1
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Gao L, Haesaert G, Van Bockstaele F, Vermeir P, Skirtach A, Eeckhout M. Combined effects of nitrogen and sulfur fertilizers on chemical composition, structure and physicochemical properties of buckwheat starch. Food Chem 2024; 459:140351. [PMID: 38981377 DOI: 10.1016/j.foodchem.2024.140351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Buckwheat starch has attracted worldwide attention in the food industry as a valuable raw material or food additive. Nitrogen (N) and sulfur (S) are two nutrients essential to ensure grain quality. This study investigated the combined application of N fertilizer (0, 45 and 90 kg N ha-1) and S fertilizer (0 and 45 kg SO3 ha-1) on the chemical composition, structure and physicochemical properties of buckwheat starch. The results showed that increasing the fertilizer application decreased amylose content and starch granule size but increased light transmittance, water solubility and swelling power. The stability of the absorption peak positions and the decrease in short-range order degree suggested that fertilization influenced the molecular structure of buckwheat starch. In addition, increases in viscosity and gelatinization enthalpy as well as decreases in gelatinization temperatures and dynamic rheological properties indicated changes in the processing characteristics and product quality of buckwheat-based foods.
Collapse
Affiliation(s)
- Licheng Gao
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Vermeir
- Laboratory for Chemical Analysis, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Andre Skirtach
- Laboratory for Nano-biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Drosou C, Krokida M. A Comparative Study of Encapsulation of β-Carotene via Spray-Drying and Freeze-Drying Techniques Using Pullulan and Whey Protein Isolate as Wall Material. Foods 2024; 13:1933. [PMID: 38928875 PMCID: PMC11203211 DOI: 10.3390/foods13121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The encapsulation of β-carotene was investigated using pullulan and whey protein isolate (WPI) as a composite matrix at a weight ratio of 20:80, employing both spray-drying and freeze-drying techniques. The influence of processing parameters such as the concentration of wall material, flow rate, and inlet temperature for SP encapsulants, as well as wall-material concentration for FZ encapsulants, was examined in terms of encapsulation efficiency (EE). The morphology, structural characterization, moisture sorption isotherms, and thermal properties of the resulting encapsulants at optimum conditions were determined. Their stability was investigated under various levels of water activity, temperature conditions, and exposure to UV-Vis irradiation. β-carotene was efficiently encapsulated within SP and FZ structures, resulting in EE of approximately 85% and 70%, respectively. The degradation kinetics of β-carotene in both structures followed a first-order reaction model, with the highest rate constants (0.0128 day-1 for SP and 0.165 day-1 for FZ) occurring at an intermediate water-activity level (aw = 0.53) across all storage temperatures. The photostability tests showed that SP encapsulants extended β-carotene's half-life to 336.02 h, compared with 102.44 h for FZ encapsulants, under UV-Vis irradiation. These findings highlight the potential of SP encapsulants for applications in functional foods, pharmaceuticals, and carotenoid supplements.
Collapse
Affiliation(s)
- Christina Drosou
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Heroon Polytechniou St., 15780 Athens, Greece;
| | | |
Collapse
|
4
|
Meira ACFDO, Morais LCD, Figueiredo JDA, Veríssimo LAA, Botrel DA, Resende JVD. Microencapsulation of β-carotene using barley residue proteins from beer waste as coating material. J Microencapsul 2023; 40:171-185. [PMID: 36803148 DOI: 10.1080/02652048.2023.2183277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This study aimed to produce and characterise microparticles produced from barley residue proteins (BRP) enriched with β-carotene. The microparticles were obtained by freeze-drying five emulsion formulations with 0.5% w/w whey protein concentrate and different concentrations of maltodextrin and BRP (0, 1.5, 3.0, 4.5 and 6.0% w/w), with the dispersed phase consisting of corn oil enriched with β-carotene. The mixtures were mechanically mixed and sonicated, the formed emulsions were freeze-drying. The microparticles obtained were tested for encapsulation efficiency, humidity, hygroscopicity, apparent density, scanning electron microscopy (SEM), accelerated stability and bioaccessibility. Microparticles produced with the emulsion containing 6% w/w BRP had lower moisture content (3.47 ± 0.05%), higher encapsulation efficiency (69.11 ± 3.36%), bioaccessibility value of 84.1% and greater β-carotene protection against thermal degradation. SEM analysis showed that microparticles had sizes ranging from 74.4 to 244.8 µm. These results show that BRP are viable for the microencapsulation of bioactive compounds by freeze-drying.
