1
|
Yang Z, Hu Y, Yue P, Li H, Wu Y, Hao X, Peng F. Structure, stability, antioxidant activity, and controlled-release of selenium nanoparticles decorated with lichenan from Usnea longissima. Carbohydr Polym 2023; 299:120219. [PMID: 36876820 DOI: 10.1016/j.carbpol.2022.120219] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Selenium nanoparticles (SeNPs) have attracted widespread attention, but the poor water dispersibility restricted their applications seriously. Herein, Usnea longissima lichenan decorated selenium nanoparticles (L-SeNPs) were constructed. The formation, morphology, particle size, stability, physicochemical characteristics, and stabilization mechanism of L-SeNPs were investigated via TEM, SEM, AFM, EDX, DLS, UV-Vis, FT-IR, XPS, and XRD. The results indicated that the L-SeNPs displayed orange-red, amorphous, zero-valent, and uniform spherical nanoparticles with an average diameter of 96 nm. Due to the formation of CO⋯Se bonds or the hydrogen bonding interaction (OH⋯Se) between SeNPs and lichenan, L-SeNPs exhibited better heating and storage stability, which kept stable for more than one month at 25 °C in an aqueous solution. The decoration of the SeNPs surface with lichenan endowed the L-SeNPs with superior antioxidant capability, and their free radicals scavenging ability exhibited in a dose-dependent manner. Furthermore, L-SeNPs showed excellent selenium controlled-release performance. In simulated gastric liquids, selenium release kinetics from L-SeNPs followed the Linear superimposition model, which was governed by the polymeric network retardation of macromolecular, while in simulated intestinal liquids, it was well fitted to the Korsmeyer-Peppas model and followed a Fickian mechanism controlled by diffusion.
Collapse
Affiliation(s)
- Ziying Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Yajie Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Panpan Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Huiling Li
- JALA Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Yuying Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China.
| |
Collapse
|
2
|
Trivedi S, Belgamwar V, Wadher K. Analytical profiling of Lentinan in hybrid nanostructures for intranasal Delivery: Method development and Validation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
3
|
Influence of surfactant's polar head group charge on the self-assembly of three PEO–PPO–PEO triblock copolymers of widely varying hydrophobicity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 2020; 19:2333-2356. [DOI: 10.1111/1541-4337.12602] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Hanghang Lou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Jingjin Hu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Zhengjie Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Qihe Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| |
Collapse
|
5
|
Santos CR, Costa PACR, Vieira PS, Gonzalez SET, Correa TLR, Lima EA, Mandelli F, Pirolla RAS, Domingues MN, Cabral L, Martins MP, Cordeiro RL, Junior AT, Souza BP, Prates ÉT, Gozzo FC, Persinoti GF, Skaf MS, Murakami MT. Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family. Nat Chem Biol 2020; 16:920-929. [PMID: 32451508 DOI: 10.1038/s41589-020-0554-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/22/2020] [Indexed: 11/09/2022]
Abstract
The fundamental and assorted roles of β-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on β-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/β)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical β-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of β-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of β-1,3-glucans, which can be exploited for biotechnological applications.
Collapse
Affiliation(s)
- Camila R Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Pedro A C R Costa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil.,Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Plínio S Vieira
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | | | - Thamy L R Correa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Evandro A Lima
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Fernanda Mandelli
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Lucelia Cabral
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Marcele P Martins
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Rosa L Cordeiro
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Atílio T Junior
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Beatriz P Souza
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Érica T Prates
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Munir S Skaf
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Raftery RM, Walsh DP, Castaño IM, Heise A, Duffy GP, Cryan SA, O'Brien FJ. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5447-5469. [PMID: 26840618 DOI: 10.1002/adma.201505088] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/27/2015] [Indexed: 06/05/2023]
Abstract
As well as acting to fill defects and allow for cell infiltration and proliferation in regenerative medicine, biomaterial scaffolds can also act as carriers for therapeutics, further enhancing their efficacy. Drug and protein delivery on scaffolds have shown potential, however, supraphysiological quantities of therapeutic are often released at the defect site, causing off-target side effects and cytotoxicity. Gene therapy involves the introduction of foreign genes into a cell in order to exert an effect; either replacing a missing gene or modulating expression of a protein. State of the art gene therapy also encompasses manipulation of the transcriptome by harnessing RNA interference (RNAi) therapy. The delivery of nucleic acid nanomedicines on biomaterial scaffolds - gene-activated scaffolds -has shown potential for use in a variety of tissue engineering applications, but as of yet, have not reached clinical use. The current state of the art in terms of biomaterial scaffolds and delivery vector materials for gene therapy is reviewed, and the limitations of current procedures discussed. Future directions in the clinical translation of gene-activated scaffolds are also considered, with a particular focus on bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - David P Walsh
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Andreas Heise
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
7
|
Hirun N, Tantishaiyakul V, Sangfai T, Rugmai S, Soontaranon S. Nano-structure, phase transition and morphology of gallic acid and xyloglucan hydrogel. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1604-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|