1
|
Tiwari R, Kolli M, Chauhan S, Yallapu MM. Tabletized Nanomedicine: From the Current Scenario to Developing Future Medicine. ACS NANO 2024; 18:11503-11524. [PMID: 38629397 DOI: 10.1021/acsnano.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The limitations of conventional therapeutic treatments prevailed in the development of nanotechnology-based medical formulations, termed nanomedicine. Nanomedicine is an advanced medicine that often consists of therapeutic agent(s) embedded in biodegradable or biocompatible nanomaterial-based formulations. Among nanomedicine approaches, tablet (oral) nanomedicine is still under development. In tabletized nanomedicine, the dynamic interplay between nanoformulations and the intricate milieu of the gastrointestinal tract simulates a pivotal role, particularly accentuating the influence exerted upon the luminal, mucosal, and epithelial cells. In this work, we document the perspectives and opportunities of nanoformulations toward the development of tabletized nanomedicine. This review also unveils the notion of integrating nanomedicine within a tablet formulation, which facilitates the controlled release of drugs, biomolecules, and agent(s) from the formulation to achieve a better therapeutic response. Finally, an attempt was made to explore current trends in nanomedicine technology such as bacteriophage, probiotic, and oligonucleotide tabletized nanomedicine and the combination of nanomedicine with imaging agents, i.e., nanotheranostics.
Collapse
Affiliation(s)
- Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meghana Kolli
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Sumeet Chauhan
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
2
|
Meng Y, Cai Y, Cui M, Xu Y, Wu L, Li X, Chu X. Solid self-microemulsifying drug delivery system (S-SMEDDS) prepared by spray drying to improve the oral bioavailability of cinnamaldehyde (CA). Pharm Dev Technol 2024; 29:112-122. [PMID: 38308442 DOI: 10.1080/10837450.2024.2312851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
The aim of this study was to prepare a solid self-microemulsifying drug delivery system (S-SMEDDS) of cinnamaldehyde (CA) by spray drying technique to improve the oral bioavailability of CA. The preparation of CA S-SMEDDS with maltodextrin as the solid carrier, a core-wall material mass ratio of 1:1, a solid content of 20% (w/v), an inlet air temperature of 150 °C, an injection speed of 5.2 mL/min, and an atomization pressure of 0.1 MPa was determined by using the encapsulation rate as the index of investigation. Differential scanning calorimetry (DSC) revealed the possibility of CA being encapsulated in S-SMEDDS in an amorphous form. The in-vitro release showed that the total amount of CA released by S-SMEDDS was approximately 1.3 times higher than that of the CA suspension. Pharmacokinetic results showed that the relative oral bioavailability of CA S-SMEDDS was also increased to 1.6-fold compared to CA suspension. Additionally, we explored the mechanism of CA uptake and transport of lipid-soluble drugs CA by S-SMEDDS in a Caco-2/HT29 cell co-culture system for the first time. The results showed that CA S-SMEDDS uptake on the co-culture model was mainly an energy-dependent endocytosis mechanism, including lattice protein-mediated endocytosis and vesicle-mediated endocytosis. Transport experiments showed that CA S-SMEDDS significantly increased the permeability of CA in this model. These findings suggested that CA S-SMEDDS is an effective oral solid dosage form for increasing the oral bioavailability of lipid-soluble drug CA.