Collapse
|
5
|
Li Z, Zheng M, He P, Gong W, Liu Z, Xu C, Tai Z. Citral Essential Oil-Loaded Microcapsules by Simple Coacervation and Its Application on Peach Preservation. ACS OMEGA 2022; 7:42181-42190. [PMID: 36440131 PMCID: PMC9685779 DOI: 10.1021/acsomega.2c04928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 05/22/2023]
Abstract
Citral essential oil (CEO) was encapsulated by the single coalescence method, and its stability, release properties, and ability to maintain freshness were evaluated for the first time. The microshape characteristics of a CEO-loaded microcapsule (CM) were analyzed by inverted microscopy (OM) and scanning electron microscopy (SEM). The encapsulation efficiency, stability, and release behavior of CEO were evaluated using Fourier transform infrared spectroscopy (FTIR), thermogravimetric/differential thermal comprehensive analysis (TG/DSC), and gas chromatography mass spectrometry (GC/MS). Moreover, peaches were used to evaluate the preservation properties of the CEO-loaded microcapsule. The results showed that the microcapsule produced using simple coacervation had better microstructure and the ability to reduce and control the release of citral essential oil. The qualities of peaches, such as appearance changes, hardness, soluble solid content, total acids, and total bacterial counts, were significantly improved in the CM system during storage, in comparison with the control and cold storage groups. Therefore, the CM has potential applications and development prospects in the food, drug, and other industries.
Collapse
Affiliation(s)
- Zhenjie Li
- Yunnan
Key Laboratory of Tobacco Chemistry, R&D
Center of China Tobacco Yunnan Industry Co., Ltd., Kunming650231, P.R. China
| | - Minjie Zheng
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming650500, P.R. China
| | - Pei He
- Yunnan
Key Laboratory of Tobacco Chemistry, R&D
Center of China Tobacco Yunnan Industry Co., Ltd., Kunming650231, P.R. China
| | - Weimin Gong
- Yunnan
Key Laboratory of Tobacco Chemistry, R&D
Center of China Tobacco Yunnan Industry Co., Ltd., Kunming650231, P.R. China
| | - Zhihua Liu
- Yunnan
Key Laboratory of Tobacco Chemistry, R&D
Center of China Tobacco Yunnan Industry Co., Ltd., Kunming650231, P.R. China
| | - Chunping Xu
- College
of Food and Bioengineering, Zhengzhou University
of Light Industry, Zhengzhou450002, P.R. China
| | - Zhigang Tai
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming650500, P.R. China
| |
Collapse
|
6
|
Fabrication and characterizations of cyclic amylopectin-based delivery system incorporated with β-carotene. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Costa A, Timm TG, Helm CV, Tavares LBB. Pinhão Seeds and Coats: Drying Process and Flour Characterization for Application in Food Products. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alessandra Costa
- Chemical Engineering Graduate Program and Regional University of Blumenau, Blumenau, Santa Catarina, Brazil
| | - Thaynã Gonçalves Timm
- Environmental Engineering Graduate Program, Regional University of Blumenau, Blumenau, Santa Catarina, Brazil
| | - Cristiane Vieira Helm
- Environmental Engineering Graduate Program, Regional University of Blumenau, Blumenau, Santa Catarina, Brazil
- Brazilian Agricultural Research Corporation, Research Center of Forestry, Colombo, Paraná, Brazil
| | | |
Collapse
|
8
|
Ice-templated additive-free porous starches with tuned morphology and properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Aslam S, Akhtar A, Nirmal N, Khalid N, Maqsood S. Recent Developments in Starch-Based Delivery Systems of Bioactive Compounds: Formulations and Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09311-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031424] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of natural food ingredients has been increased in recent years due to the negative health implications of synthetic ingredients. Natural bioactive compounds are important for the development of health-oriented functional food products with better quality attributes. The natural bioactive compounds possess different types of bioactivities, e.g., antioxidative, antimicrobial, antihypertensive, and antiobesity activities. The most common method for the development of functional food is the fortification of these bioactive compounds during food product manufacturing. However, many of these natural bioactive compounds are heat-labile and less stable. Therefore, the industry and researchers proposed the microencapsulation of natural bioactive compounds, which may improve the stability of these compounds during processing and storage conditions. It may also help in controlling and sustaining the release of natural compounds in the food product matrices, thus, providing bioactivity for a longer duration. In this regard, several advanced techniques have been explored in recent years for microencapsulation of bioactive compounds, e.g., essential oils, healthy oils, phenolic compounds, flavonoids, flavoring compounds, enzymes, and vitamins. The efficiency of microencapsulation depends on various factors which are related to natural compounds, encapsulating materials, and encapsulation process. This review provides an in-depth discussion on recent advances in microencapsulation processes as well as their application in food systems.
