1
|
Darshna, Dkhar DS, Srivastava P, Chandra P. Nano-fibers fabrication using biological macromolecules: Application in biosensing and biomedicine. Int J Biol Macromol 2025; 306:141508. [PMID: 40020816 DOI: 10.1016/j.ijbiomac.2025.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Nanofibers, a type of nanomaterial, have been widely use in a variety of fields, both research and commercial applications. They are a material of choice in a diverse range of applications due to their characteristics and unique physicochemical properties. Nanofibers have cross-sectional dimeters varying between 1 nm and 100 nm, the nano range dimensions providing them characteristics such as high surface area-to-volume ratio, highly porous as well as interconnected networks. There are various types of materials which have been used to synthesize nanofibers both biological (namely, hyaluronic acid, chitosan, alginate, fibrin, collagen, gelatin, silk fibroin, gums, and cellulose) as well as synthetic (namely, poly(lactic acid), poly(1-caprolactone), poly(vinyl alcohol), and polyurethane) polymers which have been briefly discussed in the present review. The review also explores various fabrication techniques for producing nanofibers, such as physical/chemical/biological techniques as well as electrospinning/non-spinning techniques. Due to their distinctive physicochemical qualities, nanofibers have become intriguing one-dimensional nanomaterials with applications in a wide range of biomedical fields. In line with this, the review discusses about various applications of nanofibers, namely, wound dressing, drug delivery, implants, diagnostic devices, tissue engineering, and biosensing. Furthermore, having an insight of the distinctive characteristics of nanofibers materials which could have immense potential in various biosensing applications, this review emphasizes on application of nanofibrous materials in the field of biosensing. However, despite these advances, there remain some challenges that need to be addressed before nanofiber technology can be widely adopted for its commercial use in biomedical as well as biosensing applications.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Wang K, Tang Y, Zhang X, Huang X, Zhang B. Study of the Reaction Mechanism of the Excessive Adsorption of Mn 2+ from Water by In Situ Synthesis of MnO 2@SiO 2 Colloid as an Adsorbent. Int J Mol Sci 2025; 26:2928. [PMID: 40243509 PMCID: PMC11988551 DOI: 10.3390/ijms26072928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
An in situ-generated MnO2@SiO2 colloidal (ISMC) composite was used for the adsorption of Mn2+ ions in water. The adsorption capacity of ISMC at a concentration of 1 mg/L at 25 °C was as high as 3017.97 mg/g for the original concentration of 50 mg/L Mn2+ ions. Material characterization revealed that it is a porous sponge with a fibrous structure with a rough surface, many folds, and abundant pores, and these features provide many adsorption sites, which are conducive to the attachment of Mn2+ ions on its surface. ISMC has an isoelectric point of 3.5, indicating a negative surface charge that favors electrostatic attraction of Mn2⁺ ions. The surface hydroxyl groups provide additional active sites that allow for strong complexation with Mn2⁺ ions. Adsorption conformed to the Freundlich isotherm model (R2 > 0.98), suggesting multilayer adsorption, followed by pseudo-second-order kinetics (R2 > 0.98), with an optimum adsorption time of approximately 12 h. Low temperatures favor physical adsorption, whereas higher temperatures promote chemisorption via hydroxyl group complexation. The adsorption capacity increased with pH, which was attributed to the increased presence of surface hydroxyl groups. These findings highlight the significant potential of ISMCs for cation adsorption in water treatment applications.
Collapse
Affiliation(s)
| | - Yuchao Tang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, China; (K.W.); (X.Z.); (X.H.); (B.Z.)
