1
|
Taokaew S, Kriangkrai W. Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products. BIOLOGY 2023; 12:87. [PMID: 36671779 PMCID: PMC9855443 DOI: 10.3390/biology12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
Chito-oligosaccharides (COSs) are the partially hydrolyzed products of chitin, which is abundant in the shells of crustaceans, the cuticles of insects, and the cell walls of fungi. These oligosaccharides have received immense interest in the last few decades due to their highly promising bioactivities, such as their anti-microbial, anti-tumor, and anti-inflammatory properties. Regarding environmental concerns, COSs are obtained by enzymatic hydrolysis by chitinase under milder conditions compared to the typical chemical degradation. This review provides updated information about research on new chitinase derived from various sources, including bacteria, fungi, plants, and animals, employed for the efficient production of COSs. The route to industrialization of these chitinases and COS products is also described.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
2
|
Doan CT, Tran TN, Nguyen VB, Tran TD, Nguyen AD, Wang SL. Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production. Polymers (Basel) 2020; 12:polym12051163. [PMID: 32438616 PMCID: PMC7284385 DOI: 10.3390/polym12051163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan oligosaccharide (COS) has become of great interest in recent years because of its worthy biological activities. This study aims to produce COS using the enzymatic method, and investigates Paenibacillus sp. TKU047, a chitinolytic-producing strain, in terms of its chitosanase productivity on several chitinous material-containing mediums from fishery process wastes. The highest amount of chitosanase was produced on the medium using 2% (w/v) squid pens powder (0.60 U/mL) as the single carbon and nitrogen (C/N) source. The molecular mass of TKU047 chitosanase, which could be the smallest one among chitinases/chitosanases from the Paenibacillus genus, was approximately 23 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. TKU047 chitosanase possessed the highest activity at 60 °C, pH 7, and toward chitosan solution with a higher degree of deacetylation (DDA) value. Additionally, the hydrolysis products of 98% DDA chitosan catalyzed by TKU047 chitosanase showed the degree of polymerization (DP) ranging from 2 to 9, suggesting that it was an endo-type activity chitosanase. The free radical scavenging activity of the obtained chitosan oligosaccharide (COS) was determined. The result showed that COS produced with Paenibacillus sp. TKU047 chitosanase expressed a higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than that from the commercial COSs with maximum activity and IC50 values of 81.20% and 1.02 mg/mL; 18.63% and 15.37 mg/mL; and 15.96% and 15.16 mg/mL, respectively. As such, Paenibacillus sp. TKU047 may have potential use in converting squid pens waste to produce chitosanase as an enzyme for bio-activity COS preparation.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| | - Trung Dung Tran
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
3
|
Two novel calcium delivery systems fabricated by casein phosphopeptides and chitosan oligosaccharides: Preparation, characterization, and bioactive studies. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Ismail SA, El-Sayed HS, Fayed B. Production of prebiotic chitooligosaccharide and its nano/microencapsulation for the production of functional yoghurt. Carbohydr Polym 2020; 234:115941. [DOI: 10.1016/j.carbpol.2020.115941] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
|
5
|
Doan CT, Tran TN, Nguyen VB, Nguyen AD, Wang SL. Production of a Thermostable Chitosanase from Shrimp Heads via Paenibacillus mucilaginosus TKU032 Conversion and its Application in the Preparation of Bioactive Chitosan Oligosaccharides. Mar Drugs 2019; 17:md17040217. [PMID: 30974812 PMCID: PMC6520834 DOI: 10.3390/md17040217] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Chitosanase has attracted great attention due to its potential applications in medicine, agriculture, and nutraceuticals. In this study, P. mucilaginosus TKU032, a bacterial strain isolated from Taiwanese soil, exhibited the highest chitosanase activity (0.53 U/mL) on medium containing shrimp heads as the sole carbon and nitrogen (C/N) source. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, a chitosanase isolated from P. mucilaginosus TKU032 cultured on shrimp head medium was determined at approximately 59 kDa. The characterized chitosanase showed interesting properties with optimal temperature and thermal stability up to 70 °C. Three chitosan oligosaccharide (COS) fractions were isolated from hydrolyzed colloidal chitosan that was catalyzed by TKU032 chitosanase. Of these, fraction I showed the highest α-glucosidase inhibitor (aGI) activity (65.86% at 20 mg/mL); its inhibitory mechanism followed the mixed noncompetitive inhibition model. Fractions II and III exhibited strong 2,2-diphenyl1-picrylhydrazyl (DPPH) radical scavenging activity (79.00% at 12 mg/mL and 73.29% at 16 mg/mL, respectively). In summary, the COS fractions obtained by hydrolyzing colloidal chitosan with TKU032 chitosanase may have potential use in medical or nutraceutical fields due to their aGI and antioxidant activities.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
6
|
Doan CT, Tran TN, Nguyen VB, Vo TPK, Nguyen AD, Wang SL. Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int J Biol Macromol 2019; 131:706-715. [PMID: 30904526 DOI: 10.1016/j.ijbiomac.2019.03.117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/12/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
