levels of pectin polysaccharides. Compr Rev Food Sci Food Saf 2020; 20:1101-1117. [PMID: 33331080 DOI: 10.1111/1541-4337.12689] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 12/01/2022]
Abstract
Pectin is a heteropolysaccharide abundant in the cell wall of plants and is obtained mainly from fruit (citrus and apple), thus its properties are particularly prone to changes occurring during ripening process. Properties of pectin depend on the string-like structure (conformation, stiffness) of the molecules that determines their mutual interaction and with the surrounding environment. Therefore, in this review the primary, secondary, and structures of higher levels of pectin chains are discussed in relation to external factors including crosslinking mechanisms. The review shows that the primary structure of pectin is relatively well known, however, we still know little about the conformation and properties of the more realistic systems of higher orders involving side chains, functional groups, and complexes of pectin domains. In particular, there is lack of knowledge on the influence of postharvest changes and extraction method on the primary and secondary structure of pectin that would affect conformation in a given environment and assembly to higher structural levels. Exploring the above-mentioned issues will allow to improve our understanding of pectin functionality and will help to tailor new functionalities for the food industry based on natural but often biologically variable source. The review also demonstrates that atomic force microscopy is a very convenient and adequate tool for the evaluation of pectin conformation since it allows for the relatively straightforward stretching of the pectin molecule in order to measure the force-extension curve which is directly related to its stiffness or flexibility.
Collapse
Affiliation(s)
- Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Piotr M Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
11
|
Zhang X, Lin J, Pi F, Zhang T, Ai C, Yu S. Rheological characterization of RG-I chicory root pectin extracted by hot alkali and chelators. Int J Biol Macromol 2020; 164:759-770. [PMID: 32650011 DOI: 10.1016/j.ijbiomac.2020.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
This work aimed to extract gelatinous chicory root pectin (CRP) and evaluated the rheological behavior of the dispersions and gels. CRP was extracted by citric acid (CEP), alkaline (AEP), ammonium oxalate (OEP) and sodium citrate (SEP). The yield, molecular weight (Mw) and the degree of esterification (DE) of pectin samples varied from 8.8 to 14.8% (w/w), 204 to 336 k Da and 4.0 to 47.4%, respectively. AFM studies showed self-organize on mica of CEP, revealing a random coil conformation due to the interaction of multiple branching, whereas, AEP exhibited long linear filamentous structures. The flow behavior study verified the pseudoplastic character of CEP and SEP at 25 °C, while OEP and AEP belonged to dilatant fluid, besides, a closed hysteresis loop was observed when the CEP concentration increased to 1.5%. OEP gel was thermo insensitive and stiff, AEP gel presented most sensitive to calcium ion but more brittle, and SEP was observed a weak syneresis in spite of the poor gelation property. The texture analysis indicated OEP gel had a superior firmness and chewiness. These findings demonstrated that CRP may be attractive as a thickener or gelling agent to modulate textures of sugar-free and calcium content food.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Pi
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Zhang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Ai
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shujuan Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
12
|
Neutral hydrocolloids promote shear-induced elasticity and gel strength of gelatinized waxy potato starch. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105923] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
The Effect of Different Extraction Conditions on the Physical Properties, Conformation and Branching of Pectins Extracted from Cucumis melo Inodorus. POLYSACCHARIDES 2020. [DOI: 10.3390/polysaccharides1010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The extraction of pectin involves the physico-chemical hydrolysis and solubilisation of pectic polymers from plant tissues under the influence of several processing parameters. In this study, an experimental design approach was used to examine the effects of extraction pH, time and temperature on the pectins extracted from Cucumis melo Inodorus. Knowledge of physical properties (intrinsic viscosity and molar mass), dilute solution conformation (persistence length and mass per unit length), together with chemical composition, was then used to propose a new method, which can estimate the length and number of branches on the pectin RG-I region. The results show that physical properties, conformation and the length and number of branches are sensitive to extraction conditions. The fitting of regression equations relating length and number of branches on the pectin RG-I region to extraction conditions can, therefore, lead to tailor-made pectins with specific properties for specific applications.
