1
|
Yi S, Liao R, Zhao W, Liu Z. Scutellarin-loaded pH/H 2O 2 dual-responsive polymer cyclodextrin mesoporous silicon framework nanocarriers for enhanced cancer therapy. Int J Biol Macromol 2024; 269:132134. [PMID: 38719013 DOI: 10.1016/j.ijbiomac.2024.132134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Stimulus-responsive nanomaterials, particularly with targeting capabilities, have garnered significant attention in the cancer therapy. However, the biological safety of these innovative materials in vivo remains unknown, posing a hurdle to their clinical application. Here, a pH/H2O2 dual-responsive and targeting nano carrier system (NCS) was developed using core shell structure of Fe3O4 mesoporous silicon (MSN@Fe3O4) as main body, scutellarin (SCU) as antitumor drug and polymer cyclodextrin (PCD) as molecular switch (denoted as PCD@SCU@MSN@Fe3O4, abbreviated as NCS). The NCS, with an average particle size of 100 nm, displayed exceptional SCU loading capacity, a result of its uniform radial channel structure. The in vitro investigation under condition of pH and H2O2 indicated that NCS performed excellent pH/H2O2-triggered SCU release behavior. The NCS displayed a higher cytotoxicity against tumor cells (Huh7 and HCT116) due to its pH/H2O2 dual-triggered responsiveness, while the PCD@MSN@Fe3O4 demonstrated lower cytotoxicity for both Huh7 and HCT116 cells. In vivo therapeutic evaluation of NCS indicates significant inhibition of tumor growth in mouse subcutaneous tumor models, with no apparent side-effects detected. The NCS not only enhances the bioavailability of SCU, but also utilizes magnetic targeting technology to deliver SCU accurately to tumor sites. These findings underscore the substantial clinical application potential of NCS.
Collapse
Affiliation(s)
- Shouhui Yi
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Rongqiang Liao
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Wei Zhao
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
2
|
Gao WC, Yang TH, Wang BB, Liu Q, Li Q, Zhou XH, Zheng CB, Chen P. Scutellarin inhibits oleic acid induced vascular smooth muscle foam cell formation via activating autophagy and inhibiting NLRP3 inflammasome activation. Clin Exp Pharmacol Physiol 2024; 51:e13845. [PMID: 38382550 DOI: 10.1111/1440-1681.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
Abnormalities in vascular smooth muscle cells (VSMCs) are pivotal in the pathogenesis of cardiovascular pathologies such as atherosclerosis and hypertension. Scutellarin (Scu), a flavonoid derived from marigold flowers, exhibits a spectrum of biological activities including anti-inflammatory, antioxidant, antitumor, immunomodulatory and antimicrobial effects. Notably, Scu has demonstrated the capacity to mitigate vascular endothelial damage and prevent atherosclerosis via its antioxidative properties. Nevertheless, the influence of Scu on the formation of VSMC-derived foam cells remains underexplored. In this study, Scu was evidenced to efficaciously attenuate oleic acid (OA)-induced lipid accumulation and the upregulation of adipose differentiation-associated protein Plin2 in a dose- and time-responsive manner. We elucidated that Scu effectively diminishes OA-provoked VSMC foam cell formation. Further, it was established that Scu pretreatment augments the protein expression of LC3B-II and the mRNA levels of Map1lc3b and Becn1, concurrently diminishing the protein levels of the NLRP3 inflammasome compared to the OA group. Activation of autophagy through rapamycin attenuated NLRP3 inflammasome protein expression, intracellular lipid droplet content and Plin2 mRNA levels. Scu also counteracted the OA-induced decrement of LC3B-II levels in the presence of bafilomycin-a1, facilitating the genesis of autophagosomes and autolysosomes. Complementarily, in vivo experiments revealed that Scu administration substantially reduced arterial wall thickness, vessel wall cross-sectional area, wall-to-lumen ratio and serum total cholesterol levels in comparison to the high-fat diet model group. Collectively, our findings suggest that Scu attenuates OA-induced VSMC foam cell formation through the induction of autophagy and the suppression of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wen-Cong Gao
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
| | - Tie-Hua Yang
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bin-Bao Wang
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
| | - Qian Liu
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qing Li
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- Key Laboratory of Animal Models and Human Diseases Mechanisms of Chinese Academy of Sciences, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Huan Zhou
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