In this study, an extracellular protease, but no chitinolytic enzyme-producing strain, Brevibacillus parabrevis TKU046, has been isolated and analyzed for the deproteinization testing of shrimp waste by liquid fermentation. Deproteinization assays of shrimp waste with this microbe showed 95% protein removal after 4 days fermentation. The efficiency of chitin extraction by B. parabrevis TKU046 on wastes of three shrimp species were also investigated in which the highest deproteinization was found on cooked tiger shrimp shell. Infrared spectra (IR) of the obtained chitin displayed characteristic profiles for chitin. The culture supernatant released after fermentation greatly exhibited growth enhancing effect on Lactobacillus rhamnosus. In addition, B. parabrevis TKU046 protease was isolated and determined the characteristics. The molecular mass of B. parabrevis TKU046 protease was determined as 32 kDa and 34 kDa, respectively, by SDS-PAGE and HPLC. Overall, the findings provide strong support for the potential candidacy of this enzyme as an effective and eco-friendly alternative to the conventional chemicals used for the deproteinization of shrimp heads in the chitin processing industry, as well as the production of prebiotics to be used in the nutraceutical industry.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - Thi Phuong Khanh Vo
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
7
|
Doan CT, Tran TN, Nguyen VB, Nguyen AD, Wang SL. Reclamation of Marine Chitinous Materials for Chitosanase Production via Microbial Conversion by Paenibacillus macerans. Mar Drugs 2018; 16:E429. [PMID: 30400216 PMCID: PMC6265764 DOI: 10.3390/md16110429] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/21/2023] Open
Abstract
Chitinous materials from marine byproducts elicit great interest among biotechnologists for their potential biomedical or agricultural applications. In this study, four kinds of marine chitinous materials (squid pens, shrimp heads, demineralized shrimp shells, and demineralized crab shells) were used to screen the best source for producing chitosanase by Paenibacillus macerans TKU029. Among them, the chitosanase activity was found to be highest in the culture using the medium containing squid pens as the sole carbon/nitrogen (C/N) source. A chitosanase which showed molecular weights at 63 kDa was isolated from P. macerans cultured on a squid pens medium. The purified TKU029 chitosanase exhibited optimum activity at 60 °C and pH 7, and was stable at temperatures under 50 °C and pH 3-8. An analysis by MALDI-TOF MS revealed that the chitosan oligosaccharides (COS) obtained from the hydrolysis of water-soluble chitosan by TKU029 crude enzyme showed various degrees of polymerization (DP), varying from 3⁻6. The obtained COS enhanced the growth of four lactic acid bacteria strains but exhibited no effect on the growth of E. coli. By specialized growth enhancing effects, the COS produced from hydrolyzing water soluble chitosan with TKU029 chitinolytic enzymes could have potential for use in medicine or nutraceuticals.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|
10
|
Neha T, Shishir T, Ashutosh D. Fourier transform infrared spectroscopy (FTIR) profiling of red pigment produced by Bacillus subtilis PD5. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2017.15959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Araújo NKD, Pagnoncelli MGB, Pimentel VC, Xavier MLO, Padilha CEA, Macedo GRD, Santos ESD. Single-step purification of chitosanases from Bacillus cereus using expanded bed chromatography. Int J Biol Macromol 2016; 82:291-8. [DOI: 10.1016/j.ijbiomac.2015.09.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023]
|
12
|
Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I. Melanin-Like Pigment Synthesis by Soil Bacillus weihenstephanensis Isolates from Northeastern Poland. PLoS One 2015; 10:e0125428. [PMID: 25909751 PMCID: PMC4409349 DOI: 10.1371/journal.pone.0125428] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/18/2015] [Indexed: 11/22/2022] Open
Abstract
Although melanin is known for protecting living organisms from harmful physical and chemical factors, its synthesis is rarely observed among endospore-forming Bacillus cereus sensu lato. Here, for the first time, we reported that psychrotolerant Bacillus weihenstephanensis from Northeastern Poland can produce melanin-like pigment. We assessed physicochemical properties of the pigment and the mechanism of its synthesis in relation to B. weihenstephanensis genotypic and phenotypic characteristics. Electron paramagnetic resonance (EPR) spectroscopy displayed a stable free radical signal of the pigment from environmental isolates which are consistent with the commercial melanin. Fourier transform infrared spectroscopy (FT-IR) and physicochemical tests indicated the phenolic character of the pigment. Several biochemical tests showed that melanin-like pigment synthesis by B. weihenstephanensis was associated with laccase activity. The presence of the gene encoding laccase was confirmed by the next generation whole genome sequencing of one B. weihenstephanensis strain. Biochemical (API 20E and 50CHB tests) and genetic (Multi-locus Sequence Typing, 16S rRNA sequencing, and Pulsed-Field Gel Electrophoresis) characterization of the isolates revealed their close relation to the psychrotrophic B. weihenstephanensis DSMZ 11821 reference strain. The ability to synthesize melanin-like pigment by soil B. weihenstephanensis isolates and their psychrotrophic character seemed to be a local adaptation to a specific niche. Detailed genetic and biochemical analyses of melanin-positive environmental B. weihenstephanensis strains shed some light on the evolution and ecological adaptation of these bacteria. Moreover, our study raised new biotechnological possibilities for the use of water-soluble melanin-like pigment naturally produced by B. weihenstephanensis as an alternative to commercial non-soluble pigment.