Collapse
Affiliation(s)
- Yun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Yuhang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Long Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, National Medical Products, Hefei, PR China
- Administration Key Laboratory for Quality Research and Evaluation of Traditional, Hefei, PR China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, PR China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, PR China
| |
Collapse
|
3
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|
4
|
Józsa L, Vasvári G, Sinka D, Nemes D, Ujhelyi Z, Vecsernyés M, Váradi J, Fenyvesi F, Lekli I, Gyöngyösi A, Bácskay I, Fehér P. Enhanced Antioxidant and Anti-Inflammatory Effects of Self-Nano and Microemulsifying Drug Delivery Systems Containing Curcumin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196652. [PMID: 36235189 PMCID: PMC9572020 DOI: 10.3390/molecules27196652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Turmeric has been used for decades for its antioxidant and anti-inflammatory effect, which is due to an active ingredient isolated from the plant, called curcumin. However, the extremely poor water-solubility of curcumin often limits the bioavailability of the drug. The aim of our experimental work was to improve the solubility and thus bioavailability of curcumin by developing self-nano/microemulsifying drug delivery systems (SN/MEDDS). Labrasol and Cremophor RH 40 as nonionic surfactants, Transcutol P as co-surfactant and isopropyl myristate as the oily phase were used during the formulation. The average droplet size of SN/MEDDS containing curcumin was between 32 and 405 nm. It was found that the higher oil content resulted in larger particle size. The drug loading efficiency was between 93.11% and 99.12% and all formulations were thermodynamically stable. The curcumin release was studied at pH 6.8, and the release efficiency ranged between 57.3% and 80.9% after 180 min. The results of the MTT cytotoxicity assay on human keratinocyte cells (HaCaT) and colorectal adenocarcinoma cells (Caco-2) showed that the curcumin-containing preparations were non-cytotoxic at 5 w/v%. According to the results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide dismutase (SOD) assays, SNEDDS showed significantly higher antioxidant activity. The anti-inflammatory effect of the SN/MEDDS was screened by enzyme-linked immunosorbent assay (ELISA). SNEDDS formulated with Labrasol as surfactant, reduced tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) levels below 60% at a concentration of 10 w/w%. Our results verified the promising use of SN/MEDDS for the delivery of curcumin. This study demonstrates that the SN/MEDDS could be promising alternatives for the formulation of poorly soluble lipophilic compounds with low bioavailability.
Collapse
Affiliation(s)
- Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltan Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - István Lekli
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Alexandra Gyöngyösi
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
5
|
Liparoti S, Franco P, Pantani R, De Marco I. Polycaprolactone/polyethylene-glycol capsules made by injection molding: A drug release modeling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112036. [PMID: 33812648 DOI: 10.1016/j.msec.2021.112036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Polycaprolactone (PCL)/Polyethylene-glycol (PEG) capsules are prepared by injection molding with the aim of producing Colon-specific Drug Delivery Systems (CDDS). PCL, being a gastroresistant polymer, is suitable for this kind of delivery; however, the release from PCL devices is too slow. For this reason, in this paper, different percentages of PEG (10, 20 and 30 w/w %) have been added to obtain blends able to modulate the release from PCL-based capsules. The drug release rate from PCL/PEG capsules increases with the PEG percentage; using PCL/PEG 70/30 w/w capsules, the drug release is suitable for CDDS. The experimental data have been modelled, accounting for three steps: the penetration of the release medium into the capsule, the drug dissolution in the release medium, and the drug migration from the capsule to the medium. The model accurately describes the data, showing a mass transfer coefficient strongly dependent on the PEG percentage.
Collapse
Affiliation(s)
- Sara Liparoti
- Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Paola Franco
- Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Roberto Pantani
- Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy.
| |
Collapse
|
6
|
Pooresmaeil M, Namazi H. Developments on carboxymethyl starch-based smart systems as promising drug carriers: A review. Carbohydr Polym 2021; 258:117654. [DOI: 10.1016/j.carbpol.2021.117654] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
|
7
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
8
|
Vijayan UK, Varakumar S, Sole S, Singhal RS. Enhancement of loading and oral bioavailability of curcumin loaded self-microemulsifying lipid carriers using Curcuma oleoresins. Drug Dev Ind Pharm 2020; 46:889-898. [PMID: 32340496 DOI: 10.1080/03639045.2020.1762201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The therapeutic applications of curcumin, a phenolic compound extracted from Curcuma species, is limited due to poor bioavailability. To enhance the bioavailability, self-microemulsifying drug delivery systems (SMEDDS) with curcumin were prepared. Ethyl oleate, Tween 80, and Transcutol® P with surfactant: co-surfactant ratio of 2:1 w/w was selected based on the solubility and pseudo-ternary phase diagrams. The optimized formulation (S-Eo3) was evaluated for use of spice oleoresins as curcumin bioenhancers. The oleophilic phase of curcumin containing SMEDDS formulations was then successfully modified by using bioactive oleoresins extracted from two Curcuma species, viz. C. longa (S-CL1) and C. aromatica (S-CA1). The curcumin content in S-Eo3, S-CL1, and S-CA1 were 69.6 ± 0.23, 82.4 ± 0.62, and 88.8 ± 0.46 mg/g, respectively. Thus, by the partial modification of oleophilic phase of SMEDDS with spice oleoresin (acting as bioenhancer) resulted in ∼88 k improvement of curcumin aqueous solubility. The pharmacokinetic study in male Wistar rats showed that the relative bioavailability of curcumin in S-CL1 and S-CA1 were 26- and 29-fold vis-à-vis 22-fold in S-Eo3 compared to curcumin suspension. All the SMEDDS formulations were stable for three months as established by ICH guidelines.