Collapse
|
11
|
Zhang L, Wei Y, Liao W, Tong Z, Wang Y, Liu J, Gao Y. Impact of trehalose on physicochemical stability of β-carotene high loaded microcapsules fabricated by wet-milling coupled with spray drying. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Shi L, Zhou J, Guo J, Gladden I, Kong L. Starch inclusion complex for the encapsulation and controlled release of bioactive guest compounds. Carbohydr Polym 2021; 274:118596. [PMID: 34702447 DOI: 10.1016/j.carbpol.2021.118596] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
The linear component of starch, especially amylose, is capable of forming inclusion complex (IC) with various small molecules. It could significantly modify the structure and properties of starch, and it could bring beneficial effects when bioactive compounds can be encapsulated. This review discusses the formation and characterization of the starch-guest IC and focuses on the recent developments in the use of starch ICs for the encapsulation and controlled release of bioactive guest compounds. A great number of guest compounds, such as lipids, aroma compounds, pharmaceuticals, and phytochemicals, were studied for their ability to be complexed with starch and/or amylose and some of the formed ICs were evaluated for the chemical stability improvement and the guest release regulation. Starch-guest ICs has a great potential to be a delivery system, as most existing studies demonstrated the enhancement on guest retention and the possibility of controlled release.
Collapse
Affiliation(s)
- Linfan Shi
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingyi Zhou
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jiayue Guo
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Isabella Gladden
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
13
|
Zhang L, Liao W, Wei Y, Tong Z, Wang Y, Gao Y. Fabrication, characterization and in vitro digestion of food-grade β-carotene high loaded microcapsules: A wet-milling and spray drying coupling approach. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Influence of Sechium edule starch on the physical and chemical properties of multicomponent microcapsules obtained by spray-drying. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Starch-based materials encapsulating food ingredients: Recent advances in fabrication methods and applications. Carbohydr Polym 2021; 270:118358. [PMID: 34364603 DOI: 10.1016/j.carbpol.2021.118358] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Encapsulation systems have gained significant interest in designing innovative foods, as they allow for the protection and delivery of food ingredients that have health benefits but are unstable during processing, storage and in the upper gastrointestinal tract. Starch is widely available, cheap, biodegradable, edible, and easy to be modified, thus highly suitable for the development of encapsulants. Much efforts have been made to fabricate various types of porous starch and starch particles using different techniques (e.g. enzymatic hydrolysis, aggregation, emulsification, electrohydrodynamic process, supercritical fluid process, and post-processing drying). Such starch-based systems can load, protect, and deliver various food ingredients (e.g. fatty acids, phenolic compounds, carotenoids, flavors, essential oils, irons, vitamins, probiotics, bacteriocins, co-enzymes, and caffeine), exhibiting great potentials in developing foods with tailored flavor, nutrition, sensory properties, and shelf-life. This review surveys recent advances in different aspects of starch-based encapsulation systems including their forms, manufacturing techniques, and applications in foods.
