1
|
Oumerri J, Qayouh H, Arteni AA, Six JL, Lahcini M, Ferji K. One-pot Formulation of Cationic Oligochitosan Coated Nanoparticles via Photo- Polymerization Induced Self-Assembly. Chemphyschem 2024; 25:e202400291. [PMID: 38646967 DOI: 10.1002/cphc.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
During last few decades, oligochitosan (OCS)-coated nanoparticles have received great interest for nanomedicine, food and environment applications. However, their current formulation techniques are time-consuming with multi-synthesis/purification steps and sometimes require the use of organic solvents, crosslinkers and surfactants. Herein, we report a facile and rapid one-pot synthesis of OCS-based nanoparticles using photo-initiated reversible addition fragmentation chain transfer polymerization-induced self-assembly (Photo-RAFT PISA) under UV-irradiation at room temperature. To achieve this, OCS was first functionalized by a chain transfer agent (CTA) resulting in a macromolecular chain transfer agent (OCS-CTA), which will act as a reactive electrostatic/steric stabilizer. Owing to its UV-sensitivity, OCS-CTA was then used as photo-iniferter to initiate the polymerization of 2-hydroxypropyl methacrylate (HPMA) in aqueous acidic buffer, resulting in OCS-g-PHPMA amphiphilic grafted copolymers which self-assemble into nano-objects. Transmission electron microscopy and light scattering analysis reveal formation of spherical nanostructures.
Collapse
Affiliation(s)
- Jihad Oumerri
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
| | - Hicham Qayouh
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Av. de la Terrasse Bâtiment 21, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Six
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
| | - Mohammed Lahcini
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
- Mohammed VI Polytechnic University (UM6P), Lot 660, ISSB-P, 43150, Benguerir, Morocco
| | - Khalid Ferji
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
| |
Collapse
|
2
|
Yue Q, Lei L, Gu Y, Chen R, Zhang M, Yu H, Li S, Yang L, Zhang Y, Zhao X, Wei Q, Ma S, Zhang L, Tang P, Zhou F. Bioinspired Polysaccharide-Derived Zwitterionic Brush-like Copolymer as an Injectable Biolubricant for Arthritis Treatment. Adv Healthc Mater 2022; 11:e2200090. [PMID: 35373531 DOI: 10.1002/adhm.202200090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/21/2022] [Indexed: 01/03/2023]
Abstract
Developing highly efficient and biocompatible biolubricants for arthritis treatment is extraordinarily demanded. Herein, inspired by the efficient lubrication of synovial joints, a paradigm that combines natural polysaccharide (chitosan) with zwitterionic poly[2-(methacryloyloxy) ethyl phosphorylcholine] (PMPC), to design a series of brush-like Chitosan-g-PMPC copolymers with highly efficient biological lubrication and good biocompatibility is presented. The Chitosan-g-PMPC copolymers are prepared via facile one-step graft polymerization in aqueous medium without using any toxic catalysts and organic solvents. The as-prepared Chitosan-g-PMPC copolymers exhibit very low coefficient of friction (μ < 0.01) on Ti6 Al4 V alloy substrate in both pure water and biological fluids. The superior lubrication is attributed primarily to the hydrated feature of PMPC side chains, interface adsorption of copolymer as well as to the hydrodynamic effect. In vivo experiments confirm that Chitosan-g-PMPC can alleviate the swelling symptom of arthritis and protect the bone and cartilage from destruction. Due to their facile preparation, distinctive lubrication properties, and good biocompatibility, Chitosan-g-PMPC copolymers represent a new type of biomimetic lubricants derived from natural biopolymer for promising arthritis treatment and artificial joint lubrication.
