1
|
Mujtaba AG, Toprak Ö, Karakeçili A. A grafting approach for nisin-chitosan bio-based antibacterial films: preparation and characterization. Biomed Mater 2024; 19:055029. [PMID: 39079550 DOI: 10.1088/1748-605x/ad6965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Nisin is a bacteriocin produced by Gram-positive lactic acid bacterium,Lactococcus lactisand currently recognized in the Generally Recognızed as Safe (GRAS) category due to its non-toxicity. Herein, nisin has been grafted to chitosan structure to obtain natural bio-active films with enhanced antibacterial activity. Grafting was performed using ethyl ester lysine diisocyanate and dimer fatty acid-based diisocyanate (DDI); two different close to fully bio-based diisocyanates and Disuccinimidyl suberate; a homo-bifunctional molecule acting as a crosslinker between amino groups. The grafting process allowed the chemical immobilization of nisin to chitosan structure. Physicochemical characterization studies showed the successful grafting of nisin. The antibacterial activity againstStaphylococcus aureuswas evident for all nisin modified chitosan films and best pronounced when DDI was used as a crosslinker with a maximum zone of inhibition of ∼13 mm. All nisin grafted chitosan films were cytocompatible and the cell viability of L929 fibroblasts were >80% pointing out the non-toxic structure. Considering the results of the presented study, bio-based diisocyanates and homo-bifunctional crosslinkers are effective molecules in synthesis of nisin grafted chitosan structures and the new chitosan based antibacterial biopolymers obtained after nisin modification come forward as promising non-toxic and bioactive candidates to be applied in medical devices, implants, and various food coating products.
Collapse
Affiliation(s)
- Ayse Gunyakti Mujtaba
- Institute of Biotechnology, Ankara University, Gümüşdere 60. Yıl Yerleşkesi, Keçiören, 06135 Ankara, Turkey
| | - Özge Toprak
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandoğan, 06100 Ankara, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Dışkapı, 06110 Ankara, Turkey
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandoğan, 06100 Ankara, Turkey
| |
Collapse
|
2
|
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. Int J Mol Sci 2023; 24:12402. [PMID: 37569776 PMCID: PMC10419021 DOI: 10.3390/ijms241512402] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
3
|
Liu Y, Yuan H, Liu Y, Chen C, Tang Z, Huang C, Ning Z, Lu T, Wu Z. Multifunctional nanoparticle-VEGF modification for tissue-engineered vascular graft to promote sustained anti-thrombosis and rapid endothelialization. Front Bioeng Biotechnol 2023; 11:1109058. [PMID: 36733971 PMCID: PMC9887191 DOI: 10.3389/fbioe.2023.1109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Purpose: The absence of a complete endothelial cell layer is a well-recognized reason leading to small-diameter tissue-engineered vascular graft failure. Here we reported a multifunctional system consisting of chitosan (CS), Arg-Glu-Asp-Val (REDV) peptide, heparin, and vascular endothelial growth factor (VEGF) to achieve sustained anti-thrombosis and rapid endothelialization for decellularized and photo-oxidized bovine internal mammary arteries (DP-BIMA). Methods: CS-REDV copolymers were synthesized via a transglutaminase (TGase) catalyzed reaction. CS-REDV-Hep nanoparticles were formed by electrostatic self-assembly and loaded on the DP-BIMA. The quantification of released heparin and vascular endothelial growth factor was detected. Hemolysis rate, platelets adhesion, endothelial cell (EC) adhesion and proliferation, and MTT assay were performed in vitro. The grafts were then tested in a rabbit abdominal aorta interposition model for 3 months. The patency rates were calculated and the ECs regeneration was investigated by immunofluorescence staining of CD31, CD144, and eNOS antibodies. Results: The nanoparticle-VEGF system (particle size: 61.8 ± 18.3 nm, zeta-potential: +13.2 mV, PDI: .108) showed a sustained and controlled release of heparin and VEGF for as long as 1 month and exhibited good biocompatibility, a lower affinity for platelets, and a higher affinity for ECs in vitro. The nanoparticle-VEGF immobilized BIMA achieved 100% and 83.3% patency in a rabbit abdominal interposition model during 1 and 3 months, respectively, without any thrombogenicity and showed CD31, CD144, eNOS positive cell adhesion as early as 1 day. After 3 months, CD31, CD144, and eNOS positive cells covered almost the whole luminal surface of the grafts. Conclusion: The results demonstrated that the multifunctional nanoparticle-VEGF system can enhance the anti-thrombosis property and promote rapid endothelialization of small-diameter tissue-engineered vascular grafts. Utilizing nanoparticles to combine different kinds of biomolecules is an appropriate technology to improve the long-term patency of small-diameter tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Yalin Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Haoyong Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Can Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Zuodong Ning