Collapse
|
14
|
FREITAS CMP, SOUSA RCS, DIAS MMS, COIMBRA JSR. Extraction of Pectin from Passion Fruit Peel. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09254-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Fernandes A, Brandão E, Raposo F, Maricato É, Oliveira J, Mateus N, Coimbra MA, de Freitas V. Impact of grape pectic polysaccharides on anthocyanins thermostability. Carbohydr Polym 2020; 239:116240. [DOI: 10.1016/j.carbpol.2020.116240] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 01/21/2023]
|
16
|
Petrova AA, Kozlova LV, Gaifullina IZ, Ananchenko BA, Martinson EA, Mikshina PV, Gorshkova TA. AFM analysis reveals polymorphism of purified flax rhamnogalacturonans I of distinct functional types. Carbohydr Polym 2019; 216:238-246. [DOI: 10.1016/j.carbpol.2019.03.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 02/03/2023]
|
17
|
|
18
|
Membrane Characterisation for Fractionated Dextran Analysis in Sugar Industry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Liu Z, Pi F, Guo X, Guo X, Yu S. Characterization of the structural and emulsifying properties of sugar beet pectins obtained by sequential extraction. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Sims IM, Smith AM, Morris GA, Ghori MU, Carnachan SM. Structural and rheological studies of a polysaccharide mucilage from lacebark leaves (Hoheria populnea A. Cunn.). Int J Biol Macromol 2018; 111:839-847. [DOI: 10.1016/j.ijbiomac.2017.12.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/17/2017] [Accepted: 12/27/2017] [Indexed: 12/01/2022]
|
21
|
Morales-Contreras BE, Rosas-Flores W, Contreras-Esquivel JC, Wicker L, Morales-Castro J. Pectin from Husk Tomato (Physalis ixocarpa Brot.): Rheological behavior at different extraction conditions. Carbohydr Polym 2017; 179:282-289. [PMID: 29111053 DOI: 10.1016/j.carbpol.2017.09.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 01/25/2023]
Abstract
A rheological study was carried out to evaluate formulations of test dispersions and gels of high methoxyl pectins (HTHMP) obtained at different conditions from husk tomato waste (Physalis ixocarpa Brot.). The effect of extraction agent (hydrochloric acid or citric acid), blanching time (10 or 15min) and extraction time (15, 20 or 25min) on the rheology of the tested samples was evaluated. Flow behavior and activation energy were evaluated on the test dispersions, while (Ea) frequency sweeps, temperature sweep, creep-recovery test and penetration test were performed on the gels. HTHMP dispersions showed shear thinning flow behavior, while showing a good fit to Cross model. Extraction agent, blanching time and extraction time did not have effect on Cross parameters (ηz, η∞, C, and m). Ea decreased as blanching time and extraction time increased. Frequency sweeps revealed high dependence on frequency for both G' and G", while temperature sweeps (25- 95°C) showed thermostable husk tomato pectin gels. Hydrocloric acid (HCl) extracted pectin gels showed stronger structure than citric acid (CA) gels.
Collapse
Affiliation(s)
- Blanca E Morales-Contreras
- TECNM/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1803, Nueva Vizcaya, 34080 Durango, Dgo., Mexico
| | - Walfred Rosas-Flores
- TECNM/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1803, Nueva Vizcaya, 34080 Durango, Dgo., Mexico
| | - Juan C Contreras-Esquivel
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Ing J. Cárdenas Valdez, República, Saltillo, Coah., Mexico
| | - Louise Wicker
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA 70808, USA; Department of Food Science and Technology, University of Georgia, Athens, GA 30602-7610, USA
| | - Juliana Morales-Castro
- TECNM/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1803, Nueva Vizcaya, 34080 Durango, Dgo., Mexico.