| | - Chang-Bo Zheng
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- Kunming Medical University, College of Modern biomedical industry, Kunming, China
- Yunnan Vaccine Laboratory, Kunming, China
| | - Peng Chen
- Kunming Medical University, School of Pharmacy and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology, Kunming, China
- Kunming Medical University, College of Modern biomedical industry, Kunming, China
| |
Collapse
|
3
|
Yang L, Li Z, Fang J. Scutellarin Alleviates Diabetic Retinopathy via the Suppression of Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptor Pyrin Domain Containing Protein 3 Inflammasome Activation. Curr Eye Res 2024; 49:180-187. [PMID: 38014534 DOI: 10.1080/02713683.2023.2273777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Diabetic retinopathy, a prevalent complication of diabetes, represents the leading cause of vision loss and blindness among middle-aged and elderly populations. Recent research has demonstrated the ameliorating effects of scutellarin on diabetes-associated complications such as diabetic retinopathy and type 2 diabetic cardiomyopathy. However, investigations into its protective impact and underlying mechanisms on diabetic retinopathy are scant. This study aims to explore the therapeutic potential of scutellarin in diabetic retinopathy treatment. METHODS Diabetic retinopathy was induced in rats through intraperitoneal injections of streptozotocin (STZ, 60 mg/kg) administered daily for three consecutive days. Following this, diabetic retinopathy rats received daily intragastric administration of scutellarin (40 mg/kg) for 42 days. RESULTS Our findings suggest that scutellarin alleviates histological damage in the retinal tissues of streptozotocin-challenged rats. Furthermore, scutellarin effectively enhances total retinal thickness and increases the number of ganglion cell layer (GCL) cells in the retinal tissues of streptozotocin-treated rats. Scutellarin also demonstrated anti-inflammatory and antioxidant effects in the retinal tissues of STZ-induced rats, as indicated by reduced levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6, and elevated levels of glutathione peroxidase, superoxide dismutase, and catalase. Additionally, scutellarin effectively inhibited the expression of NOD-like receptor pyrin domain containing protein 3 inflammasome-related markers in the retinal tissues of streptozotocin-administered rats. CONCLUSIONS Collectively, our results indicate that scutellarin significantly reduces streptozotocin-induced retinal inflammation, an effect that may be partially attributed to the suppression of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lina Yang
- Department of Ophthalmology, Xinchang County People's Hospital, Shaoxing, China
| | - Zheming Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Jian Fang
- Department of Ophthalmology, Xinchang County People's Hospital, Shaoxing, China
| |
Collapse
|
4
|
Vesaghhamedani S, Mazloumi Kiapey SS, Gowhari Shabgah A, Amiresmaili S, Jahanara A, Oveisee M, Shekarchi A, Gheibihayat SM, Jadidi-Niaragh F, Gholizadeh Navashenaq J. Scutellarin, a promising flavonoid in cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:19-27. [PMID: 37080435 DOI: 10.1016/j.pbiomolbio.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Natural substances are increasingly being used as cancer treatments. Scutellarin, as a flavonoid, recently has been identified in a Chinese herbal extract called Erigeron breviscapus (Vant.). Scutellarin is being researched for its potential benefits due to the discovery that it possesses a variety of biological effects, such as neuroprotective, anti-coagulant, and anti-viral. In addition to these biological functions, scutellarin has also been found to have anti-tumor properties. Scutellarin first inhibits the activity of tumor cells by altering cancer cell signaling pathways such as Jak/STAT, ERK/AMPK, and Wnt/β-catenin. Additionally, scutellarin activates intrinsic and extrinsic apoptotic pathways, which causes the death of tumor cells, interrupts the cell cycle, and promotes its arrest. By limiting metastasis, angiogenesis, drug resistance, and other tumorigenic processes, scutellarin also reduces the aggressiveness of tumors. Utilizing scutellarin in combination with other anti-tumor therapies like 5-fluorouracil is another method to overcome tumor cell resistance. Moreover, it has been suggested that certain modifications, such as conjugation with cyclodextrin, aliphatic chains, and hybridization with nitric oxide, can enhance the pharmacogenetic capabilities of scutellarin to decrease its limited water solubility. It is believed that scutellarin may provide innovative chemotherapeutic treatments for cancer in the future.