Collapse
Affiliation(s)
- Qinyu Yue
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Lele Lei
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Ya Gu
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Ruijin Chen
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Mingming Zhang
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Haikuan Yu
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Shang Li
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Luming Yang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Yixin Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Qiangbing Wei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Licheng Zhang
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Peifu Tang
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
3
|
Xu K, Dai Q, Dong K, Wei N, Qin Z. Double noncovalent network chitosan/hyperbranched polyethylenimine/Fe3+ films with high toughness and good antibacterial activity. RSC Adv 2022; 12:5255-5264. [PMID: 35425565 PMCID: PMC8981483 DOI: 10.1039/d1ra08121g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
The application of pure chitosan films is significantly limited due to their poor mechanical properties. In this study, a novel type of chitosan/hyperbranched polyethylenimine (CHP) and chitosan/hyperbranched polyethylenimine/Fe3+ (CHPF) films with high toughness and good antibacterial activity were prepared through a noncovalent crosslinking method. From the tensile test results, the strain and toughness of the CHP film increased by 798.1% and 292.3%, respectively, compared with pure chitosan film, after the addition of 20% hyperbranched polyethylenimine (HPEI). The addition of trace metal iron ions (3 mg) forms a metal coordination bond with the amine group on HPEI, as well as the hydroxyl group and amine group on chitosan, and develops a double noncovalent bond network structure with hydrogen bonding, which further enhances the mechanical tensile strength of the chitosan-based film, with an increase of 48.4%. Interestingly, HPEI and Fe3+ can be used as switches to increase and decrease the fluorescence property of chitosan, respectively. Furthermore, the CHP and CHPF films showed good antibacterial activity against S. aureus and E. coli. Double noncovalent network chitosan/hyperbranched polyethylenimine/Fe3+ films.![]()
Collapse
Affiliation(s)
- Kaijie Xu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qingyin Dai
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Kaiqiang Dong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Ningsi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhiyong Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
Razmimanesh F, Sodeifian G. Investigation of temperature-responsive tocosomal nanocarriers as the efficient and robust drug delivery system for Sunitinib malate anti-cancer drug: Effects of MW and chain length of PNIPAAm on LCST and dissolution rate. J Pharm Sci 2021; 111:1937-1951. [PMID: 34963573 DOI: 10.1016/j.xphs.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
In this study, for the first time, the coated tocosome by blend of chitosan, CS, and poly(N-isopropylacrylamide), PNIPAAm, was developed as the efficient and robust drug delivery system with improved drug encapsulation efficiency, extended stability, proper particle size and industrial upscaling for Sunitinib malate anti-cancer drug. Tocosome was synthesized by using Mozafari method as a scalable and robust method and without the need for organic solvents. The effects of tocosome composition and drug concentration on the stability, particle size of tocosome, zeta potential, encapsulation efficacy and loading of drug into it were investigated by Taguchi method, and optimum composition was selected for combining with the polymeric blend. Homopolymer of PNIPAAm was synthesized by two different polymerization methods, including free radical and reversible addition-fragmentation chain transfer (RAFT). Effects of molecular weight (MW) and chain length of the polymers on lower critical solution temperature (LCST) were examined. The developed nanocarrier in this research, CS-Raft-PNIPAAm-tocosome, indicated LCST value beyond 37°C (about 45°C) and this is suitable for hyperthermia and spatio-temporal release of drug particles.
Collapse
Affiliation(s)
- Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran; Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran; Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | - Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran; Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran; Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran.
| |
Collapse
|
5
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
6
|
Venkatachalam D, Kaliappa S. Superabsorbent polymers: A state-of-art review on their classification, synthesis, physicochemical properties, and applications. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Superabsorbent polymers (SAP) and modified natural polymer hydrogels are widely and increasingly used in agriculture, health care textiles, effluent treatment, drug delivery, tissue engineering, civil concrete structure, etc. However, not many comprehensive reviews are available on this class of novel polymers. A review covering all the viable applications of SAP will be highly useful for researchers, industry persons, and medical, healthcare, and agricultural purposes. Hence, an attempt has been made to review SAPs with reference to their classifications, synthesis, modification by crosslinking, and physicochemical characterization such as morphology, swellability, thermal and mechanical properties, lifetime prediction, thermodynamics of swelling, absorption, release and transport kinetics, quantification of hydrophilic groups, etc. Besides, the possible methods of fine-tuning their structures for improving their absorption capacity, fast absorption kinetics, mechanical strength, controlled release features, etc. were also addressed to widen their uses. This review has also highlighted the biodegradability, commercial viability and market potential of SAPs, SAP composites, the feasibility of using biomass as raw materials for SAP production, etc. The challenges and future prospects of SAP, their safety, and environmental issues are also discussed.