| |
Collapse
|
22
|
Patova OA, Golovchenko VV, Vityazev FV, Burkov AA, Belyi VA, Kuznetsov SN, Litvinets SG, Martinson EA. Physicochemical and rheological properties of gelling pectin from Sosnowskyi's hogweed ( Heracleum sosnowskyi ) obtained using different pretreatment conditions. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Guo X, Zhang T, Meng H, Yu S. Ethanol precipitation of sugar beet pectins as affected by electrostatic interactions between counter ions and pectin chains. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Alba K, Bingham RJ, Kontogiorgos V. Mesoscopic structure of pectin in solution. Biopolymers 2017; 107. [DOI: 10.1002/bip.23016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/07/2017] [Accepted: 01/25/2017] [Indexed: 01/08/2023]
Affiliation(s)
- K. Alba
- Department of Biological Sciences; University of Huddersfield; HD1 3DH United Kingdom
| | - R. J. Bingham
- Department of Biological Sciences; University of Huddersfield; HD1 3DH United Kingdom
| | - V. Kontogiorgos
- Department of Biological Sciences; University of Huddersfield; HD1 3DH United Kingdom
| |
Collapse
|
25
|
Xie JH, Tang W, Jin ML, Li JE, Xie MY. Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: Structures and functionalities. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.03.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
|
27
|
Ngouémazong ED, Christiaens S, Shpigelman A, Van Loey A, Hendrickx M. The Emulsifying and Emulsion-Stabilizing Properties of Pectin: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12160] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eugénie D. Ngouémazong
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| | - Stefanie Christiaens
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| | - Avi Shpigelman
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| | - Ann Van Loey
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| | - Marc Hendrickx
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| |
Collapse
|
28
|
Sousa AG, Nielsen HL, Armagan I, Larsen J, Sørensen SO. The impact of rhamnogalacturonan-I side chain monosaccharides on the rheological properties of citrus pectin. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Denman LJ, Morris GA. An experimental design approach to the chemical characterisation of pectin polysaccharides extracted from Cucumis melo Inodorus. Carbohydr Polym 2015; 117:364-369. [DOI: 10.1016/j.carbpol.2014.09.081] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/03/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022]
|
30
|
Morris GA, Adams GG, Harding SE. On hydrodynamic methods for the analysis of the sizes and shapes of polysaccharides in dilute solution: A short review. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Marquis M, Davy J, Fang A, Renard D. Microfluidics-assisted diffusion self-assembly: toward the control of the shape and size of pectin hydrogel microparticles. Biomacromolecules 2014; 15:1568-78. [PMID: 24673589 DOI: 10.1021/bm401596m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We demonstrated the generation of pectin hydrogel microparticles having complex shapes either by combining the phenomenon of gelation and water diffusion-induced self-assembly in microfluidic channels (on-chip) or by the deformation of the pregelled droplets outside the channels (off-chip) at a fluid-fluid interface. We proved that by tuning the mode of pectin cross-linking (CaCl2 vs CaCO3) and the degree of shrinking (water content in the dimethyl carbonate (DMC) organic continuous phase) we can control the shape of the final particle. Sphere, doughnut, oblate ellipsoid, or mushroom-type morphologies were thus produced, demonstrating the ability to control the formation of anisotropic biopolymer-based hydrogel microparticles using microfluidics. Shape changes were explained by the redistribution of calcium ions in combination with the local Peclet number experienced by the microdroplets during the on-chip process. Moreover, during the off-chip process, the interplay between elastic and viscous forces for microdroplets entering the CaCl2-DMC interface caused deformation of the pregelled droplets to occur and therefore resulted in the formation of microparticles with a mushroom-like morphology.
Collapse
Affiliation(s)
- Mélanie Marquis
- INRA, UR1268 Biopolymères Interactions Assemblages , F-44300 Nantes Cedex, France
| | | | | | | |
Collapse
|
32
|
Simpson R, Morris GA. The anti-diabetic potential of polysaccharides extracted from members of the cucurbit family: A review. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bcdf.2014.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|