Collapse
Affiliation(s)
- Shadi Vesaghhamedani
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | - Abbas Jahanara
- Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Maziyar Oveisee
- Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Aliakbar Shekarchi
- Department of Pathology and Genetics, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Tuli HS, Bhushan S, Kumar A, Aggarwal P, Sak K, Ramniwas S, Vashishth K, Behl T, Rana R, Haque S, Prieto MA. Autophagy Induction by Scutellaria Flavones in Cancer: Recent Advances. Pharmaceuticals (Basel) 2023; 16:302. [PMID: 37259445 PMCID: PMC9962484 DOI: 10.3390/ph16020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 07/28/2024] Open
Abstract
In parallel with a steady rise in cancer incidence worldwide, the scientific community is increasingly focused on finding novel, safer and more efficient modalities for managing this disease. Over the past decades, natural products have been described as a significant source of new structural leads for novel drug candidates. Scutellaria root is one of the most studied natural products because of its anticancer potential. Besides just describing the cytotoxic properties of plant constituents, their molecular mechanisms of action in different cancer types are equally important. Therefore, this review article focuses on the role of the Scutellaria flavones wogonin, baicalein, baicalin, scutellarein and scutellarin in regulating the autophagic machinery in diverse cancer models, highlighting these molecules as potential lead compounds for the fight against malignant neoplasms. The knowledge that autophagy can function as a dual-edged sword, acting in both a pro- and antitumorigenic manner, further complicates the issue, revealing an amazing property of flavonoids that behave either as anti- or proautophagic agents.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (University), Mullana, Ambala 133207, India
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Samba 181143, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (P.B.T.I.), Phase VIII, Mohali 160071, India
| | - Poonam Aggarwal
- The Basic Research Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, MD 20892, USA
| | | | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Rsearch (P.G.I.M.E.R.), Chandigarh 160012, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi 122016, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
6
|
Wang Q, Zhang K, Weng W, Chen L, Wei C, Bao R, Adu-Frimpong M, Cao X, Yu Q, Shi F, Toreniyazov E, Ji H, Xu X, Yu J. Liquiritin-hydroxypropyl-beta-cyclodextrin inclusion complex: preparation, characterization, bioavailability and antitumor activity evaluation. J Pharm Sci 2022; 111:2083-2092. [DOI: 10.1016/j.xphs.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
7
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact Mater 2021; 14:182-205. [PMID: 35310344 PMCID: PMC8892098 DOI: 10.1016/j.bioactmat.2021.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Over thousands of years, natural bioactive compounds derived from plants (bioactive phytocompounds, BPCs) have been used worldwide to address human health issues. Today, they are a significant resource for drug discovery in the development of modern medicines. Although many BPCs have promising biological activities, most of them cannot be effectively utilized in drugs for therapeutic applications because of their inherent limitations of low solubility, structural instability, short half-life, poor bioavailability, and non-specific distribution to organs. Researchers have utilized emerging nanoformulation (NF) technologies to overcome these limitations as they have demonstrated great potential to improve the solubility, stability, and pharmacokinetic and pharmacodynamic characteristics of BPCs. This review exemplifies NF strategies for resolving the issues associated with BPCs and summarizes recent advances in their preclinical and clinical applications for imaging and therapy. This review also highlights how innovative NF technologies play a leading role in next-generation BPC-based drug development for extended therapeutic applications. Finally, this review discusses the opportunities to take BPCs with meaningful clinical impact from bench to bedside and extend the patent life of BPC-based medicines with new formulations or application to new adjacent diseases beyond the primary drug indications. Natural bioactive phytocompounds derived from plants have been used worldwide to address human health issues. However, most of them cannot be effectively utilized in drugs for therapeutic applications because of their inherent limitations. Nanoformulation approach has recently been underlined as an emerging pharmaceutical strategy to overcome the intrinsic drawbacks of bioactive phytocompounds. Various types of nanoformulation and their up-to-date applications for targeted delivery, phototherapy, and imaging are reviewed. Finally, their clinical implications for the repurposing of bioactive phytocompounds are deliberated.
Collapse
Affiliation(s)
- Hwa Seung Han
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Song Yi Koo
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Ki Young Choi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Corresponding author. Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea.
| |
Collapse
|
9
|
He XY, Xu Y, Xia QJ, Zhao XM, Li S, He XQ, Wang RR, Wang TH. Combined Scutellarin and C 18H 17NO 6 Imperils the Survival of Glioma: Partly Associated With the Repression of PSEN1/PI3K-AKT Signaling Axis. Front Oncol 2021; 11:663262. [PMID: 34568005 PMCID: PMC8460401 DOI: 10.3389/fonc.2021.663262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Glioma, the most common intracranial tumor, harbors great harm. Since the treatment for it has reached the bottleneck stage, the development of new drugs becomes a trend. Therefore, we focus on the effect of scutellarin (SCU) and its combination with C18H17NO6 (abbreviated as combination) on glioma and its possible mechanism in this study. Firstly, SCU and C18H17NO6 both suppressed the proliferation of U251 and LN229 cells in a dose-dependent manner, and C18H17NO6 augmented the inhibition effect of SCU on U251 and LN229 cells in vitro. Moreover, there was an interactive effect between them. Secondly, SCU and C18H17NO6 decreased U251 cells in G2 phase and LN229 cells in G2 and S phases but increased U251 cells in S phase, respectively. Meanwhile, the combination could further reduce U251 cells in G2 phase and LN229 cells in G2 and S phases. Thirdly, SCU and C18H17NO6 both induced the apoptosis of U251 and LN229. The combination further increased the apoptosis rate of both cells compared with the two drugs alone. Furthermore, SCU and C18H17NO6 both inhibited the lateral and vertical migration of both cells, which was further repressed by the combination. More importantly, the effect of SCU and the combination was better than positive control-temozolomide, and the toxicity was low. Additionally, SCU and C18H17NO6 could suppress the growth of glioma in vivo, and the effect of the combination was better. Finally, SCU and the combination upregulated the presenilin 1 (PSEN1) level but inactivated the phosphatidylinositol 3−kinase (PI3K)-protein kinase B (AKT) signaling in vitro and in vivo. Accordingly, we concluded that scutellarin and its combination with C18H17NO6 suppressed the proliferation/growth and migration and induced the apoptosis of glioma, in which the mechanism might be associated with the repression of PSEN1/PI3K-AKT signaling axis.