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China,*Correspondence: Ting Lu, ; Zhongshi Wu,
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, China,*Correspondence: Ting Lu, ; Zhongshi Wu,
| |
Collapse
|
4
|
Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Structurally stable sustained-release microcapsules stabilized by self-assembly of pectin-chitosan-collagen in aqueous two-phase system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Li X, Lei Z, Sheng J, Song Y. Preparation and properties of caffeic-chitosan grafting fish bone collagen peptide. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211046417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a novel peptide grafted chitosan (CACS-FBP) with high peptide content, excellent moisture-absorption and moisture-retention abilities was prepared. Caffeic acid (CA) was used to modify chitosan, the highly water-soluble intermediate further reacted with fish bone collagen peptide to obtain the final product, and the synthesis of CACS-FBP was confirmed by the Fourier transform infrared spectroscopy (FT-IR), NMR, and UV-vis. The single-factor experiments indicated that the degree of substitution (DS) of CACS-FBP depended on the reaction temperature, reaction time, the mass ratio of fish bone collagen peptide to CACS (mFBP/mCACS) and the mass ratio of MTGase to CACS (mMTGase/mCACS). In addition, the antioxidant assay indicated that CACS-FBP had an excellent antioxidant capacity, and the CACS-FBP showed no cytotoxicity toward L929 mouse fibroblasts, all the results mean that the prepared peptide-containing chitosan derivative has potential application in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Xuqin Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Zhou Lei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Jie Sheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, P.R. China
| |
Collapse
|
7
|
Chitosan grafted/cross-linked with biodegradable polymers: A review. Int J Biol Macromol 2021; 178:325-343. [PMID: 33652051 DOI: 10.1016/j.ijbiomac.2021.02.200] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/29/2022]
Abstract
Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.
Collapse
|
8
|
Vera A, Tapia C, Abugoch L. Effect of high-intensity ultrasound treatment in combination with transglutaminase and nanoparticles on structural, mechanical, and physicochemical properties of quinoa proteins/chitosan edible films. Int J Biol Macromol 2019; 144:536-543. [PMID: 31862362 DOI: 10.1016/j.ijbiomac.2019.12.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 01/16/2023]
Abstract
The effect of high-intensity ultrasound (US) combined with transglutaminase treatment (TG) and the inclusion of nanoparticles (Np) on the structural, mechanical, barrier, and physicochemical properties of quinoa protein/chitosan composite edible films were evaluated. Structurally it was observed that the maximum temperatures of the thermal degradation increased with the use of combined US and TG treatment, generating films with superior thermal stability. FTIR results showed that in the amide zone I oscillations of the polypeptide structure were related to the stretching vibrations of CO in the US/TG-Np edible film. Which has generally been associated with changes in the structure and formation of covalent bonds by the action of TG. The US improved mechanical properties by increasing the tensile strength (with or without the application of TG). While combining US-TG produced a significant increase in thickness, decrease in elongation percentage, and increase in tensile strength. Which can be attributed to cross-linking produced by TG. Water vapour permeability increased in all cases. In general, the combination of US-TG treatments showed a more pronounced effect on the structure and mechanical properties.