Collapse
Affiliation(s)
- Dhanapal Venkatachalam
- Department of Chemistry , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| | - Subramanian Kaliappa
- Biopolymer and Biomaterial Synthesis and Analytical Testing Lab, Department of Biotechnology , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| |
Collapse
|
7
|
Poly(N-isopropylacrylamide)/galactomannan from Delonix regia seed thermal responsive graft copolymer via Schiff base reaction. Int J Biol Macromol 2020; 166:144-154. [PMID: 33190824 DOI: 10.1016/j.ijbiomac.2020.10.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022]
Abstract
Aminated poly(N-isopropylacrylamide) (PNIPAm-NH2) was grafted onto oxidized galactomannan polysaccharide extracted from Delonix regia (OXGM) via Schiff base reaction by a simple, rapid synthetic route, deprived of the use of organic solvents. Grafting was confirmed by FTIR and 1H NMR and the self-organizing ability of the obtained nanoparticle copolymers was investigated by dynamic light scattering (DLS). The minimum concentration required for self-organization (CAC) at 25 °C was higher than at 50 °C. Lower critical solution temperature (LCST) was in the range 34-40 °C, depending on both inserted PNIPAm-NH2 molar mass and on the presence of reduced imine bond. Synthesized copolymers are promising candidates for drug delivery as they show good cell viability, particle size around 250 nm and transition temperature closer to that of human body. Reaction success points out to the possibility of use free aldehyde groups of oxidized polysaccharide, not used in the copolymerization, to form a pro-drug with substances that possess NH2 groups in their structure, such as doxorubicin.
Collapse
|
8
|
Solimando X, Champagne P, Cunningham MF. Synthesis of Biohybrid Particles by Modification of Chitosan Beads via RAFT Polymerization in Dispersed Media. MACROMOL REACT ENG 2020. [DOI: 10.1002/mren.202000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xavier Solimando
- Department of Civil Engineering Queen's University 58 University Avenue Kingston ON K7L 3N9 Canada
- Department of Chemical Engineering Queen's University 19 Division Street Kingston ON K7L 3N9 Canada
| | - Pascale Champagne
- Department of Civil Engineering Queen's University 58 University Avenue Kingston ON K7L 3N9 Canada
| | - Michael F. Cunningham
- Department of Chemical Engineering Queen's University 19 Division Street Kingston ON K7L 3N9 Canada
| |
Collapse
|
9
|
Frazar EM, Shah RA, Dziubla TD, Hilt JZ. Multifunctional temperature-responsive polymers as advanced biomaterials and beyond. J Appl Polym Sci 2020; 137:48770. [PMID: 34305165 PMCID: PMC8300996 DOI: 10.1002/app.48770] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023]
Abstract
The versatility and applicability of thermoresponsive polymeric systems have led to great interest and a multitude of publications. Of particular significance, multifunctional poly(N-isopropylacrylamide) (PNIPAAm) systems based on PNIPAAm copolymerized with various functional comonomers or based on PNIPAAm combined with nanomaterials exhibiting unique properties. These multifunctional PNIPAAm systems have revolutionized several biomedical fields such as controlled drug delivery, tissue engineering, self-healing materials, and beyond (e.g., environmental treatment applications). Here, we review these multifunctional PNIPAAm-based systems with various cofunctionalities, as well as highlight their unique applications. For instance, addition of hydrophilic or hydrophobic comonomers can allow for polymer lower critical solution temperature modification, which is especially helpful for physiological applications. Natural comonomers with desirable functionalities have also drawn significant attention as pressure surmounts to develop greener, more sustainable materials. Typically, these systems also tend to be more biocompatible and biodegradable and can be advantageous for use in biopharmaceutical and environmental applications. PNIPAAm-based polymeric nanocomposites are reviewed as well, where incorporation of inorganic or carbon nanomaterials creates synergistic systems that tend to be more robust and widely applicable than the individual components.