Collapse
Affiliation(s)
- Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Ming Zhao
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Li
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Xiao-Qiong He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ru-Rong Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
11
|
Letícia Streck, . Doro PNDM, Fernandes-Pedrosa MF, da Silva-Júnior AA. High Performance Liquid Chromatography–Diode Array Detector Method for Benznidazole Quantitation in Lipid Based and Self Assembling Cyclodextrins Drug Delivery Systems. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820070163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Cyclodextrin as a magic switch in covalent and non-covalent anticancer drug release systems. Carbohydr Polym 2020; 242:116401. [PMID: 32564836 DOI: 10.1016/j.carbpol.2020.116401] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Cancer has been a threat to human health, so its treatment is a huge challenge to the present medical field. One of commonly used methods is the controlled release of anticancer drug to reduce the dose for patients, increase the stability of drug treatment and minimize side effects. Cyclodextrin is a kind of cyclic oligosaccharide produced by amylase hydrolysis. Because cyclodextrin contains a cavity structure and active hydroxyl groups, it has a positive effect on the study of the controlled release of anticancer drugs. This article reviews the controlled release of current anticancer drugs based on cyclodextrins as a "flexible switch", and discusses the classification of different types of release systems, highlighting their role in cancer treatment. Moreover, the opportunities and challenges of cyclodextrin as a magic switch in the controlled release of anticancer drugs are discussed.
Collapse
|
13
|
Liu JY, Zhang X, Tian BR. Selective modifications at the different positions of cyclodextrins: a review of strategies. Turk J Chem 2020; 44:261-278. [PMID: 33488156 PMCID: PMC7671212 DOI: 10.3906/kim-1910-43] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cyclodextrins (CDs) are natural, nontoxic, and biodegradable macrocyclic oligosaccharides. As supramolecular hosts, CDs have numerous applications in many aspects. However, nonsubstituted CDs have the disadvantages of solubility, unspecific recognition sites, and weak interactions with guest molecules. Therefore, new CD-based derivatives are successfully designed, synthesized, and widely used in various fields. This contribution outlines the research progress in CD derivatives. In particular, this review emphasizes the synthesis and application of CDs modified through functionalization in definite positions, random substitution, and reconstruction of the skeleton. At the end of this review, a summary and future directions are presented.
Collapse
Affiliation(s)
- Jia Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan P.R. China
| | - Xiao Zhang
- Pingliang Center for Disease Control and Prevention, Pingliang P.R. China
| | - Bing Ren Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan P.R. China.,College of Chemistry and Chemical Engineering, Xinjiang University, Urumchi P.R. China
| |
Collapse
|
14
|
Xiong LL, Du RL, Xue LL, Jiang Y, Huang J, Chen L, Liu J, Wang TH. Anti-colorectal cancer effects of scutellarin revealed by genomic and proteomic analysis. Chin Med 2020; 15:28. [PMID: 32226478 PMCID: PMC7098127 DOI: 10.1186/s13020-020-00307-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/13/2020] [Indexed: 02/05/2023] Open
Abstract
Background Colorectal cancer, one of the most common digestive tumors with high mortality and morbidity worldwide, currently lacks effective therapies available to improve the prognosis. This study was aimed to investigate the potency of Scutellarin against colorectal cancers, and explore the related mechanism via genomic and proteomic analysis. Methods Cell counting kit-8 assay was employed to detect the viability of HCT-116 and RKO cell lines treated with Scutellarin. The apoptosis of HCT-116 and RKO cells after Scutellarin administration was determined by TUNEL staining and Caspase 3/7 activity. Cell cycle was detected by flow cytometry analysis. The wound healing and transwell invasion test detected the role of Scutellarin in migration and invasion of HCT-116 and RKO cells. Meanwhile, the energy metabolism and growth of tumor tissues in vivo at day 28 were observed by PET-CT after Scutellarin administration with 50 mg/kg, 100 mg/kg and 300 mg/kg into 4-week-old nude mice. Blood routine and liver functions were also detected to evaluate the side effect of Scutellarin. Furthermore, the disease and function classifications which the differentially expressed genes and proteins involved after Scutellarin treatment were determined by genomic and proteomic analysis respectively. Results The Scutellarin inhibited the migration and increased apoptosis of HCT-116 and RKO cell lines. Besides, Scutellarin treatment substantially decreased the growth and volume of