Collapse
Affiliation(s)
- Antonia Vera
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile
| | - Cristian Tapia
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile.
| | - Lilian Abugoch
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile.
| |
Collapse
|
9
|
Chen Y, Jin H, Yang F, Jin S, Liu C, Zhang L, Huang J, Wang S, Yan Z, Cai X, Zhao R, Yu F, Yang Z, Ding G, Tang Y. Physicochemical, antioxidant properties of giant croaker (Nibea japonica) swim bladders collagen and wound healing evaluation. Int J Biol Macromol 2019; 138:483-491. [PMID: 31330209 DOI: 10.1016/j.ijbiomac.2019.07.111] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Acid-solubilized collagen (ASC) and pepsin-solubilized collagen (PSC) were obtained from Nibea japonica swim bladders. The denaturation temperature (Td) of ASC and PSC was approximately 33.8 °C. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy (FTIR) analyses indicated that ASC and PSC contained triple-helical type I collagen when compared to rat tail collagen type I. Moreover, the microstructure of collagen sponges was uniform and porous. In addition, ASC and PSC exhibited antioxidant properties and in vitro scratch assays showed that PSC at various concentrations (0, 12.5, 25, and 50 μg/mL) had significant effects on the scratch closure rate. Furthermore, collagen sponge from Nibea japonica swim bladders exhibited an increased efficacy of wound healing when compared to the control mice. The levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in the collagen sponge treated mice were significantly decreased when compared to the control group. Thus, our results suggested that collagen sponge from Nibea japonica swim bladders has potential wound healing applications.
Collapse
Affiliation(s)
- Yingyue Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Huoxi Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fei Yang
- Hangzhou Obstetrics & Gynecology Hospital, Hangzhou 310008, China
| | - Shujie Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chenjuan Liu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liukai Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ju Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shiguang Wang
- Laboratory of Aquatic Products Processing and Quality Safety, Zhejiang Marine Fisheries Research Institution, Zhoushan 316021, China
| | - Zhongyong Yan
- Laboratory of Aquatic Products Processing and Quality Safety, Zhejiang Marine Fisheries Research Institution, Zhoushan 316021, China
| | - Xuwei Cai
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Rui Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
10
|
Zhou M, Lee BH, Tan YJ, Tan LP. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Biofabrication 2019; 11:025011. [DOI: 10.1088/1758-5090/ab063f] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
A paper sizing agent based on leather collagen hydrolysates modified by glycol diglycidyl ether and its compound performance. Int J Biol Macromol 2019; 124:1205-1212. [DOI: 10.1016/j.ijbiomac.2018.12.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022]
|
12
|
Bioengineering of microbial transglutaminase for biomedical applications. Appl Microbiol Biotechnol 2019; 103:2973-2984. [PMID: 30805670 DOI: 10.1007/s00253-019-09669-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
Collapse
|
13
|
Min L, Liu M, Liu L, Rao Z, Zhu C, Fan L. Enzymatic synthesis of quaternary ammonium chitosan-silk fibroin peptide copolymer and its characterization. Int J Biol Macromol 2018; 109:1125-1131. [DOI: 10.1016/j.ijbiomac.2017.11.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/17/2023]
|
14
|
Lukanina KI, Grigoriev TE, Krasheninnikov SV, Mamagulashvilli VG, Kamyshinsky RA, Chvalun SN. Multi-hierarchical tissue-engineering ECM-like scaffolds based on cellulose acetate with collagen and chitosan fillers. Carbohydr Polym 2018; 191:119-126. [PMID: 29661299 DOI: 10.1016/j.carbpol.2018.02.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/05/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
Abstract
A novel high-tech composite biomimetic matrixes for a wide range of medical purposes were prepared. The structure of scaffolds was inspired by the architecture of native decellularized tissue: material consists of a sponge and fibrous components of different spatial geometry based on cellulose acetate with collagen or chitosan filler. The fibrous component was prepared by electrospinning, the sponge - freeze-drying technique. The influence of main technological parameters, such as freeze mode, polymer type and concentration, etc. on the fiber-sponge architecture and properties was examined. It was shown that scaffolds with different types of microstructure can be obtained employing this technique. The impregnation of chitosan or collagen filler in fiber matrix also significantly improves mechanical properties up to 40 MPa for strength and 600 MPa for Young's modulus.