Collapse
Affiliation(s)
- E Molly Frazar
- Superfund Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - Rishabh A Shah
- Superfund Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - Thomas D Dziubla
- Superfund Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - J Zach Hilt
- Superfund Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| |
Collapse
|
10
|
Synthesis of regioselective chitosan copolymers with β-cyclodextrin and poly(N-isopropyl acrylamide). JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02076-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Li Y, Feng X, Ma Y, Chen T, Ji W, Ma X, Chen Y, Xu H. Temperature and magnetic dual responsive restricted access material for the extraction of malachite green from crucian and shrimp samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj00230e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A restricted access material that does not need organic solvents during elution was prepared for the extraction of malachite green.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Xiangzhi Feng
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Yulong Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Tong Chen
- Comprehensive Technology Centre
- Zhenjiang Customs District
- Zhenjiang
- China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Xiaoxia Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Yang Chen
- Shanghe New Materials Company
- Zhenjiang
- China
| | - Hong Xu
- Zhenjiang Centre for Disease Control and Prevention
- Zhenjiang 212000
- China
| |
Collapse
|
12
|
Bhattacharjee M, Pramanik NB, Singha NK, Haloi DJ. Recent advances in RDRP-modified chitosan: a review of its synthesis, properties and applications. Polym Chem 2020. [DOI: 10.1039/d0py00918k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RDRP modified Chitosan exhibits improved hydrophobic, cationic and anionic properties, which make them more useful in diversified applications. This review delineates the recent advancement in RDRP-modified chitosan and their properties.
Collapse
Affiliation(s)
| | | | - Nikhil K. Singha
- Rubber Technology Centre
- Indian Institute of Technology Kharagpur
- India
| | | |
Collapse
|
13
|
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers (Basel) 2018; 10:E342. [PMID: 30966377 PMCID: PMC6414943 DOI: 10.3390/polym10030342] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.
Collapse
Affiliation(s)
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico.
| | - Daniel Fernández-Quiroz
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | | | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
14
|
Praphakar RA, Shakila H, Azger Dusthackeer VN, Munusamy MA, Kumar S, Rajan M. A mannose-conjugated multi-layered polymeric nanocarrier system for controlled and targeted release on alveolar macrophages. Polym Chem 2018. [DOI: 10.1039/c7py02000g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To improve the performance of drug delivery systems in macrophages, targeted ligand-conjugated polymeric carriers have been realized to be vital for targeted, sustainable and controlled drug release with remarkable biocompatibility and bioavailability.
Collapse
Affiliation(s)
- Rajendran Amarnath Praphakar
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| | - Harshavardhan Shakila
- Department of Molecular Microbiology
- School of Biotechnology
- Madurai Kamaraj University
- Madurai-625021
- India
| | | | - Murugan A. Munusamy
- Department of Botany and Microbiology
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology
- Universiti Putra Malaysia
- 43400 Serdang
- Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| |
Collapse
|
15
|
Mehnath S, Arjama M, Rajan M, Jeyaraj M. Development of cholate conjugated hybrid polymeric micelles for FXR receptor mediated effective site-specific delivery of paclitaxel. NEW J CHEM 2018. [DOI: 10.1039/c8nj03251c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to explore the tumor targeting potential of a cholic acid (CA) conjugated polymeric micelle system for the effective delivery of paclitaxel (PTX).
Collapse
Affiliation(s)
- Sivaraj Mehnath
- Biomaterial and Nanomedicine Laboratory
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Guindy Campus
- Chennai
| | - Mukherjee Arjama
- Biomaterial and Nanomedicine Laboratory
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Guindy Campus
- Chennai
| | | | - Murugaraj Jeyaraj
- Biomaterial and Nanomedicine Laboratory
- National Centre for Nanoscience and Nanotechnology
- University of Madras
- Guindy Campus
- Chennai
| |
Collapse
|
16
|
|
17
|
Seidi F, Salimi H, Shamsabadi AA, Shabanian M. Synthesis of hybrid materials using graft copolymerization on non-cellulosic polysaccharides via homogenous ATRP. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Sunitha K, Bhuvaneswari S, Mathew D, Unnikrishnan G, Nair CPR. Comb Polymer Network of Polydimethylsiloxane with a Novolac Stem: Synthesis via Click Coupling and Surface Morphology Architecturing by Solvents. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - G. Unnikrishnan
- Department
of Chemistry, National Institute of Technology, Calicut 673601, India
| | - C. P. Reghunadhan Nair
- Department
of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Cochin 682022, India
| |
Collapse
|
19
|
Shieh YT, Lin YT, Cheng CC. CO 2 -switchable behavior of chitosan- g -poly[(2-dimethylamino)ethyl methacrylate] as an emulsifier. Carbohydr Polym 2017; 170:281-288. [DOI: 10.1016/j.carbpol.2017.04.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/01/2022]
|
20
|
Praphakar RA, Munusamy MA, Rajan M. Development of extended-voyaging anti-oxidant Linked Amphiphilic Polymeric Nanomicelles for Anti-Tuberculosis Drug Delivery. Int J Pharm 2017; 524:168-177. [DOI: 10.1016/j.ijpharm.2017.03.089] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
21
|
Abstract
This review summarizes pH-responsive monomers, polymers and their derivative nano- and micro-structures including micelles, cross-linked micelles, microgels and hydrogels.