Collapse
|
16
|
Lombardelli C, Benucci I, Esti M. Novel food colorants from tomatoes: Stability of carotenoid-containing chromoplasts under different storage conditions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Preparation, optimization, and transcorneal permeability study of lutein-loaded solid lipid nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Zou F, Budtova T. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter. Carbohydr Polym 2021; 255:117344. [DOI: 10.1016/j.carbpol.2020.117344] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
|
19
|
Alarcon RT, Lamb KJ, Bannach G, North M. Opportunities for the Use of Brazilian Biomass to Produce Renewable Chemicals and Materials. CHEMSUSCHEM 2021; 14:169-188. [PMID: 32975380 DOI: 10.1002/cssc.202001726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
This Review highlights the principal crops of Brazil and how their harvest waste can be used in the chemicals and materials industries. The Review covers various plants; with grains, fruits, trees and nuts all being discussed. Native and adopted plants are included and studies on using these plants as a source of chemicals and materials for industrial applications, polymer synthesis, medicinal use and in chemical research are discussed. The main aim of the Review is to highlight the principal Brazilian agricultural resources; such as sugarcane, oranges and soybean, as well as secondary resources, such as andiroba brazil nut, buriti and others, which should be explored further for scientific and technological applications. Furthermore, vegetable oils, carbohydrates (starch, cellulose, hemicellulose, lignocellulose and pectin), flavones and essential oils are described as well as their potential applications.
Collapse
Affiliation(s)
- Rafael T Alarcon
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Katie J Lamb
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Gilbert Bannach
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
20
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
21
|
Meybodi NM, Mortazavian AM, Arab M, Nematollahi A. Probiotic viability in yoghurt: A review of influential factors. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104793] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Zorzenon MRT, Formigoni M, da Silva SB, Hodas F, Piovan S, Ciotta SR, Jansen CA, Dacome AS, Pilau EJ, Mareze-Costa CE, Milani PG, Costa SC. Spray drying encapsulation of stevia extract with maltodextrin and evaluation of the physicochemical and functional properties of produced powders. J Food Sci 2020; 85:3590-3600. [PMID: 32888354 DOI: 10.1111/1750-3841.15437] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
This work aimed to formulate and perform physicochemical and functional characterization of maltodextrin microcapsules containing ethanolic extract of stevia, rich in antioxidant compounds, encapsulated by a spray-drying process with two maltodextrins (DE10 and DE19). The powders were named M10 and M19, respectively. We analyzed the physicochemical parameters, antidiabetic activity, cytotoxicity, bioaccessibility of the compounds by in vitro digestion, as well as the structure of the microcapsules by scanning electron microscopy. Microcapsules showed higher solubility (∼35%), lower moisture content (∼29%), and the maltodextrin DE10 had higher efficiency as an encapsulating agent (87%) when compared to DE19 (76%) and showed well-defined spherical structures. The microencapsulation preserved the content of phenolic compounds and antioxidant activity present in the extract (7.2% and 87.5%, respectively). The bioaccessibility of these microencapsulated compounds and antioxidant activity were higher under different conditions of in vitro digestion (mouth, gastric, and intestinal conditions) and showed no cytotoxic effects. We identified 41 compounds (by UHPLC-MS/MS-Qtof) related to the nutritional benefits offered by stevia and the microencapsulation technique can be recommended to preserve bioactive compounds. PRACTICAL APPLICATION: Ethanol extract from stevia leaves contains antioxidant phytochemicals related to the nutritional benefits of stevia. However, this extract presents low solubility and consequently low bioaccessibility under in vitro digestion. The microencapsulation process protects the bioactive compounds of the different pH from digestion and improves the physical-chemical parameters of the extract, increasing its applicability as a possible food additive.
Collapse
Affiliation(s)
- Maria Rosa T Zorzenon
- Postgraduate Program in Food Science, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil.,Biochemistry Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Maysa Formigoni
- Postgraduate Program in Food Science, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil.,Biochemistry Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Sandra B da Silva
- Postgraduate Program in Food Science, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Fabiane Hodas
- Biochemistry Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Silvano Piovan
- Physiological Sciences Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Simone R Ciotta
- Postgraduate Program in Food Science, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil.,Biochemistry Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Cler A Jansen
- Laboratory of Biomolecules and Mass Spectrometry, Chemistry Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil.,Postgraduate Program in Cell Biology, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Antonio S Dacome
- Biochemistry Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Eduardo J Pilau
- Laboratory of Biomolecules and Mass Spectrometry, Chemistry Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Cecília E Mareze-Costa
- Physiological Sciences Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Paula G Milani
- Biochemistry Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| | - Silvio C Costa
- Biochemistry Department, State University of Maringá (UEM), 5790, Colombo Avenue, Zip-code 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
23
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
24
|
Niu B, Shao P, Sun P. Ultrasound-assisted emulsion electrosprayed particles for the stabilization of β-carotene and its nutritional supplement potential. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Eun JB, Maruf A, Das PR, Nam SH. A review of encapsulation of carotenoids using spray drying and freeze drying. Crit Rev Food Sci Nutr 2019; 60:3547-3572. [PMID: 31876161 DOI: 10.1080/10408398.2019.1698511] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carotenoids are potent antioxidants, but they are highly unstable and susceptible during processing and storage. Encapsulation technologies protect against degradation and are capable of releasing individual or combination of bioactive substances during processing as well as development of various functional food products. Moreover, encapsulating agents can be used to increase the stability of carotenoids and form a barrier between the core and wall materials. Suitable encapsulating agents, temperature, and drying methods are the most important factors for the encapsulation process. In this report, we reviewed the current status of encapsulation of carotenoids from different fruits, vegetables, spices, seaweeds, microorganisms, and synthetic sources using various types of encapsulating agents through spray drying and freeze drying. We also focused on the degradation kinetics and various factors that affect the stability and bioavailability of encapsulated carotenoids during their processing and storage.