Collapse
Affiliation(s)
- Ksenia I Lukanina
- National Research Center «Kurchatov Institute», Akademika Kurchatova pl.1, Moscow, 123182, Russia
| | - Timofei E Grigoriev
- National Research Center «Kurchatov Institute», Akademika Kurchatova pl.1, Moscow, 123182, Russia.
| | - Sergey V Krasheninnikov
- National Research Center «Kurchatov Institute», Akademika Kurchatova pl.1, Moscow, 123182, Russia
| | | | - Roman A Kamyshinsky
- National Research Center «Kurchatov Institute», Akademika Kurchatova pl.1, Moscow, 123182, Russia
| | - Sergey N Chvalun
- National Research Center «Kurchatov Institute», Akademika Kurchatova pl.1, Moscow, 123182, Russia
| |
Collapse
|
15
|
Liu L, Wen H, Rao Z, Zhu C, Liu M, Min L, Fan L, Tao S. Preparation and characterization of chitosan – collagen peptide / oxidized konjac glucomannan hydrogel. Int J Biol Macromol 2018; 108:376-382. [DOI: 10.1016/j.ijbiomac.2017.11.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/23/2017] [Accepted: 11/19/2017] [Indexed: 01/09/2023]
|
16
|
Xu W, Xiao Y, Luo P, Fan L. Preparation and characterization of C-phycocyanin peptide grafted N-succinyl chitosan by enzyme method. Int J Biol Macromol 2018; 113:841-848. [PMID: 29454954 DOI: 10.1016/j.ijbiomac.2018.02.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
C‑phycocyanin peptide (CPC) grafted N‑succinyl chitosan (NSC) was prepared via the catalysis of Microbial transglutaminase (MTGase). The single factor experiment displayed that the degree of substitution (DS) of N‑succinyl chitosan‑C‑phycocyanin peptide (NSC‑CPC) depended on the reaction time, the reaction temperature and the reaction pH value. The CS, synthesized NSC and NSC‑CPC were characterized by Fourier transform infrared spectroscopy (FT-IR). NSC‑CPC showed excellent moisture absorption and retention ability. In vitro antioxidant activity assays demonstrated that, with the DS and concentration increasing of NSC‑CPC, the scavenging activity of 1,1‑Diphenyl‑2‑pic‑rylhydrazyl (DPPH) radical and hydroxyl radical increased. The methylthiazol tetrazolium (MTT) essay demonstrated that NSC‑CPC inhibited Hela cells while promoted the proliferation of L929 mouse fibroblasts. In conclusion, these results suggested the potential application of NSC‑CPC in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Wenyan Xu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Xiao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Pengfeng Luo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Lihong Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
17
|
Zhu C, Zou S, Rao Z, Min L, Liu M, Liu L, Fan L. Preparation and characterization of hydroxypropyl chitosan modified with nisin. Int J Biol Macromol 2017; 105:1017-1024. [DOI: 10.1016/j.ijbiomac.2017.07.136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/23/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022]
|
18
|
Min L, Liu M, Zhu C, Liu L, Rao Z, Fan L. Synthesis and in vitro antimicrobial and antioxidant activities of quaternary ammonium chitosan modified with nisin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:2034-2052. [PMID: 28816602 DOI: 10.1080/09205063.2017.1368615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nisin had been grafted onto quaternary ammonium chitosan (QCS) through an enzyme-catalyzed reaction to enhance its limited antimicrobial activity. QCS was synthesized by incorporating N-(3-chloro-2-hydroxypropyl) trimethyl ammonium chloride (CHPTAC) onto chitosan's primary amine group. The modification had been confirmed by FT-IR and 1H NMR spectroscopy. Degree of substitution (DS) of QCS-nisin could be controlled by adjusting the reaction conditions. The synthesized compounds were screened in vitro to evaluate their antimicrobial and antioxidant activities. The results suggested that QCS-nisin significantly suppressed the growth of both gram-positive bacteria and gram-negative bacteria; The antioxidant effects on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, hydroxyl radical and hydrogen peroxide (H2O2) proved to be enhanced with increasing DS and concentration. In addition, QCS-nisin showed excellent moisture absorption and retention properties; MTT assay exhibited that QCS-nisin revealed low cytotoxicity effects on cultured NIH-3T3 fibroblasts. These results suggest that QCS-nisin would appear to be a promising candidate for wound dressing application.
