1
|
Hassanein WS, İspirli H, Dertli E, Yilmaz MT. Structural characterization of potato starch modified by a 4,6-α-glucanotransferase B from Lactobacillus reuteri E81. Int J Biol Macromol 2023:124988. [PMID: 37230452 DOI: 10.1016/j.ijbiomac.2023.124988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The recent reports have revealed that increase in amount of α-1,6 linkages by modification of potato starch with enzyme (glycosyltransferases) treatment gains slowly digestible properties to the starch; however, the formation of new α-1,6-glycosidic linkages diminish the thermal resistance of the starch granules. In this study, a putative GtfB-E81, (a 4,6-α-glucanotransferase-4,6-αGT) from L. reuteri E81 was firstly used to produce a short length of α-1,6 linkages. NMR results revealed that external short chains mostly comprised of 1-6 glucosyl units were newly produced in potato starch, and the α-1,6 linkage ratio was significantly increased from 2.9 % to 36.8 %, suggesting that this novel GtfB-E81 might have potentially an efficient transferase activity. In our study, native and GtfB-E81 modified starches showed fundamental similarities with respect to their molecular properties and treatment of native potato starch with GtfB-E81 did not remarkably change thermal stability of the potato starch, which seems to be very prominent for the food industry given the significantly decreased thermal stability results obtained for the enzyme modified starches reported in the literature. Therefore, the results of this study should open up emerging perspectives for regulating slowly digestible characteristics of potato starch in future studies without a significant change in the molecular, thermal, and crystallographic properties.
Collapse
Affiliation(s)
- Wael S Hassanein
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589 Jeddah, Saudi Arabia
| | - Hümeyra İspirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Enes Dertli
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Istanbul 34000, Turkey
| | - Mustafa Tahsin Yilmaz
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Do HV, Nguyen SK, Dao DN, Nguyen V. Influence of dextrose equivalent and storage temperature on food-grade rice bran oil-in-water Pickering emulsion stabilized by rice maltodextrins and sodium caseinate. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2063881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ha V. Do
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Sinh K. Nguyen
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Duy N. Dao
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Viet Nguyen
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Bangar SP, Ashogbon AO, Singh A, Chaudhary V, Whiteside WS. Enzymatic modification of starch: A green approach for starch applications. Carbohydr Polym 2022; 287:119265. [DOI: 10.1016/j.carbpol.2022.119265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022]
|
4
|
Kocaman E, Rabiti D, Murillo Moreno JS, Can Karaca A, Van der Meeren P. Oil Phase Solubility Rather Than Diffusivity Determines the Release of Entrapped Amino Acids and Di-Peptides from Water-in-Oil-in-Water Emulsions. Molecules 2022; 27:394. [PMID: 35056714 PMCID: PMC8778980 DOI: 10.3390/molecules27020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
The permeation of amino acids and di-peptides with different hydrophobicities across the oil phase in W/O/W double emulsions was investigated at different concentrations, considering the pH of the aqueous phase. Moreover, the particle size, yield of entrapped water and release kinetics of the double emulsions was evaluated as a function of time. Regarding the release of the entrapped amino acids and di-peptides, their hydrophobicity and the pH had a significant effect, whereas the concentration of the dissolved compound did not lead to different release kinetics. The release of the amino acids and di-peptides was faster at neutral pH as compared to acidic pH values due to the increased solute solubility in the oil phase for more hydrophobic molecules at neutral pH. Regarding the effect of the type of oil, much faster amino acid transport was observed through MCT oil as compared to LCT oil, which might be due to its higher solubility and/or higher diffusivity. As di-peptides released faster than amino acids, it follows that the increased solubility overruled the effect from the decreased diffusion coefficient of the dissolved compound in the oil phase.
Collapse
Affiliation(s)
- Esra Kocaman
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Turkey;
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (D.R.); (J.S.M.M.); (P.V.d.M.)
| | - Davide Rabiti
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (D.R.); (J.S.M.M.); (P.V.d.M.)
| | - Juan Sebastian Murillo Moreno
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (D.R.); (J.S.M.M.); (P.V.d.M.)