| | | | | | | |
Collapse
|
3
|
de Borja Ojembarrena F, van Hullebusch E, Marsac R, Merayo N, Blanco A, Negro C. Selective recovery of Co(II), Mn(II), Cu(II), and Ni(II) by multiple step batch treatments with nanocellulose products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66725-66741. [PMID: 39641847 DOI: 10.1007/s11356-024-35699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The recovery of Co(II), Mn(II), Ni(II), and Cu(II) from black mass e-waste solutions through cellulose nanofibers (CNFs) and nanocrystals (CNCs) was investigated. These materials were synthetized by TEMPO-oxidation followed by high-pressure homogenization, and acid hydrolysis, respectively. The NC characterization included the measurement of consistency, cationic demand, carboxylic content, dissolved amorphous cellulose, and transmittance at λ = 600 nm. These parameters revealed a high transmittance of the NC solutions and a large presence of anionic groups on the surface. The high surface area and charge of the NC justify their high interaction with the cationic metals. Results indicate that short contact times (even 1 min) and low sorbent doses (10 mg/L) at acidic pHs (2 to 4) implied remarkable sorption capacities in most cases with more than 1 g/g of sorption capacity of Co(II), Mn(II), and Cu(II) in single-step sorption tests. Such levels of sorption capacities exceed by at least one order of magnitude most of the literature values of metal recovery applying cellulosic materials. Isotherm modeling through a combination of Langmuir and Freundlich models suggested that both sorption and surface precipitation occurred. A novel procedure following multiple-step batch operation was applied for Mn(II) sorption. This new method was applied as a five-step process, leading to a fourfold and 18-fold increase of sorption capacity onto CNCs and CNFs, respectively, compared to the single-step process. Therefore, this process shows an innovative way to implement the multiple-step batch sorption with NC as an efficient and environmentally friendly solution for critical metal recovery from e-waste leachates.
Collapse
Affiliation(s)
- Francisco de Borja Ojembarrena
- Cellulose, Paper and Advanced Water Treatments Research Group, Department of Chemical Engineering, Complutense University of Madrid, Avda. Complutense S/N, Madrid, Spain
| | - Eric van Hullebusch
- Institut de Physique du Globe de Paris, CNRS, Université Paris Cité, 75005, Paris, France
| | - Rémi Marsac
- Institut de Physique du Globe de Paris, CNRS, Université Paris Cité, 75005, Paris, France
| | - Noemi Merayo
- ETSIDI, Mechanical, Chemical and Industrial Design Eng. Dept, Universidad Politécnica de Madrid, Madrid, Spain
| | - Angeles Blanco
- Cellulose, Paper and Advanced Water Treatments Research Group, Department of Chemical Engineering, Complutense University of Madrid, Avda. Complutense S/N, Madrid, Spain
| | - Carlos Negro
- Cellulose, Paper and Advanced Water Treatments Research Group, Department of Chemical Engineering, Complutense University of Madrid, Avda. Complutense S/N, Madrid, Spain.
| |
Collapse
|
4
|
Li J, Sun H, Zhang D, Yang X, Fu Z, Yu B. In Situ Preparation of MnO 2 on the Catechol/Silane-Coated Polypropylene Nonwoven Fabrics for Effective Removal of Cationic Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25088-25100. [PMID: 39541439 DOI: 10.1021/acs.langmuir.4c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Previous studies have confirmed that MnOx removes heavy metal ions and organic pollutants from water with dual effects of adsorption and oxidation coupling, significantly improving the ability to remove impurities. Nanometal oxides have a highly reactive surface but tend to agglomerate during preparation and are challenging to recycle after use. A common method is to combine nano-MnO2 with Fe3O4 to prepare magnetic materials for easy recycling. Our previous research has confirmed that catechol (CA) and (3-aminopropyl) triethoxysilane (KH550) can be co-deposited on the surface of polypropylene nonwovens to form a stable CK coating under alkaline conditions. In addition, the coating has many active groups, including hydroxyl groups, amino groups, etc. This study further investigates the secondary reactivity of CK coatings. The coordination of catechol groups and metal ions was used to anchor manganese ions to the coating. Meanwhile, the hydroxyl and amino groups were used to reduce manganese ions to Mn4+ in situ to prepare PP-(CK-MnO2). We found that the sample had an excellent decolorization effect on cationic dyes but was limited to anionic dyes. The decolorization mechanism of cationic dyes was further discussed. The results showed that the decolorization of cationic dyes had a dual effect of adsorption and oxidative degradation. Under acidic conditions, its oxidation properties were enhanced. It can be used as a highly effective decolorizing agent for cationic dyes, and the decolorization behavior is consistent with the first-order kinetics. As the pH increases, its oxidation properties gradually decrease. Although the electrostatic adsorption effect was enhanced, the overall decolorization performance was significantly reduced. Recycling experiments have proved that it can maintain >90% removal rate after five cycles. This study also demonstrated that the CK coating has dopamine-like properties, which can coordinate with metal ions to prepare metal-organic hybrid materials.