Collapse
Affiliation(s)
- G. Kocak
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - C. Tuncer
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - V. Bütün
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| |
Collapse
|
22
|
Bhavsar C, Momin M, Gharat S, Omri A. Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert Opin Drug Deliv 2016; 14:1189-1204. [DOI: 10.1080/17425247.2017.1241230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chintan Bhavsar
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
23
|
Suo A, Qian J, Zhang Y, Liu R, Xu W, Wang H. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:564-73. [PMID: 26952460 DOI: 10.1016/j.msec.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 11/19/2022]
Abstract
A comb-like amphiphilic copolymer methoxypolyethylene glycol-graft-poly(L-lysine)-block-poly(L-phenylalanine) (mPEG-g-PLL-b-Phe) was successfully synthesized. To synthesize mPEG-g-PLL-b-Phe, diblock copolymer PLL-b-Phe was first synthesized by successive ring-opening polymerization of α-amino acid N-carboxyanhydrides followed by the removal of benzyloxycarbonyl protecting groups, and then mPEG was grafted onto PLL-b-Phe by reductive amination via Schiff's base formation. The chemical structures of the copolymers were identified by (1)H NMR. mPEG-g-PLL-b-Phe copolymer had a critical micelle concentration of 6.0mg/L and could self-assemble in an aqueous solution into multicompartment nanomicelles with a mean diameter of approximately 78 nm. The nanomicelles could encapsulate doxorubicin (DOX) through hydrophobic and π-π stacking interactions between DOX molecules and Phe blocks and simultaneously complex P-gp siRNA with cationic PLL blocks via electrostatic interactions. The DOX/P-gp siRNA-loaded nanomicelles showed spherical morphology, possessed narrow particle size distribution and had a mean particle size of 120 nm. The DOX/P-gp siRNA-loaded nanomicelles exhibited pH-responsive release behaviors and displayed accelerated release under acidic conditions. The DOX/P-gp siRNA-loaded nanomicelles were efficiently internalized into MCF-7 cells, and DOX released could successfully reach nuclei. In vitro cytotoxicity assay demonstrated that the DOX/P-gp siRNA-loaded nanomicelles showed a much higher cytotoxicity in MCF-7 cells than DOX-loaded nanomicelles due to their synergistic killing effect and that the blank nanomicelles had good biocompatibility. Thus, the novel comb-like mPEG-g-PLL-b-Phe nanomicelles could be a promising vehicle for co-delivery of chemotherapeutic drug and genetic material.