Collapse
Affiliation(s)
| | - Sadineni Varakumar
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Sushant Sole
- Department of Veterinary Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Park H, Ha ES, Kim MS. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12040365. [PMID: 32316199 PMCID: PMC7238279 DOI: 10.3390/pharmaceutics12040365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are a vital strategy to enhance the bioavailability (BA) of formulations of poorly water-soluble compounds. However, these formulations have certain limitations, including in vivo drug precipitation, poor in vitro in vivo correlation due to a lack of predictive in vitro tests, issues in handling of liquid formulation, and physico-chemical instability of drug and/or vehicle components. To overcome these limitations, which restrict the potential usage of such systems, the supersaturable SEDDSs (su-SEDDSs) have gained attention based on the fact that the inclusion of precipitation inhibitors (PIs) within SEDDSs helps maintain drug supersaturation after dispersion and digestion in the gastrointestinal tract. This improves the BA of drugs and reduces the variability of exposure. In addition, the formulation of solid su-SEDDSs has helped to overcome disadvantages of liquid or capsule dosage form. This review article discusses, in detail, the current status of su-SEDDSs that overcome the limitations of conventional SEDDSs. It discusses the definition and range of su-SEDDSs, the principle mechanisms underlying precipitation inhibition and enhanced in vivo absorption, drug application cases, biorelevance in vitro digestion models, and the development of liquid su-SEDDSs to solid dosage forms. This review also describes the effects of various physiological factors and the potential interactions between PIs and lipid, lipase or lipid digested products on the in vivo performance of su-SEDDSs. In particular, several considerations relating to the properties of PIs are discussed from various perspectives.
Collapse
|
10
|
Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: A novel and simple colon targeted drug delivery system. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.04.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Development of solid self-emulsifying drug delivery systems (SEDDS) to improve the solubility of resveratrol. Ther Deliv 2019; 10:626-641. [DOI: 10.4155/tde-2019-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A solid self-emulsifying drug delivery systems was developed by using the spray-drying technique, to improve the solubility of resveratrol (RES). Materials & methods: Cod liver oil and three surfactant system were tested: soy phosphatidylcholine (SPC)/Eumulgin® HRE-40 (EU)/Sodium oleate (system A); SPC/Tween®80 (TW) /Sodium oleate (system B) and SPC/EU/TW (system C). Results: The greatest incorporation was obtained with system C (21.26 mg/ml). Solid self-emulsifying drug delivery systems with the highest yield were obtained with colloidal silicon dioxide (CSD) (80.12%), and CSD sodium croscarmelose 9:1 and 5:5. RES dissolution attained 100% at 45 min with CSD:CS 5:5. Discussion: The surface modification to hydrophilic by CSD:sodium croscarmellose reduced the cohesive force among drug particles. Conclusion: The developed systems are a good approximation for the design of strategies that could allow increasing the oral bioavailability of RES.
Collapse
|
12
|
Yang Y, Fang J, Shen L, Shan W. Simulation and evaluation of rupturable coated capsules by finite element method. Int J Pharm 2017; 519:220-229. [DOI: 10.1016/j.ijpharm.2017.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 11/28/2022]
|
13
|
Vadlamudi HC, Yalavarthi PR, Mandava Venkata BR, Thanniru J, K.R. V, C.R. S. Potential of microemulsified entacapone drug delivery systems in the management of acute Parkinson's disease. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Zhang Y, Chen T, Yuan P, Tian R, Hu W, Tang Y, Jia Y, Zhang L. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells. Carbohydr Polym 2015; 133:31-8. [PMID: 26344251 DOI: 10.1016/j.carbpol.2015.06.102] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 12/28/2022]
Abstract
Self-assembled pectin nanoparticles was prepared and evaluated for delivering the hydrophobic drug, honokiol (HK), to HepG2 cells. These hydrophobic drug-loaded nanoparticles were developed without using any surfactant and organic solvent. Hydroxypropyl-β-cyclodextrin (HCD) was used to fabricate an inclusion complex with HK (HKHCD) to increase the solubility of the drug and thus facilitate its encapsulation and dispersion in the pectin nanoparticles. Investigation of the in vitro release indicated that the drug-loaded nanoparticles exhibited a higher drug release rate than free honokiol and an effective sustained-release. Cytotoxicity, cell apoptosis and cellular uptake studies further confirmed that the pectin nanoparticles with galactose residues generated higher cytotoxicity than free honokiol on HepG2 cells which highly expressed asialoglycoprotein receptors (ASGR). Nevertheless, these findings were not observed in ASGR-negative A549 cells under similar condition. Therefore, pectin nanoparticles demonstrated a specific active targeting ability to ASGR-positive HepG2 cells and could be used as a potential drug carrier for treatment of liver-related tumors.