Collapse
Affiliation(s)
- Jing Li
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Electrical and Mechanical Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Hui Sun
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Dewei Zhang
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Xiaodong Yang
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Zhuan Fu
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bin Yu
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
5
|
Srihanam P, Prapasri A, Janthar M, Leangtanom P, Thongsomboon W. Efficient dye removal using manganese oxide-modified nanocellulosic films from sugarcane bagasse. Int J Biol Macromol 2024; 280:135910. [PMID: 39322158 DOI: 10.1016/j.ijbiomac.2024.135910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Removing toxic dyes from industrial wastewater is crucial for environmental protection. This research introduced novel composite films of manganese oxide (MnO2)-modified nanocellulose (MCel) and unmodified nanocellulose (Cel) derived from sugarcane bagasse for dye removal. Nanocellulose was extracted from sugarcane bagasse and subsequently transformed into MCel through in-situ MnO2 synthesis. The MCel/Cel composites, with various MCel to Cel ratios, were fabricated into films and evaluated for their efficiency in removing methylene blue (MB). The films were characterized using Fourier transform infrared spectroscopy for functional group analysis, X-ray diffraction for crystallinity, X-ray photoelectron spectroscopy for chemical state analysis, field emission scanning electron microscopy-energy dispersive spectroscopy for morphology and elemental composition, and Thermogravimetric Analysis for thermal behaviors. Adsorption results showed that all MCel/Cel composite films achieved over 97 % removal of MB (initial concentration 100 mg L-1) within 24 h, with convenient adsorbent retrieval after adsorption. The adsorption process followed a pseudo-second order kinetic model and Langmuir adsorption isotherm. The optimal 95:5 MCel/Cel film exhibited a rate constant of 6.16 × 10-4 g mg-1 min-1 and the calculated adsorption capacity of 181.85 mg g-1. These results demonstrate significant potential for wastewater treatment and sustainable waste valorization by converting sugarcane bagasse cellulose into environmentally friendly adsorbents for contaminant removal.
Collapse
Affiliation(s)
- Prasong Srihanam
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand; Biodegradable Polymers Research Unit, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Amamita Prapasri
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Marisa Janthar
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Pimpan Leangtanom
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wiriya Thongsomboon
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand; Biodegradable Polymers Research Unit, Mahasarakham University, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
6
|
Sun Y, Liu R, Sun Y, Long L. A robust, eco-friendly, and biodegradable cellulose nanofiber composite film for highly effective formaldehyde removal at room temperature. Int J Biol Macromol 2024; 274:133092. [PMID: 38866270 DOI: 10.1016/j.ijbiomac.2024.133092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Formaldehyde (HCHO) poses a significant threat as a common indoor air pollutant, leading to various health issues. However, effectively addressing HCHO removal at room temperature remains a considerable challenge. This paper presents the preparation of a robust, eco-friendly, and biodegradable composite cellulose nanofiber film, incorporating CeO2-Ag@MnO2 catalysts and TEMPO-oxidized cellulose nanofiber (TOCNF), for high-efficiency HCHO removal at room temperature. A CeO2-Ag@MnO2 ternary catalyst with a core-shell structure was constructed to enhance the catalytic oxidation activity and stability. This structure increased the number of active sites on the catalyst surface and enhanced the interfacial synergistic effect of Ce-Ag-Mn. The TOCNF physically adsorbed HCHO in the composite film, while the catalyst oxidized it to CO2 and water. The composite films, particularly those with 20 wt% CeO2-Ag@MnO2 catalyst, exhibited high HCHO removal rates of 91.2 % at 20 °C and 99.6 % at 60 °C. Furthermore, the TOCNF/20 CAM composite films demonstrated excellent mechanical properties and degradability. This composite film offers an efficient and eco-friendly solution for the catalytic oxidation of HCHO at room temperature.