Collapse
Affiliation(s)
- Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaping Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rongrong Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hejing Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
24
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
25
|
Zhang X, Zhang Z, Su X, Dong H, Zhong Z, Zhuo R. Synthesis of Amphiphilic Comb-Shape Copolymers Via Ring-Opening Polymerization of a Macromonomer. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaojin Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 P.R. China
| | - Zhenguo Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 P.R. China
| | - Xin Su
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 P.R. China
| | - Hui Dong
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 P.R. China
| | - Zhenlin Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 P.R. China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 P.R. China
| |
Collapse
|
26
|
Marques NDN, Maia AMDS, Balaban RDC. Development of dual-sensitive smart polymers by grafting chitosan with poly ( N-isopropylacrylamide): an overview. POLIMEROS 2015. [DOI: 10.1590/0104-1428.1744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Wang W, Yu W. Preparation and characterization of CS-g-PNIPAAm microgels and application in a water vapour-permeable fabric. Carbohydr Polym 2015; 127:11-8. [PMID: 25965451 DOI: 10.1016/j.carbpol.2015.03.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/17/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Chitosan-graft-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) was synthesised using sonication with and without the crosslinker, N,N'-methylenebisacrylamide (MBA). FTIR, variable-temperature (1)H NMR spectroscopy, atomic force microscopy, UV-vis spectrophotometry, differential scanning calorimetry, and dynamic light scattering were used to characterize the microgels' chemical constituents, structures, morphologies, lower critical solution temperatures (LCSTs), and thermo- and pH-responsiveness. The chemical structures of the two CS-g-PNIPAAm materials were found to be similar and both exhibited dual responsiveness towards temperature and pH. The microgel containing MBA had a higher LCST, smaller diameter, and more compact structure, but exhibited opposite pH- and similar thermo-responsiveness. Although the structure of the microgel particles prepared without crosslinking was unstable, the stability of the crosslinked microgel particles enabled them to be finished onto fabric. Because the microgel prepared with MBA retains thermosensitivity, it can be used to impart controllable water vapour permeability properties. The incorporation of the MBA-crosslinked CS-g-PNIPAAm microgel particles in cotton fabric was accomplished by a simple pad-dry-cure procedure from an aqueous microparticle dispersion. The water vapour permeation of the finished fabric was measured at 25 and 40°C and 50 and 90% relative humidities. The finished fabric displayed an obviously high water vapour permeability at 40°C.
Collapse
Affiliation(s)
- Weiling Wang
- College of Textiles, Donghua University, Shanghai 201620, China; School of Textiles and Clothes, Yancheng Institute of Technology, Yancheng 224000, China.
| | - Weidong Yu
- College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
28
|
Ye M, Sun M, Wan J, Fang G, Li H, Hu F, Jiang X, Kengara FO. Enhanced soil washing process for the remediation of PBDEs/Pb/Cd-contaminated electronic waste site with carboxymethyl chitosan in a sunflower oil-water solvent system and microbial augmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2687-2698. [PMID: 25201695 DOI: 10.1007/s11356-014-3518-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
An innovative ex situ soil washing technology was developed to remediate polybrominated diphenyl ethers (PBDEs) and heavy metals in an electronic waste site. Elevated temperature (50 °C) in combination with ultrasonication (40 kHz, 20 min) at 5.0 mL L(-1) sunflower oil and 2.5 g L(-1) carboxymethyl chitosan were found to be effective in extracting mixed pollutants from soil. After two successive washing cycles, the removal efficiency rates for total PBDEs, BDE28, BDE47, BDE209, Pb, and Cd were approximately 94.1, 93.4, 94.3, 99.1, 89.3, and 92.7 %, respectively. Treating the second washed soil with PBDE-degrading bacteria (Rhodococcus sp. strain RHA1) inoculation and nutrient addition for 3 months led to maximum biodegradation rates of 37.3, 52.6, 23.9, and 1.3 % of the remaining total PBDEs, BDE28, BDE47, BDE209, respectively. After the combined treatment, the microbiological functions of washed soil was partially restored, as indicated by a significant increase in the counts, biomass C, N, and functioning diversity of soil microorganisms (p < 0.05), and the residual PBDEs and heavy metals mainly existed as very slow desorbing fractions and residual fractions, as evaluated by Tenax extraction combined with a first-three-compartment model and sequential extraction with metal stability indices (I R and U ts). Additionally, the secondary environmental risk of mixed contaminants in the remediated soil was limited. Therefore, the proposed combined cleanup strategy is an environment-friendly technology that is important for risk assessment and management in mixed-contaminated sites.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fang J, Zhang K, Jia J, Wang Z, Hu Q. Preparation and characterization of N-phthaloyl-chitosan-g-(PEO–PLA–PEO) as a potential drug carrier. RSC Adv 2015. [DOI: 10.1039/c5ra12984b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of N-phthaloyl-chitosan-g-(PEO–PLA–PEO) and its drug loading capacities and drug release profiles of IMC.