colorectal tumors in nude mice without side effects on the blood routine and liver function. The differentially expressed genes in RKO cells after Scutellarin administration were mainly enriched in cell death and survival, organismal injury and abnormalities, and cancer. In addition, forty-seven upregulated and twenty-nine downregulated proteins were identified. Functional clustering analysis exhibited enriched biological processes, cellular components, molecular functions and related pathways of these proteins in cellular metabolic. Then protein–protein interactions analysis showed the regulatory relationship among these differentially expressed proteins. Conclusions Taken together, the present findings revealed that Scutellarin exerted significant antitumor effect with no side effects in the blood and liver by regulating various important molecules in tumor proliferation, apoptosis and metastasis.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- 1Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041 China.,3Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou People's Republic of China.,4School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA Australia
| | - Ruo-Lan Du
- 1Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041 China.,2Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, 650000 Yunnan China
| | - Lu-Lu Xue
- 2Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, 650000 Yunnan China
| | - Ya Jiang
- 2Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, 650000 Yunnan China
| | - Jin Huang
- 2Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, 650000 Yunnan China
| | - Li Chen
- 1Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jia Liu
- 2Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, 650000 Yunnan China
| | - Ting-Hua Wang
- 1Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041 China.,2Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, 650000 Yunnan China
| |
Collapse
|
15
|
|
16
|
Han X, Zhang Z, Shen H, Zheng J, Zhang G. Comparison of structures, physicochemical properties and in vitro bioactivity between ferulic acid-β-cyclodextrin conjugate and the corresponding inclusion complex. Food Res Int 2019; 125:108619. [DOI: 10.1016/j.foodres.2019.108619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
|
17
|
Liang J, Li F, Lin J, Song S, Liao X, Gao C, Yang B. Host-guest inclusion systems of mangiferin and polyamine-β-cyclodextrins: Preparation, characterization and anti-cancer activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Lv P, Zhang D, Guo M, Liu J, Chen X, Guo R, Xu Y, Zhang Q, Liu Y, Guo H, Yang M. Structural analysis and cytotoxicity of host-guest inclusion complexes of cannabidiol with three native cyclodextrins. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Fu Y, Sun S, Sun H, Peng J, Ma X, Bao L, Ji R, Luo C, Gao C, Zhang X, Jin Y. Scutellarin exerts protective effects against atherosclerosis in rats by regulating the Hippo-FOXO3A and PI3K/AKT signaling pathways. J Cell Physiol 2019; 234:18131-18145. [PMID: 30891776 DOI: 10.1002/jcp.28446] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS), a progressive disorder, is one of the tough challenges in the clinic. Scutellarin, an extract from Herba Erigerontis, is found to have oxygen-free radicals scavenging effects and antioxidant effects. In this study, we aimed to investigate the anti-AS effects of scutellarin is related to controlling the Hippo-FOXO3A and PI3K/AKT signal pathway. To establish an AS model, the rats in the scutellarin and model groups were intraperitoneally injected with vitamin D 3 and then fed a high-fat diet for 12 weeks. In addition, in vitro angiotensin II-induced apoptosis of human aortic endothelial cells (HAECs) were used to establish models. Scutellarin significantly reduced blood lipid levels and increased antioxidase levels in both models. Additionally, scutellarin inhibited reactive oxygen species generation and apoptosis in HAECs. The impaired vascular barrier function was restored by using scutellarin in AS rats and in HAECs cells characterized by inhibiting mammalian sterile-20-like kinases 1 (Mst1) phosphorylation, Yes-associated protein (YAP) phosphorylation, forkhead box O3A (FOXO3A) phosphorylation at serine 207, nuclear translocation of FOXO3A, and upregulating protein expression of AKT and FOXO3A phosphorylation at serine 253. Scutellarin significantly reduced Bcl-2 interacting mediator of cell death (Bim), caspase-3, APO-1, CD95 (Fas), and Bax: Bcl-2-associated X (Bax) levels and activated Bcl-2: B-cell lymphoma-2 (Bcl-2). Scutellarin also significantly inhibited the expression of Mst1, YAP, FOXO3A at the messenger RNA level. When Mst1 was overexpressed or phosphoinositide 3-kinases suppressed, the effects of scutellarin were significantly blocked. In conclusion, the results of the present study suggest that scutellarin exerts protective effects against AS by inhibiting endothelial cell injury and apoptosis by regulating the Hippo-FOXO3A and PI3K/AKT signal pathways.