Collapse
Affiliation(s)
- Justyna M. Drewnowska
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Monika Zambrzycka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Beata Kalska-Szostko
- Department of Physicochemical Analysis, Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
- * E-mail:
| |
Collapse
|
13
|
Vela Gurovic MS, Dello Staffolo M, Montero M, Debbaudt A, Albertengo L, Rodríguez MS. Chitooligosaccharides as novel ingredients of fermented foods. Food Funct 2015; 6:3437-43. [DOI: 10.1039/c5fo00546a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitooligosaccharides can be added to yoghurt at low concentrations without affecting its nutritional composition and sensory acceptance.
Collapse
Affiliation(s)
- M. S. Vela Gurovic
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | | | - M. Montero
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - A. Debbaudt
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - L. Albertengo
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - M. S. Rodríguez
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| |
Collapse
|
14
|
Expression patterns of chitinase and chitosanase produced from Bacillus cereus in suppression of phytopathogen. Microb Pathog 2014; 73:31-6. [PMID: 24942773 DOI: 10.1016/j.micpath.2014.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022]
Abstract
Bacillus cereus MP-310 was incubated on various culture media substrates as LB, colloidal chitin, chitosan powder, and chitosan beads to investigate the concurrent expression patterns of chitinase and chitosanase isozymes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Chitinase activity increased rapidly with a maximum level after 6 days of incubation in CM-chitin medium. Major bands of chitinase isozymes were strongly expressed on SDS-PAGE in LB medium (four bands) and in colloidal chitin medium (five bands) after 6 days after incubation, and in chitosan powder medium (one band) and in chitosan beads medium (five bands) after 12 days after incubation. A major band of chitosanase isozymes was strongly expressed on SDS-PAGE in chitosan powder medium (one band) and in chitosan beads medium (one band) after 12 days of incubation.
Collapse
|
15
|
Fu X, Yan Q, Yang S, Yang X, Guo Y, Jiang Z. An acidic, thermostable exochitinase with β-N-acetylglucosaminidase activity from Paenibacillus barengoltzii converting chitin to N-acetyl glucosamine. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:174. [PMID: 25550712 PMCID: PMC4280004 DOI: 10.1186/s13068-014-0174-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/19/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND N-acetyl-β-D-glucosamine (GlcNAc) is widely used as a valuable pharmacological agent and a functional food additive. The traditional chemical process for GlcNAc production has some problems such as high production cost, low yield, and acidic pollution. Hence, to identify a novel chitinase that is suitable for bioconversion of chitin to GlcNAc is of great value. RESULTS A novel chitinase gene (PbChi74) from Paenibacillus barengoltzii was cloned and heterologously expressed in Escherichia coli as an intracellular soluble protein. The gene has an open reading frame (ORF) of 2,163 bp encoding 720 amino acids. The recombinant chitinase (PbChi74) was purified to apparent homogeneity with a purification fold of 2.2 and a recovery yield of 57.9%. The molecular mass of the purified enzyme was estimated to be 74.6 kDa and 74.3 kDa by SDS-PAGE and gel filtration, respectively. PbChi74 displayed an acidic pH optimum of 4.5 and a temperature optimum of 65°C. The enzyme showed high activity toward colloidal chitin, glycol chitin, N-acetyl chitooligosaccharides, and p-nitrophenyl N-acetyl β-glucosaminide. PbChi74 hydrolyzed colloidal chitin to yield N-acetyl chitobiose [(GlcNAc)2] at the initial stage, which was further converted to its monomer N-acetyl glucosamine (GlcNAc), suggesting that it is an exochitinase with β-N-acetylglucosaminidase activity. The purified PbChi74 coupled with RmNAG (β-N-acetylglucosaminidase from Rhizomucor miehei) was used to convert colloidal chitin to GlcNAc, and GlcNAc was the sole end product at a concentration of 27.8 mg mL(-1) with a conversion yield of 92.6%. These results suggest that PbChi74 may have great potential in chitin conversion. CONCLUSIONS The excellent thermostability and hydrolytic properties may give the exochitinase great potential in GlcNAc production from chitin. This is the first report on an exochitinase with N-acetyl-β-D-glucosaminidase activity from Paenibacillus species.
Collapse
Affiliation(s)
- Xing Fu
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Qiaojuan Yan
- />Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Shaoqing Yang
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Xinbin Yang
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Yu Guo
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Zhengqiang Jiang
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| |
Collapse
|