Collapse
Affiliation(s)
- Lian Min
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Meng Liu
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Chen Zhu
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Liangling Liu
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Zhiqie Rao
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Lihong Fan
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| |
Collapse
|
19
|
Xiao Y, Ge H, Zou S, Wen H, Li Y, Fan L, Xiao L. Enzymatic synthesis of N -succinyl chitosan-collagen peptide copolymer and its characterization. Carbohydr Polym 2017; 166:45-54. [DOI: 10.1016/j.carbpol.2017.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/24/2016] [Accepted: 01/04/2017] [Indexed: 12/22/2022]
|
20
|
Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 2017; 96:282-301. [DOI: 10.1016/j.ijbiomac.2016.11.095] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023]
|
21
|
Chen Y, Liu X, Liu R, Gong Y, Wang M, Huang Q, Feng Q, Yu B. Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis in vitro and enhancement of bone repair in vivo. Am J Cancer Res 2017; 7:1072-1087. [PMID: 28435449 PMCID: PMC5399577 DOI: 10.7150/thno.18193] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/02/2017] [Indexed: 01/07/2023] Open
Abstract
Combination of tissue-engineered bone scaffolds with cell-adhesive, osteoconductive, or osteoinductive biomolecules is a critical strategy to improve their properties that significantly influence cellular behaviors, such as adhesion, proliferation, and differentiation, which is beneficial for critical-sized bone defects repairing. However, the traditional surface modification techniques, such as physical adsorption, coating, and plasma treatment, et al, have great limitations for immobilization of bioactive molecules due to undesirable controlled delivery performance or overly complex multistep procedures. In this study, we functionalized the chitosan/hydroxyapatite (CS/HA) biomimetic composite scaffold for controlled delivery of BMP2-derived peptide (P24) by the chemical grafting modification technique: firstly, P24 was conjugated with a thiolated chitosan, chitosan-4-thiobutylamidine (CS-TBA); secondly, the resultant CS-P24 was then combined with HA to prepare CS-P24/HA scaffolds. The effect of CS-P24/HA scaffolds on bone regeneration was evaluated, along with the underlying biological mechanisms responsible in vitro and in vivo. In vitro, the controlled and sustained release of bioactive P24 could last up to 90 days, furthermore, the release profiles of CS-5%P24/HA and CS-10%P24/HA were linear and could be fitted according to zero-order kinetic model (R2=0.9929; R2=0.9757); P24 on the scaffold significantly promoted cell adhesion, proliferation, osteodifferentiation, and mineralization with synergistic effects. Bone marrow stromal cells (BMSCs) revealed spindle-shaped surface morphology, indicating the CS-P24/HA scaffolds supported cell adhesion and possessed a high proliferation rate that varied according to the P24 concentration levels. Furthermore, mRNA levels for OCN, Runx2, and collagen I were significantly up-regulated on CS-P24/HA scaffolds compared with cells grown on CS/HA scaffolds in vitro (p < 0.05). Similarly, the BMSCs exhibited a higher ALP expression and calcium deposition level on CS-P24/HA scaffolds compared with CS/HA scaffolds (p < 0.05). In vivo, osteoinductive studies revealed a significantly higher ectopic osteogenesis level of CS-10%P24/HA scaffolds in rat dorsal muscle pockets compared with that of CS/HA scaffolds. Finally, CS-P24/HA scaffolds showed superior performance in the reconstruction of rat calvarial bone defects. This novel CS-P24/HA scaffold is deemed a strong potential candidate for the repair of bone defects in human bone tissue engineering.