Collapse
Affiliation(s)
- Yufeng Fu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shuangyong Sun
- Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co Ltd, Tianjin, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaoxue Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Long L, Li Y, Yu S, Li X, Hu Y, Long T, Wang L, Li W, Ye X, Ke Z, Xiao H. Scutellarin Prevents Angiogenesis in Diabetic Retinopathy by Downregulating VEGF/ERK/FAK/Src Pathway Signaling. J Diabetes Res 2019; 2019:4875421. [PMID: 31976335 PMCID: PMC6949683 DOI: 10.1155/2019/4875421] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a serious microvascular complication of diabetes. This study demonstrates the antiangiogenic effects of scutellarin (SCU) on high glucose- and hypoxia-stimulated human retinal endothelial cells (HRECs) and on a diabetic rat model by oral administration. The antiangiogenic mechanisms of SCU in vitro and in vivo were investigated. METHOD HRECs were cultured in high glucose- (30 mM D-glucose) and hypoxia (cobalt chloride-treated)-stimulated diabetic condition to evaluate the antiangiogenic effects of SCU by CCK-8 test, cell migration experiment (wound healing and transwell), and tube formation experiment. A streptozotocin-induced type II diabetic rat model was established to measure the effects of oral administration of SCU on protecting retinal microvascular dysfunction by Doppler waveforms and HE staining. We further used western blot, luciferase reporter assay, and immunofluorescence staining to study the antiangiogenic mechanism of SCU. The protein levels of phospho-ERK, phospho-FAK, phospho-Src, VEGF, and PEDF were examined in HRECs and retina of diabetic rats. RESULT Our results indicated that SCU attenuated diabetes-induced HREC proliferation, migration, and tube formation and decreased neovascularization and resistive index in the retina of diabetic rats by oral administration. SCU suppressed the crosstalk of phospho-ERK, phospho-FAK, phospho-Src, and VEGF in vivo and in vitro. CONCLUSIONS These results suggested that SCU can be an oral drug to alleviate microvascular dysfunction of DR and exerts its antiangiogenic effects by inhibiting the expression of the crosstalk of VEGF, p-ERK, p-FAK, and p-Src.
Collapse
Affiliation(s)
- Lingli Long
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yubin Li
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Hu
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tengfei Long
- Department of Gynaecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenwen Li
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxin Ye
- University of New South Wales, Sydney, High St. Kensington, NSW, Australia
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Chledzik S, Strawa J, Matuszek K, Nazaruk J. Pharmacological Effects of Scutellarin, An Active Component of Genus Scutellaria and Erigeron: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:319-337. [PMID: 29433387 DOI: 10.1142/s0192415x18500167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Flavonoid compound scutellarin (Scu) is quite frequently met in the plant kingdom, particularly in the genus Scutellaria (Lamiaceae) and Erigeron (Asteraceae). The extract of the herb of Erigeron breviscapus, containing this component in high amount, has been used for many years in traditional Chinese medicine. In recent years, studies have made great progress on the usefulness of Scu for treating various diseases by testing its mechanism of action. They support the traditional use of Scu rich plant in heart and cerebral ischemia. Scu can potentially be applied in Alzheimer's disease, Helicobacter pylori infection, vascular complications of diabetes and as an inhibitor of certain carcinomas. Various methods were designed to improve its isolation from plant material, solubility, absorption and bioavailability. On the basis of recent studies, it is suggested that Scu could be a promising candidate for new natural drug and deserves particular attention in further research and development.
Collapse
Affiliation(s)
- Sebastian Chledzik
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Jakub Strawa
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Matuszek
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Nazaruk
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
22
|
Thermal Analyses of Cyclodextrin Complexes. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76159-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Shen Z, Qin Q, Liao X, Yang B. Host-guest inclusion system of glycyrrhetic acid with polyamine-β-cyclodextrin: Preparation, characterization, and anticancer activity. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Ceborska M. Folate appended cyclodextrins for drug, DNA, and siRNA delivery. Eur J Pharm Biopharm 2017; 120:133-145. [DOI: 10.1016/j.ejpb.2017.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
|
25
|
|
26
|
|
27
|
Yi S, Yang B, Liao R. Synthesis, characterization, and cytotoxicity studies of novel pendant polymers: Amino acid β-cyclodextrin-conjugated poly(ε-lysine) derivatives. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1283089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shouhui Yi
- Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing, P.R. China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Rongqiang Liao
- Department of Pharmacy, Chongqing Emergency Medical Center, Chongqing, P.R. China
| |
Collapse
|
28
|
Wang J, Tan J, Luo J, Huang P, Zhou W, Chen L, Long L, Zhang LM, Zhu B, Yang L, Deng DYB. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J Nanobiotechnology 2017; 15:18. [PMID: 28249594 PMCID: PMC5333415 DOI: 10.1186/s12951-017-0251-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is the most common complication in diabetic patients relates to high expression of VEGF and microaneurysms. Scutellarin (Scu) turned out to be effective against diabetes related vascular endothelial cell dysfunction. However, its clinical applications have been limited by its low bioavailability. In this study, we formulated and characterized a novel intestinal target nanoparticle carrier based on amphiphilic chitosan derivatives (Chit-DC-VB12) loaded with scutellarin to enhance its bioavailability and then evaluated its therapeutic effect in experimental diabetic retinopathy model. RESULTS Chit-DC-VB12 nanoparticles showed low toxicity toward the human colon adenocarcinoma (Caco-2) cells and zebra fish within concentration of 250 μg/ml, owing to good biocompatibility of chitosan. The scutellarin-loaded Chit-DC-VB12 nanoparticles (Chit-DC-VB12-Scu) were then prepared by self-assembly in aqueous solution. Scanning electron microscopy and dynamic light scattering analysis indicated that the Chit-DC-VB12-Scu nanoparticles were spherical particles in the sizes ranging from 150 to 250 nm. The Chit-DC-VB12-Scu nanoparticles exhibited high permeation in Caco-2 cell, indicated it could be beneficial to be absorbed in humans. We also found that Chit-DC-VB12 nanoparticles had a high cellular uptake. Bioavailability studies were performed in Sprague-Dawley rats, which present the area under the curve of scutellarin of Chit-DC-VB12-Scu was two to threefolds greater than that of free scutellarin alone. Further to assess the therapeutic efficacy of diabetic retinopathy, we showed Chit-DC-VB12-Scu down-regulated central retinal artery resistivity index and the expression of angiogenesis proteins (VEGF, VEGFR2, and vWF) of retinas in type II diabetic rats. CONCLUSIONS Chit-DC-VB12 nanoparticles loaded with scutellarin have better bioavailability and cellular uptake efficiency than Scu, while Chit-DC-VB12-Scu nanoparticles alleviated the structural disorder of intraretinal neovessels in the retina induced by diabetes, and it also inhibited the retinal neovascularization via down-regulated the expression of angiogenesis proteins. In conclusion, the Chit-DC-VB12 nanoparticles enhanced scutellarin oral delivery efficacy and exhibited potential as small intestinal target promising nano-carriers for treatment of type II diabetes induced-retinopathy.