Collapse
Affiliation(s)
- Jong-Bang Eun
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwanju, South Korea
| | - Ahmed Maruf
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwanju, South Korea
| | - Protiva Rani Das
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwanju, South Korea
| | - Seung-Hee Nam
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwanju, South Korea
| |
Collapse
|
26
|
Fang S, Zhao X, Liu Y, Liang X, Yang Y. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
FEDERZONI V, ALVIM ID, FADINI AL, SILVA LBD, QUEIROZ MB. Co-crystallization of paprika oleoresin and storage stability study. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.41617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Sen T, Barrow CJ, Deshmukh SK. Microbial Pigments in the Food Industry-Challenges and the Way Forward. Front Nutr 2019; 6:7. [PMID: 30891448 PMCID: PMC6411662 DOI: 10.3389/fnut.2019.00007] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022] Open
Abstract
Developing new colors for the food industry is challenging, as colorants need to be compatible with a food flavors, safety, and nutritional value, and which ultimately have a minimal impact on the price of the product. In addition, food colorants should preferably be natural rather than synthetic compounds. Micro-organisms already produce industrially useful natural colorants such as carotenoids and anthocyanins. Microbial food colorants can be produced at scale at relatively low costs. This review highlights the significance of color in the food industry, why there is a need to shift to natural food colors compared to synthetic ones and how using microbial pigments as food colorants, instead of colors from other natural sources, is a preferable option. We also summarize the microbial derived food colorants currently used and discuss their classification based on their chemical structure. Finally, we discuss the challenges faced by the use and development of food grade microbial pigments and how to deal with these challenges, using advanced techniques including metabolic engineering and nanotechnology.
Collapse
Affiliation(s)
- Tanuka Sen
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
29
|
Influence of Oxygen-Containing Sulfur Flavor Molecules on the Stability of β-Carotene under UVA Irradiation. Molecules 2019; 24:molecules24020318. [PMID: 30654581 PMCID: PMC6358934 DOI: 10.3390/molecules24020318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 11/17/2022] Open
Abstract
The influence of 11 kinds of oxygen-containing sulfur flavor molecules was examined on β-carotene stability under UVA irradiation in ethanol system. Both the effects of sulfides on dynamic degradation of β-carotene and the relation between structure and effect were investigated. The oxidation products of β-carotene accelerated by sulfides under UVA irradiation were also identified. The results indicated that the disulfides had more obvious accelerative effects on the photodegradation of β-carotene than mono sulfides. The degradation of β-carotene after methyl (2-methyl-3-furyl) disulfide (MMFDS), methyl furfuryl disulfide (MFDS) and bis(2-methyl-3-furyl) disulfide (BMFDS) exposure followed first-order kinetics. Furan-containing sulfides such as MMFDS and BMFDS showed more pronounced accelerative effects than their corresponding isomers. The oxidation products were identified as 13-cis-β-carotene, 9,13-di-cis-β-carotene and all-trans-5,6-epoxy-β-carotene. These results suggest that both the sulfur atom numbers and the furan group in oxygen-containing sulfides play a critical role in the photooxidation of β-carotene.