Collapse
Affiliation(s)
- Yingchun Sun
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ru Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuhui Sun
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ling Long
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
7
|
Yousefzadeh Z, Montazer M, Mianehro A. Plasmonic photocatalytic nanocomposite of in-situ synthesized MnO 2 nanoparticles on cellulosic fabric with structural color. Carbohydr Polym 2024; 326:121622. [PMID: 38142078 DOI: 10.1016/j.carbpol.2023.121622] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
The textile industry produces 20 % of the industrial water pollution containing toxic substances mostly dyes. Reducing material consumption and developing more efficient and scalable textile waste-water treatment methods such as photocatalytic degradation is essential. In this work, manganese dioxide nanoparticles (MnO2 NPs) were synthesized on the cotton fabric via a facile in-situ process. The preparation process was optimized for the highest photocatalytic activity under sunlight and color change originating from the plasmonic structural color of the nanoparticles. This promotes the photocatalytic activity by delocalization of the hot electrons while demonstrating the best washing and light fastness by using the least chemicals, and energy in a short time. In this way, the fabric was colored without any dye and possessed robust photocatalytic activity. Further, no dye-containing waste-water is made, and also accomplished to degrade dyes in a few hours under sunlight which is substantial for sustainable development. The treated fabrics indicated favorable mechanical properties, enhanced thermal stability, and perfect biocompatibility.
Collapse
Affiliation(s)
- Zahra Yousefzadeh
- Textile Department, Amirkabir University of Technology, Center of Excellence in Textile, Tehran, Iran
| | - Majid Montazer
- Textile Department, Amirkabir University of Technology, Center of Excellence in Textile, Tehran, Iran; Functional Fibrous Structures & Environmental Enhancement (FFSEE), Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Ali Mianehro
- Textile Department, Amirkabir University of Technology, Center of Excellence in Textile, Tehran, Iran
| |
Collapse
|
8
|
Das A, Kundu S, Gupta M, Mukherjee A. Synthesis of porous calcium-guar gum benzoate nano-biohybrids for sorptive removal of congo red and phosphates from water. Int J Biol Macromol 2023; 253:126662. [PMID: 37673147 DOI: 10.1016/j.ijbiomac.2023.126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
This work aims to develop an eco-sound nano-bio-hybrid sorbent using sustainable materials for sorptive elimination of congo red and phosphates from aquatic environment. An amphipathic biopolymer derivative, high DS guar gum benzoate (GGBN) was used for entrapment of as synthesized calcium carbonate nanoparticles using solvent diffusion nano-precipitation technique. Designer nano-biohybrids were developed upon experimenting with various materials stoichiometry. SEM, XRD and EDX studies confirmed near-uniform impregnation of rhombohedral calcium carbonate crystals throughout the biopolymer matrix. Average pore size distribution and surface area of final product Ca-GGBNC, were estimated from NDLFT and BET methods respectively. Analysis of adsorption findings acquired at study temperature 27 ± 2 °C showed that the maximum adsorption capacity of Ca-GGBNC recorded qmax, 333.33 mg/g for congo red azo dye and that for phosphate was at 500 mg/g. Adsorptive removal was noted and both components followed pseudo second order kinetics. Intra-particle diffusion kinetics investigation disclosed that the boundary layer effect was prominent and the adsorption rates were not solely directed by the diffusion stage. Activation energy, Ea was to be estimated using Arrhenius equation at 56.136 and 47.015 KJ/mol for congo red and phosphates respectively. The calculated thermodynamic parameters(ΔG°, ΔH°, and ΔS°) revealed the spontaneous, feasible and endothermic sorption process. Owing to active surface area, spherical size, functional moiety and porous network, antibacterial properties of nanobiohybrid were persistent and MIC against E. coli and S. aureus were recorded at 200 μg/mL and 350 μg/mL respectively.
