1
|
Bulut E, Turhan Y. Synthesis and characterization of temperature-sensitive microspheres based on acrylamide grafted hydroxypropyl cellulose and chitosan for the controlled release of amoxicillin trihydrate. Int J Biol Macromol 2021; 191:1191-1203. [PMID: 34614414 DOI: 10.1016/j.ijbiomac.2021.09.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 02/01/2023]
Abstract
This study deals with the preparation of temperature-sensitive chitosan/hydroxypropyl cellulose-graft-polyacrylamide (CS/HPC-g-PAAm) blend microspheres as a controlled drug release system. For this purpose, HPC-g-PAAm copolymers of hydroxypropyl cellulose (HPC) with acrylamide (AAm) were synthesized using cerium (IV) ammonium nitrate as initiator. The HPC-g-PAAm copolymers were characterized by using Fourier transform infrared spectroscopy (FTIR), elemental analysis, and differential scanning calorimetry (DSC). Lower critical solution temperatures (LCST) of the synthesized copolymers were determined. Temperature-sensitive blend microspheres of HPC-g-PAAm and chitosan were prepared by emulsion cross-linking method using glutaraldehyde (GA) as a cross-linker in the hydrochloric acid catalyst (HCl) and they were used to achieve controlled release of amoxicillin trihydrate (AMX), an antibiotic drug. The microspheres were characterized by DSC, X-ray diffraction (X-RD), and FTIR spectroscopy. In addition, surfaces of empty and drug-loaded microspheres were examined by scanning electron microscopy (SEM). The effects of variables such as CS/HPC-g-PAAm ratio, drug/polymer ratio, amount of cross-linker, and reaction time of grafting on AMX release were investigated at three different pH environments (1.2, 6.8, 7.4) at 25 °C, 37 °C, and 50 °C. The release results showed that the microspheres had temperature sensitivity and the AMX release was slightly more controlled by especially increasing graft yield (%).
Collapse
Affiliation(s)
- Emine Bulut
- Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, 03300 Afyonkarahisar, Turkey.
| | - Yakup Turhan
- Department of Chemistry, Science and Arts Faculty, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
2
|
Mokhtarinia K, Masaeli E. Transiently thermally responsive surfaces: Concepts for cell sheet engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Gosecki M, Setälä H, Virtanen T, Ryan AJ. A facile method to control the phase behavior of hydroxypropyl cellulose. Carbohydr Polym 2020; 251:117015. [PMID: 33152849 DOI: 10.1016/j.carbpol.2020.117015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
We report a facile chemical method to convert the hydroxyl groups of hydroxypropyl cellulose (HPC) into carbamates. It was achieved by the reaction of HPC with N-methyl carbamoylimidazole, which is a safe and easy to handle replacement for the particularly hazardous reagent methyl isocyanate. Using a series of HPC with a range of molar substitution of hydroxypropyl groups, we synthesized HPC methylcarbamates showing lower critical solution temperature (LCST) in the range between 94 and 15 °C. A linear dependence of LCST versus methylcarbamate degree of substitution is observed. The lower the initial hydroxypropyl content of HPC, the greater the effect of methylcarbamate on the LCST. Surface tension study showed that methylcarbamate modification has an insignificant effect on the hydrophilic-hydrophobic balance of the macromolecules below LCST unless the molecular substitution of hydroxypropyl groups is so low (0.8) that the native cellulose OH groups can react with N-methyl carbamoylimidazole.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK; Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Harri Setälä
- VTT Technical Research Centre of Finland, FI-02044, Espoo, Finland.
| | - Tommi Virtanen
- VTT Technical Research Centre of Finland, FI-02044, Espoo, Finland.
| | - Anthony J Ryan
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| |
Collapse
|
4
|
Darge HF, Andrgie AT, Tsai HC, Lai JY. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol 2019; 133:545-563. [DOI: 10.1016/j.ijbiomac.2019.04.131] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/19/2023]
|
5
|
Tian Y, Liu Y, Ju B, Ren X, Dai M. Thermoresponsive 2-hydroxy-3-isopropoxypropyl hydroxyethyl cellulose with tunable LCST for drug delivery. RSC Adv 2019; 9:2268-2276. [PMID: 35516125 PMCID: PMC9059852 DOI: 10.1039/c8ra09075k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/29/2018] [Indexed: 11/21/2022] Open
Abstract
Thermoresponsive polymer 2-hydroxy-3-isopropoxypropyl hydroxyethyl celluloses (HIPECs) were successfully synthesized, characterized, and applied for thermoresponsive drug delivery. The lower critical solution temperature (LCST) of HIPEC could be easily tuned from 21.1 to 56.1 °C as the molar substitution (MS) increased from 1.21 to 2.88. Dynamic light scattering and transmission electron microscopy experiments revealed that HIPEC can self-assemble into nano-sized aggregates, and their size could be changed by variation in temperature. Additionally, the critical aggregation concentration (CAC) ranged from 0.101 to 0.805 g L−1 by changing MS of HIPEC. In vitro drug delivery studies indicated that the amphotericin B (AmpB) release rate was much faster at temperatures above LCST; approximately 95% of the drug was released from aggregates in 40 h. MTT assays were conducted to evaluate the cytotoxicity of HIPEC, and the observation of the Hoechst 33342 living cell stain using confocal laser scanning microscopy confirmed the high cell viability as HIPECs were used. Thermoresponsive polymer 2-hydroxy-3-isopropoxypropyl hydroxyethyl celluloses (HIPECs) were successfully synthesized, characterized, and applied for thermoresponsive drug delivery.![]()
Collapse
Affiliation(s)
- Ye Tian
- Aquacultural Engingeering R&D Center
- Dalian Ocean University
- Dalian 116023
- China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea
| | - Ying Liu