Collapse
|
30
|
Fu Y, Yang J, Jiang L, Ren L, Zhou J. Encapsulation of Lutein into Starch Nanoparticles to Improve Its Dispersity in Water and Enhance Stability of Chemical Oxidation. STARCH-STARKE 2018. [DOI: 10.1002/star.201800248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Youjia Fu
- Key Laboratory of Bionic Engineering (Ministry of Education); College of Biological and Agricultural Engineering; Jilin University; Changchun 130022 China
| | - Jingde Yang
- Key Laboratory of Bionic Engineering (Ministry of Education); College of Biological and Agricultural Engineering; Jilin University; Changchun 130022 China
| | - Longwei Jiang
- Key Laboratory of Bionic Engineering (Ministry of Education); College of Biological and Agricultural Engineering; Jilin University; Changchun 130022 China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education); College of Biological and Agricultural Engineering; Jilin University; Changchun 130022 China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education); College of Biological and Agricultural Engineering; Jilin University; Changchun 130022 China
| |
Collapse
|
31
|
Novel Oxidized and UV-Irradiated Araucaria angustifolia
Pine Seed Starch for Enhanced Functional Properties. STARCH-STARKE 2018. [DOI: 10.1002/star.201800140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Jorge T, De Dea Lindner J, Mejia SMV, Mattioni B, Rotta J, Morés S, de Francisco A, Sant'Anna ES. Physicochemical study of pinhão flour as source of adjunct in beer production. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thiago Jorge
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Rodovia Admar Gonzaga, 1346 88034-001 Florianópolis SC Brazil
| | - Juliano De Dea Lindner
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Rodovia Admar Gonzaga, 1346 88034-001 Florianópolis SC Brazil
| | - Sandra Milena Vasquez Mejia
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Rodovia Admar Gonzaga, 1346 88034-001 Florianópolis SC Brazil
| | - Bruna Mattioni
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Rodovia Admar Gonzaga, 1346 88034-001 Florianópolis SC Brazil
| | - Jefferson Rotta
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Rodovia Admar Gonzaga, 1346 88034-001 Florianópolis SC Brazil
| | - Silvane Morés
- Department of Chemistry and Biology; Federal Technological University of Paraná (UTFPR); Linha Santa Barbara, s/n 86601-970 Francisco Beltrão PR Brazil
| | - Alícia de Francisco
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Rodovia Admar Gonzaga, 1346 88034-001 Florianópolis SC Brazil
| | - Ernani Sebastião Sant'Anna
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Rodovia Admar Gonzaga, 1346 88034-001 Florianópolis SC Brazil
| |
Collapse
|
33
|
|
34
|
|
35
|
Effect of sucrose concentration and pH onto the physical stability of β-carotene nanocapsules. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Álvarez-Henao MV, Saavedra N, Medina S, Jiménez Cartagena C, Alzate LM, Londoño-Londoño J. Microencapsulation of lutein by spray-drying: Characterization and stability analyses to promote its use as a functional ingredient. Food Chem 2018; 256:181-187. [PMID: 29606436 DOI: 10.1016/j.foodchem.2018.02.059] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/03/2017] [Accepted: 02/11/2018] [Indexed: 01/09/2023]
Abstract
Lutein, a xanthophyll, is associated to decreased risk of age-related macular degeneration, atherosclerosis and other diseases (Bovier et al., 2013; El-raey, Ibrahim, & Eldahshan, 2013). When lutein is extracted, it becomes highly unstable, reducing its functionality as an antioxidant. The aim of this research was to improve the stability of lutein using maltodextrin, arabic gum and a modified starch, to obtain micro-particles using spray-drying. Each of the formulations was characterized in terms of yield, encapsulation efficiency, particle size distribution, water activity and moisture content. The formulations with arabic gum (100%) and arabic gum:maltodextrin:modified starch (33.3:33.3:33.3%), with encapsulation efficiencies of 91.94 ± 6.88 and 65.72 ± 0.93%, respectively, were selected to study stability at 45 °C and 75% RH (relative humidity). Based on our results, encapsulation could be considered as an alternative for the generation of high value-added functional ingredients that can be used in different industries.