Collapse
Affiliation(s)
- Aatrayee Das
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India.
| | - Sonia Kundu
- Department of Food Science and Technology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, Nadia 741249, West Bengal, India
| | - Mradu Gupta
- Dravyaguna Department, Institute of Post Graduate Ayurvedic Education and Research, 294/3/1, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Arup Mukherjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, Nadia 741249, West Bengal, India
| |
Collapse
|
9
|
Gaidau C, Râpă M, Stanca M, Tanase ML, Olariu L, Constantinescu RR, Lazea-Stoyanova A, Alexe CA, Tudorache M. Fish Scale Gelatin Nanofibers with Helichrysum italicum and Lavandula latifolia Essential Oils for Bioactive Wound-Healing Dressings. Pharmaceutics 2023; 15:2692. [PMID: 38140033 PMCID: PMC10747005 DOI: 10.3390/pharmaceutics15122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Essential oils are valuable alternatives to synthetic antibiotics that have the potential to avoid the pathogen resistance side effects generated by leather. Helichrysum italicum and Lavandula latifolia essential oils combined with fish scale gelatin were electrospun using a coaxial technique to design new bioactive materials for skin wound dressings fabrication. Fish scale gelatins were extracted from carp fish scales using two variants of the same method, with and without ethylenediaminetetraacetic acid (EDTA). Both variants showed very good electrospinning properties when dissolved in acetic acid solvent. Fish scale gelatin nanofibers with Helichrysum italicum and Lavandula latifolia essential oil emulsions ensured low microbial load (under 100 CFU/g of total number of aerobic microorganisms and total number of yeasts and filamentous fungi) and the absence of Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 10536, and Candida albicans ATCC 1023 as compared to fish scale gelatin without essential oils, which recommends them for pharmaceutical or topical applications. A scratch-test performed on human dermal fibroblasts proved that the biomaterials contributing to the wound healing process included fish scale gelatin nanofibers without EDTA (0.5% and 1%), fish scale gelatin nanofibers without EDTA and Lavandula latifolia essential oil emulsion (1%), fish scale gelatin nanofibers with EDTA (0.6%), and fish scale gelatin nanofibers with EDTA with Helichrysum italicum essential oil emulsion (1% and 2%).
Collapse
Affiliation(s)
- Carmen Gaidau
- The National Research & Development Institute for Textiles and Leather, Division Leather and Footwear Research Institute, 31251 Bucharest, Romania; (C.G.); (R.R.C.); (C.-A.A.)
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Maria Stanca
- The National Research & Development Institute for Textiles and Leather, Division Leather and Footwear Research Institute, 31251 Bucharest, Romania; (C.G.); (R.R.C.); (C.-A.A.)
| | - Mariana-Luiza Tanase
- SC Biotehnos SA, 3-5 Gorunului Street, 075100 Otopeni, Romania; (M.-L.T.); (L.O.)
| | - Laura Olariu
- SC Biotehnos SA, 3-5 Gorunului Street, 075100 Otopeni, Romania; (M.-L.T.); (L.O.)
| | - Rodica Roxana Constantinescu
- The National Research & Development Institute for Textiles and Leather, Division Leather and Footwear Research Institute, 31251 Bucharest, Romania; (C.G.); (R.R.C.); (C.-A.A.)
| | - Andrada Lazea-Stoyanova
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Cosmin-Andrei Alexe
- The National Research & Development Institute for Textiles and Leather, Division Leather and Footwear Research Institute, 31251 Bucharest, Romania; (C.G.); (R.R.C.); (C.-A.A.)