Collapse
Affiliation(s)
- Jingnan Wang
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayun Tan
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiahao Luo
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peilin Huang
- Institute of Biomaterial, Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wuyi Zhou
- Institute of Biomaterial, Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | | | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Ming Zhang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China
| | - Banghao Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China.
| | - David Y B Deng
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
29
|
Liu M, Lv P, Liao R, Zhao Y, Yang B. Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Dascalu AI, Ardeleanu R, Neamtu A, Maier SS, Uritu CM, Nicolescu A, Silion M, Peptanariu D, Calin M, Pinteala M. Transfection-capable polycationic nanovectors which include PEGylated-cyclodextrin structural units: a new synthesis pathway. J Mater Chem B 2017; 5:7164-7174. [DOI: 10.1039/c7tb01722g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polycationic nanoentities with low variability are able to act as cooperating carriers for dsDNA complexation and transport.
Collapse
Affiliation(s)
- A. I. Dascalu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - R. Ardeleanu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - A. Neamtu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Regional Institute of Oncology (IRO)
| | - S. S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- “Gheorghe Asachi” Technical University of Iasi
| | - C. M. Uritu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - A. Nicolescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - M. Silion
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - D. Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - M. Calin
- “Nicolae Simionescu” Institute of Cellular Biology and Pathology
- Bucharest
- Romania
| | - M. Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| |
Collapse
|
31
|
Lv P, Liu M, Liao R, Zhao Y, Liao X, Gao C, Yang B. Host-guest inclusion system of rhein with polyamine-modified β-cyclodextrins: characterization and cytotoxicity. Pharm Dev Technol 2016; 22:669-677. [PMID: 27499262 DOI: 10.1080/10837450.2016.1221429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the preparation of inclusion complexes between rhein and four polyamine-modified β-cyclodextrins, namely amino-β-cyclodextrins (NH2-βCD), ethylenediamine-β-cyclodextrins (EN-βCD), diethylenetriamine-β-cyclodextrins (DETA-βCD) and triethylenetetramine-β-cyclodextrins (TETA-βCD) using suspension method. The solution and solid state forms of the inclusion complexes of rhein with polyamine-β-cyclodextrins were characterized by multiple techniques. Additionally, saturated solution and MTT methods were implemented to assess the water solubilization and in vitro cytotoxicity of the inclusion complexes, respectively. The results suggested that rhein was encapsulated within the CD cavity to form a 1:1 host-guest inclusion complex. Notably, a significant enhancement of the water solubility and in vitro cytotoxicity of rhein was found in the form of inclusion complex with polyamine-β-cyclodextrin.
Collapse
Affiliation(s)
- Pin Lv
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Manshuo Liu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Rongqiang Liao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Yulin Zhao
- b Faculty of Chemical Engineering , Kunming University of Science and Technology , Kunming , P.R. China
| | - Xiali Liao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Chuanzhu Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Bo Yang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| |
Collapse
|
32
|
Ren Y, Liu Y, Yang Z, Niu R, Gao K, Yang B, Liao X, Zhang J. Solid inclusion complexes of oleanolic acid with amino-appended β-cyclodextrins (ACDs): Preparation, characterization, water solubility and anticancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:68-76. [PMID: 27612690 DOI: 10.1016/j.msec.2016.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid acid of natural abundance in plants which possesses important biological activities. However, its medicinal applications were severely impeded by the poor water solubility and resultant low bioavailability and potency. In this work, studies on solid inclusion complexes of OA with a series of amino-appended β-cyclodextrins (ACDs) were conducted in order to address this issue. These complexes were prepared by suspension method and were well characterized by NMR, SEM, XRD, TG, DSC and Zeta potential measurement. The 2:1 inclusion mode of ACDs/OA complexes was elucidated by elaborate 2D NMR (ROESY). Besides, water solubility of OA was dramatically promoted by inclusion complexation with ACDs. Moreover, in vitro anticancer activities of OA against human cancer cell lines HepG2, HT29 and HCT116 were significantly enhanced after formation of inclusion complexes, while the apoptotic response results indicated their induction of apoptosis of cancer cells. This could provide a novel approach to development of novel pharmaceutical formulations of OA.