Collapse
Affiliation(s)
| | - Nataly Saavedra
- Faculty of Engineering, Corporación Universitaria Lasallista, Caldas, Antioquia, Colombia
| | - Sonia Medina
- Faculty of Engineering, Corporación Universitaria Lasallista, Caldas, Antioquia, Colombia
| | | | - Luz Maria Alzate
- Faculty of Engineering, Corporación Universitaria Lasallista, Caldas, Antioquia, Colombia
| | - Julián Londoño-Londoño
- Faculty of Engineering, Corporación Universitaria Lasallista, Caldas, Antioquia, Colombia
| |
Collapse
|
37
|
Abstract
The labels currently used on food and beverage products only provide consumers with a rough guide to their expected shelf lives because they assume that a product only experiences a limited range of predefined handling and storage conditions. These static labels do not take into consideration conditions that might shorten a product's shelf life (such as temperature abuse), which can lead to problems associated with food safety and waste. Advances in shelf-life estimation have the potential to improve the safety, reliability, and sustainability of the food supply. Selection of appropriate kinetic models and data-analysis techniques is essential to predict shelf life, to account for variability in environmental conditions, and to allow real-time monitoring. Novel analytical tools to determine safety and quality attributes in situ coupled with modern tracking technologies and appropriate predictive tools have the potential to provide accurate estimations of the remaining shelf life of a food product in real time. This review summarizes the necessary steps to attain a transition from open labeling to real-time shelf-life measurements.
Collapse
Affiliation(s)
- Maria G Corradini
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA;
| |
Collapse
|
38
|
Thermal and ultraviolet–visible light stability kinetics of co-nanoencapsulated carotenoids. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Ortiz-Basurto RI, Rubio-Ibarra ME, Ragazzo-Sanchez JA, Beristain CI, Jiménez-Fernández M. Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation. Carbohydr Polym 2017; 175:603-609. [PMID: 28917907 DOI: 10.1016/j.carbpol.2017.08.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022]
Abstract
The objective of this work was to microencapsulate pitanga (Eugenia uniflora L.) juice by spray drying, using High Performance Agave Fructans (HPAF) and High Degree of Polymerisation Agave Fructans (HDPAF) and maltodextrin (MD), respectively, as the wall materials. The physicochemical and antioxidant properties of the capsules during storage at various temperatures were evaluated. The microparticles developed using fructans HPAF and HDPAF, exhibited similar physicochemical and flow properties to those presented by the microparticles prepared with MD. The highest yield and concentration of anthocyanins after drying and during storage were found for a 1:6 core:wall material ratio. The total color change was a good indicator of the microcapsule stability. This study showed that both fructans fraction possess similar encapsulating properties to MD and that the HDPAF were more efficacious than MD at protecting the antioxidants during drying and storage.
Collapse
Affiliation(s)
- R I Ortiz-Basurto
- Instituto Tecnológico de Tepic. Av. Tecnológico #2595, Col. Lagos del Country, C. P. 63175, Tepic, Nayarit, Mexico
| | - M E Rubio-Ibarra
- Instituto Tecnológico de Tepic. Av. Tecnológico #2595, Col. Lagos del Country, C. P. 63175, Tepic, Nayarit, Mexico
| | - J A Ragazzo-Sanchez
- Instituto Tecnológico de Tepic. Av. Tecnológico #2595, Col. Lagos del Country, C. P. 63175, Tepic, Nayarit, Mexico
| | - C I Beristain
- Instituto de Ciencias Básicas, Universidad Veracruzana, Dr. Luis Castelazo s/n, Col. Industrial Animas, Xalapa Ver., C.P. 91000, Mexico
| | - M Jiménez-Fernández
- Instituto de Ciencias Básicas, Universidad Veracruzana, Dr. Luis Castelazo s/n, Col. Industrial Animas, Xalapa Ver., C.P. 91000, Mexico.