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Turkey;
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (D.R.); (J.S.M.M.); (P.V.d.M.)
| |
Collapse
|
5
|
Wang J, Ballon A, Schroën K, de Lamo-Castellví S, Ferrando M, Güell C. Polyphenol Loaded W 1/O/W 2 Emulsions Stabilized with Lesser Mealworm ( Alphitobius diaperinus) Protein Concentrate Produced by Membrane Emulsification: Stability under Simulated Storage, Process, and Digestion Conditions. Foods 2021; 10:2997. [PMID: 34945549 PMCID: PMC8702022 DOI: 10.3390/foods10122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Water-in-oil-in-water (W1/O/W2) emulsions are complex delivery systems for polyphenols amongst other bio-actives. To stabilize the oil-water interphase, dairy proteins are commonly employed, which are ideally replaced by other, more sustainable sources, such as insect proteins. In this study, lesser mealworm (Alphitobius diaperinus) protein concentrate (LMPC) is assessed and compared to whey protein (WPI) and pea protein (PPI), to stabilize W1/O/W2 emulsions and encapsulate a commercial polyphenol. The results show that LMPC is able to stabilize W1/O/W2 emulsions comparably to whey protein and pea protein when using a low-energy membrane emulsification system. The final droplet size (d4,3) is 7.4 μm and encapsulation efficiency is between 72 and 74%, regardless of the protein used. Under acidic conditions, the LMPC shows a similar performance to whey protein and outperforms pea protein. Under alkaline conditions, the three proteins perform similarly, while the LMPC-stabilized emulsions are less able to withstand osmotic pressure differences. The LMPC stabilized emulsions are also more prone to droplet coalescence after a freeze-thaw cycle than the WPI-stabilized ones, but they are the most stable when exposed to the highest temperatures tested (90 °C). The results show LMPC's ability to stabilize multiple emulsions and encapsulate a polyphenol, which opens the door for application in foods.
Collapse
Affiliation(s)
- Junjing Wang
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| | - Aurélie Ballon
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| | - Karin Schroën
- Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands;
| | - Sílvia de Lamo-Castellví
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| | - Montserrat Ferrando
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| | - Carme Güell
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; (J.W.); (A.B.); (S.d.L.-C.); (M.F.)
| |
Collapse
|
6
|
Silva M, Anh Bui TH, Dharmadana D, Zisu B, Chandrapala J. Ultrasound-assisted formation of double emulsions stabilized by casein-whey protein mixtures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Miao M, Jiang B, Jin Z, BeMiller JN. Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Compr Rev Food Sci Food Saf 2018; 17:1238-1260. [PMID: 33350152 DOI: 10.1111/1541-4337.12381] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Bo Jiang
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Zhengyu Jin
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - James N. BeMiller
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
- Dept. of Food Science; Whistler Center for Carbohydrate Research, Purdue Univ.; 745 Agriculture Mall Drive West Lafayette IN 47907-2009 U.S.A
| |
Collapse
|
8
|
Galvão KCS, Vicente AA, Sobral PJA. Development, Characterization, and Stability of O/W Pepper Nanoemulsions Produced by High-Pressure Homogenization. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-2016-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Characteristics and release property of polylactic acid/sodium monofluorophosphate microcapsules prepared by spray drying. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Tamnak S, Mirhosseini H, Tan CP, Tabatabaee Amid B, Kazemi M, Hedayatnia S. Encapsulation properties, release behavior and physicochemical characteristics of water-in-oil-in-water (W/O/W) emulsion stabilized with pectin–pea protein isolate conjugate and Tween 80. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Silva BF, Rodríguez-Abreu C, Vilanova N. Recent advances in multiple emulsions and their application as templates. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Oppermann A, Renssen M, Schuch A, Stieger M, Scholten E. Effect of gelation of inner dispersed phase on stability of (w1/o/w2) multiple emulsions. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.01.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Wani TA, Shah AG, Wani SM, Wani IA, Masoodi FA, Nissar N, Shagoo MA. Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility. Crit Rev Food Sci Nutr 2015; 56:2431-2454. [DOI: 10.1080/10408398.2013.845814] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Mun S, Choi Y, Park S, Surh J, Kim YR. Release properties of gel-type W/O/W encapsulation system prepared using enzymatically-modified starch. Food Chem 2014; 157:77-83. [DOI: 10.1016/j.foodchem.2014.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/15/2014] [Accepted: 02/04/2014] [Indexed: 11/29/2022]
|
15
|
Bridging benchtop research and industrial processed foods: Structuring of model food emulsions. FOOD STRUCTURE-NETHERLANDS 2014. [DOI: 10.1016/j.foostr.2013.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|