Collapse
Affiliation(s)
- Yufeng Ren
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Liu
- Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhikuan Yang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Raomei Niu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Kai Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jihong Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, China; Research Centre for Pharmaceutical Care and Quality Management, First People's Hospital of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
33
|
Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells. PLoS One 2015; 10:e0132439. [PMID: 26176704 PMCID: PMC4503536 DOI: 10.1371/journal.pone.0132439] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/16/2015] [Indexed: 02/02/2023] Open
Abstract
Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary’s bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary’s anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed.
Collapse
|
34
|
Liao R, Zhao Y, Liao X, Liu M, Gao C, Yang J, Yang B. Folic acid-polyamine-β-cyclodextrin for targeted delivery of scutellarin to cancer cells. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rongqiang Liao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Yulin Zhao
- Faculty of Chemical Engineering; Kunming University of Science and Technology; Kunming 650500 China
| | - Xiali Liao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Manshuo Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Jian Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Bo Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| |
Collapse
|
35
|
Synthesis, characterization, and in vitro evaluation of artesunate-β-cyclodextrin conjugates as novel anti-cancer prodrugs. Carbohydr Res 2014; 400:19-25. [PMID: 25457606 DOI: 10.1016/j.carres.2014.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/06/2014] [Accepted: 08/28/2014] [Indexed: 11/21/2022]
Abstract
A novel series of artesunate-β-cyclodextrin (ATS-β-CD) conjugates, in which artesunate (ATS) was coupled covalently to one of the primary hydroxyl groups of β-cyclodextrin (β-CD) through amino bond formation, were synthesized and characterized by (1)H NMR, HRMS, 2D NMR (ROESY), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results showed that the aqueous solubility of ATS-β-CD conjugates was 26-45 times better than that of free ATS. The cytotoxicity of the ATS-β-CD conjugates was evaluated on human colon cancer cell lines HCT116, LOVO, SW480, and HT-29, and the results indicated that ATS-2NβCD exhibited a very high cytotoxicity against HCT116, LOVO, and HT-29 with IC50 values of 0.58, 1.62, and 5.18μmol/L, respectively. In addition, the supposition of better cytotoxicity was further supported by the control experiment of fluorescent cyclodextrin.
Collapse
|
36
|
In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein. Molecules 2014; 19:5748-60. [PMID: 24802986 PMCID: PMC6271944 DOI: 10.3390/molecules19055748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023] Open
Abstract
Inhibition of cytochrome P450 (CYP) and P-glycoprotein (P-gp) are regarded as the most frequent and clinically important pharmacokinetic causes among the various possible factors for drug-drug interactions. Scutellarin is a flavonoid which is widely used for the treatment of cardiovascular diseases. In this study, the in vitro inhibitory effects of scutellarin on six major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six rat CYPs (CYP1A2, CYP2C7, CYP2C11, CYP2C79, CYP2D4, and CYP3A2) activities were examined by using liquid chromatography-tandem mass spectrometry. Meanwhile, the inhibitory effects of scutellarin on P-gp activity were examined on a human metastatic malignant melanoma cell line WM-266-4 by calcein-AM fluorometry screening assay. Results demonstrated that scutellarin showed negligible inhibitory effects on the six major CYP isoenzymes in human/rat liver microsomes with almost all of the IC50 values exceeding 100 μM, whereas it showed values of 63.8 μM for CYP2C19 in human liver microsomes, and 63.1 and 85.6 μM for CYP2C7 and CYP2C79 in rat liver microsomes, respectively. Scutellarin also showed weak inhibitory effect on P-gp. In conclusion, this study demonstrates that scutellarin is unlikely to cause any clinically significant herb-drug interactions in humans when co-administered with substrates of the six CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and P-gp.
Collapse
|
37
|
Wang F, Yang B, Zhao Y, Liao X, Gao C, Jiang R, Han B, Yang J, Liu M, Zhou R. Host-guest inclusion system of scutellarein with 2-hydroxypropyl-beta-cyclodextrin: preparation, characterization, and anticancer activity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:594-607. [DOI: 10.1080/09205063.2014.884875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
A novel polyrotaxane-based delivery system for scutellarin: preparation, characterization, and in vitro evaluation. Carbohydr Res 2013; 380:149-55. [DOI: 10.1016/j.carres.2013.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/20/2013] [Accepted: 07/21/2013] [Indexed: 11/19/2022]
|