Collapse
Affiliation(s)
- Jinda Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jingwei Jia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
30
|
Ye M, Sun M, Kengara FO, Wang J, Ni N, Wang L, Song Y, Yang X, Li H, Hu F, Jiang X. Evaluation of soil washing process with carboxymethyl-β-cyclodextrin and carboxymethyl chitosan for recovery of PAHs/heavy metals/fluorine from metallurgic plant site. J Environ Sci (China) 2014; 26:1661-1672. [PMID: 25108722 DOI: 10.1016/j.jes.2014.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/23/2013] [Accepted: 11/22/2013] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs)/heavy metals/fluorine (F) mixed-contaminated sites caused by abandoned metallurgic plants are receiving wide attention. To address the associated environmental problems, this study was initiated to investigate the feasibility of using carboxymethyl-β-cyclodextrin (CMCD) and carboxymethyl chitosan (CMC) solution to enhance ex situ soil washing for extracting mixed contaminants. Further, Tenax extraction method was combined with a first-three-compartment model to evaluate the environmental risk of residual PAHs in washed soil. In addition, the redistribution of heavy metals/F after decontamination was also estimated using a sequential extraction procedure. Three successive washing cycles using 50 g/L CMCD and 5 g/L CMC solution were effective to remove 94.3% of total PAHs, 93.2% of Pb, 85.8% of Cd, 93.4% of Cr, 83.2% of Ni and 97.3% of F simultaneously. After the 3rd washing, the residual PAHs mainly existed as very slowly desorbing fractions, which were in the form of well-aged, well-sequestered compounds; while the remaining Pb, Cd, Cr, Ni and F mainly existed as Fe-Mn oxide and residual fractions, which were always present in stable mineral forms or bound to non-labile soil fractions. Therefore, this combined cleanup strategy proved to be effective and environmentally friendly.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mingming Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | | | - Jingting Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ni Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li Wang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinglun Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
31
|
Investigation of different coating application methods on the performance of edible coatings on Mozzarella cheese. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.11.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Wang Y, Wang J, Xu H, Ge L, Zhu J. Investigation of dual-sensitive nanogels based on chitosan andN-isopropylacrylamide and its intelligent drug delivery of 10-hydroxycamptothecine. Drug Deliv 2014; 22:803-13. [DOI: 10.3109/10717544.2014.883219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Mellati A, Dai S, Bi J, Jin B, Zhang H. A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Adv 2014. [DOI: 10.1039/c4ra12215a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan-g-poly(N-isopropylacrylamide) was synthesized as a stem cell mimicking microenvironment. Solubility and gel mechanical strength were optimised through manipulating the grafting parameters.
Collapse
Affiliation(s)
- Amir Mellati
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Sheng Dai
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Bo Jin
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Hu Zhang
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| |
Collapse
|
34
|
Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(N-isopropylacrylamide) in coil and globule states for tissue engineering application. Front Chem Sci Eng 2013. [DOI: 10.1007/s11705-013-1355-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Huang W, Wang Y, Zhang S, Huang L, Hua D, Zhu X. A Facile Approach for Controlled Modification of Chitosan under γ-Ray Irradiation for Drug Delivery. Macromolecules 2013. [DOI: 10.1021/ma302434c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wei Huang
- Jiangsu Key
Laboratory of Advanced
Functional Polymer Design and Application, Department of Polymer Science
and Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
- School of Radiation
Medicine
and Protection, and School for Radiological and Interdisciplinary
Sciences (RAD-X), Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Yingjie Wang
- Jiangsu Key
Laboratory of Advanced
Functional Polymer Design and Application, Department of Polymer Science
and Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
- School of Radiation
Medicine
and Protection, and School for Radiological and Interdisciplinary
Sciences (RAD-X), Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Shuang Zhang
- Jiangsu Key
Laboratory of Advanced
Functional Polymer Design and Application, Department of Polymer Science
and Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
- School of Radiation
Medicine
and Protection, and School for Radiological and Interdisciplinary
Sciences (RAD-X), Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Li Huang
- Jiangsu Key
Laboratory of Advanced
Functional Polymer Design and Application, Department of Polymer Science
and Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
- School of Radiation
Medicine
and Protection, and School for Radiological and Interdisciplinary
Sciences (RAD-X), Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Daoben Hua
- Jiangsu Key
Laboratory of Advanced
Functional Polymer Design and Application, Department of Polymer Science
and Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
- School of Radiation
Medicine
and Protection, and School for Radiological and Interdisciplinary
Sciences (RAD-X), Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Xiulin Zhu
- Jiangsu Key
Laboratory of Advanced
Functional Polymer Design and Application, Department of Polymer Science
and Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
| |
Collapse
|