Collapse
Affiliation(s)
- Yuxia Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Pei Yuan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Rui Tian
- The Experimental Teaching Centre, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital, Chongqing 400030, PR China
| | - Yalan Tang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuntao Jia
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
15
|
Development and optimization of polymeric self-emulsifying nanocapsules for localized drug delivery: design of experiment approach. ScientificWorldJournal 2014; 2014:516069. [PMID: 25525620 PMCID: PMC4265377 DOI: 10.1155/2014/516069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/22/2014] [Indexed: 12/02/2022] Open
Abstract
The purpose of the present study was to formulate polymeric self-emulsifying curcumin nanocapsules with high encapsulation efficiency, good emulsification ability, and optimal globule size for localized targeting in the colon. Formulations were prepared using modified quasiemulsion solvent diffusion method. Concentration of formulation variables, namely, X1 (oil), X2 (polymeric emulsifier), and X3 (adsorbent), was optimized by design of experiments using Box-Behnken design, for its impact on mean globule size (Y1) and encapsulation efficiency (Y2) of the formulation. Polymeric nanocapsules with an average diameter of 100–180 nm and an encapsulation efficiency of 64.85 ± 0.12% were obtained. In vitro studies revealed that formulations released the drug after 5 h lag time corresponding to the time to reach the colonic region. Pronounced localized action was inferred from the plasma concentration profile (Cmax 200 ng/mL) that depicts limited systemic absorption. Roentgenography study confirms the localized presence of carrier (0–2 h in upper GIT; 2–4 h in small intestine; and 4–24 h in the lower intestine). Optimized formulation showed significantly higher cytotoxicity (IC50 value 20.32 μM) in HT 29 colonic cancer cell line. The present study demonstrates systematic development of polymeric self-emulsifying nanocapsule formulation of curcumin for localized targeting in colon.
Collapse
|
16
|
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv 2014; 22:675-90. [PMID: 24670091 DOI: 10.3109/10717544.2014.896058] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Self-microemulsifying drug delivery system (SMEDDS) has emerged as a vital strategy to formulate poor water soluble compounds for bioavailability enhancement. However, certain limitations are associated with SMEDDS formulations which include in vivo drug precipitation, formulation handling issues, limited lymphatic uptake, lack of predictive in vitro tests and oxidation of unsaturated fatty acids. These limitations restrict their potential usage. Inclusion of polymers or precipitation inhibitors within lipid based formulations helps to maintain drug supersaturation after dispersion. This, thereby, improves the bioavailability and reduces the variability on exposure. Also, formulating solid SMEDDS helps to overcome liquid handling and stability problems. Usage of medium chain triglycerides (MCT) and suitable antioxidants to minimize oxidation of unsaturated fatty acids are few of the steps to overcome the limitations associated with SMEDDS. The review discussed here, in detail, the limitations of SMEDDS and suitable measures that can be taken to overcome them.
Collapse
Affiliation(s)
- Shambhu Dokania
- a Department of Pharmaceutics , NIPER Ahmedabad , C/o B.V. Patel PERD Centre , Ahmedabad , Gujarat , India
| | - Amita K Joshi
- a Department of Pharmaceutics , NIPER Ahmedabad , C/o B.V. Patel PERD Centre , Ahmedabad , Gujarat , India
| |
Collapse
|
17
|
Zhang L, Zhang L, Zhang M, Pang Y, Li Z, Zhao A, Feng J. Self-emulsifying drug delivery system and the applications in herbal drugs. Drug Deliv 2013; 22:475-86. [DOI: 10.3109/10717544.2013.861659] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|