- Aquacultural Engingeering R&D Center
- Dalian Ocean University
- Dalian 116023
- China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Xiaozhong Ren
- Aquacultural Engingeering R&D Center
- Dalian Ocean University
- Dalian 116023
- China
| | - Mingyun Dai
- Aquacultural Engingeering R&D Center
- Dalian Ocean University
- Dalian 116023
- China
| |
Collapse
|
6
|
Self-assembled cellulose materials for biomedicine: A review. Carbohydr Polym 2018; 181:264-274. [DOI: 10.1016/j.carbpol.2017.10.067] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
|
7
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
8
|
Thermal sensitivity and protein anti-adsorption of hydroxypropyl cellulose-g- poly(2-(methacryloyloxy) ethyl phosphorylcholine). Carbohydr Polym 2017; 157:757-765. [DOI: 10.1016/j.carbpol.2016.10.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 12/22/2022]
|
9
|
Thérien-Aubin H, Wang Y, Nothdurft K, Prince E, Cho S, Kumacheva E. Temperature-Responsive Nanofibrillar Hydrogels for Cell Encapsulation. Biomacromolecules 2016; 17:3244-3251. [PMID: 27615746 DOI: 10.1021/acs.biomac.6b00979] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural extracellular matrices often have a filamentous nature, however, only a limited number of artificial extracellular matrices have been designed from nanofibrillar building blocks. Here we report the preparation of temperature-responsive nanofibrillar hydrogels from rod-shaped cellulose nanocrystals (CNCs) functionalized with a copolymer of N-isopropylacrylamide and N,N'-dimethylaminoethyl methacrylate. The composition of the copolymer was tuned to achieve gelation of the suspension of copolymer-functionalized CNCs at 37 °C in cell culture medium and gel dissociation upon cooling it to room temperature. The mechanical properties and the structure of the hydrogel were controlled by changing copolymer composition and the CNC-to-copolymer mass ratio. The thermoreversible gels were used for the encapsulation and culture of fibroblasts and T cells and showed low cytotoxicity. Following cell culture, the cells were released from the gel by reducing the temperature, thus, enabling further cell characterization. These results pave the way for the generation of injectable temperature-responsive nanofibrillar hydrogels. The release of cells following their culture in the hydrogels would enable enhanced cell characterization and potential transfer in a different cell culture medium.
Collapse
Affiliation(s)
- Héloïse Thérien-Aubin
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yihe Wang
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Katja Nothdurft
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Elisabeth Prince
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sangho Cho
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario M5S 3E5, Canada.,The Institute of Biomaterials and Biomedical Engineering, University of Toronto , 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
10
|
Affiliation(s)
- Hongliang Kang
- Laboratory of Polymer Physics and Chemistry; Beijing National Laboratory of Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Ruigang Liu
- Laboratory of Polymer Physics and Chemistry; Beijing National Laboratory of Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yong Huang
- Laboratory of Polymer Physics and Chemistry; Beijing National Laboratory of Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- National Research Center of Engineering Plastics; Technical Institute of Physics & Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
11
|
Anastasaki A, Nikolaou V, Haddleton DM. Cu(0)-mediated living radical polymerization: recent highlights and applications; a perspective. Polym Chem 2016. [DOI: 10.1039/c5py01916h] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu(0)-mediated living radical polymerization or single electron transfer living radical polymerization (Cu(0)-mediated LRP or SET-LRP) is a versatile polymerization technique that has attracted considerable interest during the past few years for the facile preparation of advanced materials.
Collapse
Affiliation(s)
- Athina Anastasaki
- University of Warwick
- Chemistry Department
- Coventry
- UK
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | | | - David M. Haddleton
- University of Warwick
- Chemistry Department
- Coventry
- UK
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| |
Collapse
|
12
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
13
|
Yang LL, Zhang JM, He JS, Zhang J, Gan ZH. Synthesis and characterization of temperature-sensitive cellulose-graft-poly(N-isopropylacrylamide) copolymers. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1703-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Tian Y, Ju B, Zhang S, Duan X, Dong D. Preparation and phase transition behaviors of temperature-responsive 3-butoxy-2-hydroxypropyl hydroxyethyl celluloses. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1100-11. [DOI: 10.1080/09205063.2015.1077918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM. Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chem Rev 2015; 116:835-77. [DOI: 10.1021/acs.chemrev.5b00191] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athina Anastasaki
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Vasiliki Nikolaou
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Kristian Kempe
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P. Davis
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Michael R. Whittaker
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
16
|
|
17
|
Liu Y, Jin X, Zhang X, Han M, Ji S. Self-assembly and chiroptical property of poly(N-acryloyl-l-amino acid) grafted celluloses synthesized by RAFT polymerization. Carbohydr Polym 2015; 117:312-318. [DOI: 10.1016/j.carbpol.2014.09.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/07/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|
18
|
|