| | - Madalina Tudorache
- Laboratory for Quality Control and Process Monitoring, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Boulevard, 030018 Bucharest, Romania;
| |
Collapse
|
10
|
Zhao X, Onodera C, Muraoka M. Rapid production of silver nanofibers using a self-reducing solution. NANOTECHNOLOGY 2023; 34:505603. [PMID: 37725956 DOI: 10.1088/1361-6528/acfb14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Silver nanofibers (Ag NFs) have gained considerable attention because of their high transmittance resulting from the size effect, excellent electrical conductivity, and mechanical properties. However, synthesizing high-quality Ag NFs remains a challenge. This paper reports a novel self-reducing solution that contains platinum nanoparticles for the rapid production of Ag NFs. The method involves generating the precursor NFs and heating them in air, which reduces silver nitrate to Ag NFs within a few minutes. The as-prepared solution is characterized by its simple preparation, cost-effectiveness, and broad applicability. Additionally, the use of high-pressure airflow to directly spin the solution and a complete self-reduction system that does not depend on external conditions broadens the application prospects of the as-developed solution. Furthermore, we provide insights into the self-reduction mechanism and guidance on the preparation of self-reducing solutions.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Systems Design Engineering, Akita University, Akita 010-8502, Japan
| | - Chiho Onodera
- Department of Systems Design Engineering, Akita University, Akita 010-8502, Japan
| | - Mikio Muraoka
- Department of Systems Design Engineering, Akita University, Akita 010-8502, Japan
| |
Collapse
|
11
|
Xia C, Li X, Wu Y, Suharti S, Unpaprom Y, Pugazhendhi A. A review on pollutants remediation competence of nanocomposites on contaminated water. ENVIRONMENTAL RESEARCH 2023; 222:115318. [PMID: 36693465 DOI: 10.1016/j.envres.2023.115318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Clean freshwater has been required for drinking, sanitation, agricultural activities, and industry, as well as for the development and maintenance of the eco - systems on which all livelihoods rely. Water contamination is currently a significant concern for researchers all over the world; hence it is essential that somehow this issue is resolved as soon as possible. It is now recognised as one of the most important research areas in the world. Current wastewater treatment techniques degrade a wide range of wastewaters efficiently; however, such methods have some limitations. Recently, nanotechnology has emerged as a wonderful solution, and researchers are conducting research in this water remediation field with a variety of potential applications. The pollutants remediation capability of nanocomposites as adsorbents, photocatalysts, magnetic separation, and so on for contaminant removal from contaminated water has been examined in this study. This study has spotlighted the most significant nanocomposites invention reported to date for contaminated and effluent remediation, as well as a research gap as well as possible future perspectives.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Suharti Suharti
- Department of Chemistry, State University of Malang, Malang, East Java, Indonesia
| | - Yuwalee Unpaprom
- Program in Biotechnology, Maejo University, Chiang Mai, Thailand
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
12
|
Preparation of alkali lignin extracted from ligno-cellulosic populus tremula fibers: Application to copper oxide nanoparticles synthesis, characterization, and methylene blue biosorption study. Int J Biol Macromol 2023; 226:956-964. [PMID: 36529210 DOI: 10.1016/j.ijbiomac.2022.12.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The green synthesis of nanoparticles using biogenic approaches constitutes a challenge for effective applications. The massive aliphatic hydroxyl groups of lignin exhibited excellent reduction properties allowing the production of metallic nanoparticles. In this work, alkali lignin was extracted from virgin populus tremula and used for the preparation of copper oxide nanoparticles. The analysis of the prepared nanoparticles was assessed using Fourier Transform Infra-red (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), and Transmission Electron Microscopy (TEM). FT-IR results displayed that different phytochemicals constituents of lignin extract were responsible for the production of CuO nanoparticles. XRD information demonstrated monoclinic CuO nanoparticles with a mean size of 12.4 nm. SEM images showed that some nanoparticles were quite separated from each other and some of them were agglomerated due to the oxidation of metal nanoparticles. TEM photos indicated that the overlap of the nanoparticles resulted in rectangular patterns due to the presence of lignin on the surface of CuO nanoparticles. Finally, the prepared CuO nanoparticles were applied for the removal of methylene blue from water. The results showed that the maximum adsorption capacity reached 85 mg/g at the following conditions: T = 20 °C, pH = 6, and time = 60 min.