Collapse
|
22
|
Fan L, Zou S, Ge H, Xiao Y, Wen H, Feng H, Liu M, Nie M. Preparation and characterization of hydroxypropyl chitosan modified with collagen peptide. Int J Biol Macromol 2016; 93:636-643. [DOI: 10.1016/j.ijbiomac.2016.07.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
|
23
|
Transglutaminase catalyzed hydrolyzed wheat gliadin grafted with chitosan oligosaccharide and its characterization. Carbohydr Polym 2016; 153:105-114. [DOI: 10.1016/j.carbpol.2016.07.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
|
24
|
Fan L, Hu J, Hu Z, Peng M, Wen H, Li Y, Wang T. Preparation and characterization of aminoethyl hydroxypropyl methyl cellulose modified with nisin. Int J Biol Macromol 2016; 89:62-9. [DOI: 10.1016/j.ijbiomac.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/20/2016] [Accepted: 03/05/2016] [Indexed: 01/31/2023]
|
25
|
Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme Microb Technol 2016; 90:1-18. [DOI: 10.1016/j.enzmictec.2016.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022]
|
26
|
Fan L, Tong J, Tang C, Wu H, Peng M, Yi J. Preparation and characterization of carboxymethylated carrageenan modified with collagen peptides. Int J Biol Macromol 2016; 82:790-7. [DOI: 10.1016/j.ijbiomac.2015.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/03/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
27
|
Synthesis of a novel chitosan-based Ce(IV) complex with proteolytic activity in vitro toward edible biological proteins. Carbohydr Polym 2015; 140:154-62. [PMID: 26876839 DOI: 10.1016/j.carbpol.2015.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/22/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
The occurrence of enzymatic activities is attributed to proper spatial organization of functional groups from first principles. A novel chitosan-based Ce(IV) complex (CC[Ce(IV)]), an artificial metalloproteinase, was synthesized by attaching cyclen, Ce(IV), and chlorophyll-Cu(II) to a chitosan-based matrix. The enzymatic hydrolytic efficiency (HE) and the procedure of catalyzing myoglobin (Mb) by CC[Ce(IV)] in vitro were investigated using spectrophotometry, electrophoresis, and liquid chromatography. The results showed that the HE of Mb was up to 60% at 60°C within 24h, displaying a catalytic proficiency. The pseudo-first-order kinetic constant (kobs) for CC[Ce(IV)] treatment within 24h was 3.85×10(-2)h(-1), higher than that for α-chymotrypsin treatment, which was 2.63×10(-2)h(-1). Moreover, the peptide bond derived from Asp-Phe/Phe-Asp in Mb could be specifically cleaved by CC[Ce(IV)], which could simulate the functionality of α-chymotrypsin. This work provides an experimental basis for potential utilization of the chitosan-based Ce(IV) complexes in the food industry.
Collapse
|
28
|
Zhu X, Wu H, Yang J, Tong J, Yi J, Hu Z, Hu J, Wang T, Fan L. Antibacterial activity of chitosan grafting nisin: Preparation and characterization. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Aljawish A, Chevalot I, Jasniewski J, Scher J, Muniglia L. Enzymatic synthesis of chitosan derivatives and their potential applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.10.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|