| |
Collapse
|
40
|
Soukoulis C, Bohn T. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit Rev Food Sci Nutr 2017; 58:1-36. [DOI: 10.1080/10408398.2014.971353] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Christos Soukoulis
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Torsten Bohn
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
41
|
Lim AS, Roos YH. Carotenoids stability in spray dried high solids emulsions using layer-by-layer (LBL) interfacial structure and trehalose-high DE maltodextrin as glass former. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
42
|
The Influence of Drying Process Conditions on the Physical Properties, Bioactive Compounds and Stability of Encapsulated Pumpkin Seed Oil. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1898-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Choy SY, Prasad KMN, Wu TY, Raghunandan ME, Yang B, Phang SM, Ramanan RN. Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant aid for treatment of turbid water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2876-2889. [PMID: 27838910 DOI: 10.1007/s11356-016-8024-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/31/2016] [Indexed: 05/17/2023]
Abstract
Fruit wastes constituting up to half of total fruit weight represent a large pool of untapped resources for isolation of starch with diverse applications. In this work, the possibility of isolating starch from tropical fruit wastes and its extended application as a natural coagulant was elucidated. Amongst the 12 various parts of fruit wastes selected, only jackfruit seeds contained more than 50% of total starch content. Using alkaline extraction procedures, starch has been successfully isolated from local jackfruit seeds with a yield of approximately 18%. Bell-shaped starch granules were observed under SEM with a granule size ranging from 1.1 to 41.6 μm. Detailed starch characteristics were performed to provide a comparison between the isolated seed starch and also conventional starches. Among them, chemical properties such as the content of starch, amylose, amylopectin and the corresponding molecular weights are some of the key characteristics which governed their performance as natural coagulants. The potential use of isolated seed starch as an aid was then demonstrated in both suspensions of kaolin (model synthetic system) and Chlorella sp. microalga (real-time application) with plausible outcomes. At optimized starch dosage of 60 mg/L, the overall turbidity removal in kaolin was enhanced by at least 25% at a fixed alum dosage of 2.1 mg/L. Positive turbidity and COD removals were also observed in the treatment of Chlorella suspensions. Starches which served as bridging agents aided in the linkage of neighbouring microflocs and subsequently, forming macroflocs through a secondary coagulation mechanism: adsorption and bridging.
Collapse
Affiliation(s)
- Sook Yan Choy
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Krishna Murthy Nagendra Prasad
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | | | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences & Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
44
|
Li R, Chen R, Liu W, Qin C, Han J. Preparation of enteric-coated microcapsules of astaxanthin oleoresin by complex coacervation. Pharm Dev Technol 2016; 23:674-681. [PMID: 27645209 DOI: 10.1080/10837450.2016.1238483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Astaxanthin oleoresin (AO) has a number of beneficial physiological functions. However, its sensitivity to light, heat, oxygen and gastric fluids has limited its application. In this paper, we describe the preparation of AO enteric microcapsules by coacervation to improve its stability and enteric solubility, and evaluate their efficacy by measuring the drug loading, encapsulation efficiency, optical microscopic appearance, stability, in vitro release and bioavailability. The results obtained showed that the AO enteric microcapsules possessed a high encapsulation efficiency (85.9%), a satisfactory in vitro release profile, and the ability of the microencapsulated AO to resist the effects of light, heat and oxygen was improved by 2.2-fold, 3.1-fold and 2.4-fold, respectively, during storage. In addition, the bioavailability of AO microcapsules was approximately 1.29-fold higher than AO, which is important for pharmaceutical applications and as a functional food.
Collapse
Affiliation(s)
- Rongli Li
- a School of Pharmacy Engineering , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Rencai Chen
- a School of Pharmacy Engineering , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Weiwei Liu
- a School of Pharmacy Engineering , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Cuiying Qin
- a School of Pharmacy Engineering , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Jing Han
- a School of Pharmacy Engineering , Shenyang Pharmaceutical University , Shenyang , PR China
| |
Collapse
|
45
|
Peralta RM, Koehnlein EA, Oliveira RF, Correa VG, Corrêa RC, Bertonha L, Bracht A, Ferreira IC. Biological activities and chemical constituents of Araucaria angustifolia : An effort to recover a species threatened by extinction. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Application of inulin in thin-layer drying process of araticum (Annona crassiflora) pulp. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Jaeschke DP, Marczak LDF, Mercali GD. Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating. Food Chem 2016; 199:128-34. [DOI: 10.1016/j.foodchem.2015.11.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/14/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022]
|
48
|
Lim AS, Burdikova Z, Sheehan JJ, Roos YH. Carotenoid stability in high total solid spray dried emulsions with gum Arabic layered interface and trehalose–WPI composites as wall materials. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Spray drying of high hydrophilic solids emulsions with layered interface and trehalose-maltodextrin as glass formers for carotenoids stabilization. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2015.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Ma Y, Liu J, Ye F, Zhao G. Solubilization of β-carotene with oat β-glucan octenylsuccinate micelles and their freeze-thaw, thermal and storage stability. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|