Collapse
|
13
|
Peramune D, Manatunga DC, Dassanayake RS, Premalal V, Liyanage RN, Gunathilake C, Abidi N. Recent advances in biopolymer-based advanced oxidation processes for dye removal applications: A review. ENVIRONMENTAL RESEARCH 2022; 215:114242. [PMID: 36067842 DOI: 10.1016/j.envres.2022.114242] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, synthetic dye-contaminated wastewater has attracted considerable global attention due to the low biodegradability and the ability of organic dyes to persist and remain toxic, causing numerous health and environmental concerns. As a result of the recalcitrant nature of those complex organic dyes, the remediation of wastewater using conventional wastewater treatment techniques is becoming increasingly challenging. In recent years, advanced oxidation processes (AOPs) have emerged as a potential alternative to treat organic dyestuffs discharged from industries. The most widely employed AOPs include photocatalysis, ozonation, Fenton oxidation, electrochemical oxidation, catalytic heterogeneous oxidation, and ultrasound irradiation. These processes involve the generation of highly reactive radicals to oxidize organic dyes into innocuous minerals. However, many conventional AOPs suffer from several setbacks, including the high cost, high consumption of reagents and substrates, self-agglomeration of catalysts, limited reusability, and the requirement of light, ultrasound, or electricity. Therefore, there has been significant interest in improving the performance of conventional AOPs using biopolymers and heterogeneous catalysts such as metal oxide nanoparticles (MONPs). Biopolymers have been widely considered in developing green, sustainable, eco-friendly, and low-cost AOP-based dye removal technologies. They inherit intriguing properties like biodegradability, renewability, nontoxicity, relative abundance, and sorption. In addition, the immobilization of catalysts on biopolymer supports has been proven to possess excellent catalytic activity and turnover numbers. The current review provides comprehensive coverage of different AOPs and how efficiently biopolymers, including cellulose, chitin, chitosan, alginate, gelatin, guar gum, keratin, silk fibroin, zein, albumin, lignin, and starch, have been integrated with heterogeneous AOPs in dye removal applications. This review also discusses the general degradation mechanisms of AOPs, applications of biopolymers in AOPs and the roles of biopolymers in AOPs-based dye removal processes. Furthermore, key challenges and future perspectives of biopolymer-based AOPs have also been highlighted.
Collapse
Affiliation(s)
- Dinusha Peramune
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka.
| | - Vikum Premalal
- Department of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Chamila Gunathilake
- Department of Material and Nanoscience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, 60200, Sri Lanka
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
14
|
Song Y, Jiang M, Zhou L, Yang H, Zhang J. Rapidly regenerated CNC/TiO2/MnO2 porous microspheres for high-efficient dye removal. Carbohydr Polym 2022; 292:119644. [DOI: 10.1016/j.carbpol.2022.119644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022]
|
15
|
Zhang H, Pan Y, Wang Z, Wu A, Zhang Y. Synthesis of hollow mesoporous manganese dioxide nanoadsorbents with strong negative charge and their ultra-efficient adsorption for cationic dyes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers (Basel) 2022; 14:polym14122462. [PMID: 35746038 PMCID: PMC9231113 DOI: 10.3390/polym14122462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
Water pollution remains one of the greatest challenges in the modern era, and water treatment strategies have continually been improved to meet the increasing demand for safe water. In the last few decades, tremendous research has been carried out toward developing selective and efficient polymeric adsorbents and membranes. However, developing non-toxic, biocompatible, cost-effective, and efficient polymeric nanocomposites is still being explored. In polymer nanocomposites, nanofillers and/or nanoparticles are dispersed in polymeric matrices such as dendrimer, cellulose, resins, etc., to improve their mechanical, thermophysical, and physicochemical properties. Several techniques can be used to develop polymer nanocomposites, and the most prevalent methods include mixing, melt-mixing, in-situ polymerization, electrospinning, and selective laser sintering techniques. Emerging technologies for polymer nanocomposite development include selective laser sintering and microwave-assisted techniques, proffering solutions to aggregation challenges and other morphological defects. Available and emerging techniques aim to produce efficient, durable, and cost-effective polymer nanocomposites with uniform dispersion and minimal defects. Polymer nanocomposites are utilized as filtering membranes and adsorbents to remove chemical contaminants from aqueous media. This study covers the synthesis and usage of various polymeric nanocomposites in water treatment, as well as the major criteria that influence their performance, and highlights challenges and considerations for future research.
Collapse
|
17
|
Wang H, Liang Z, Liu C, Zhu L, Xu Y, Zhou L, Yan B. Construction of K and Tb Co-doped MnO 2 nanoparticles for enhanced oxidation and detoxication of organic dye waste. CHEMOSPHERE 2022; 297:134104. [PMID: 35218779 DOI: 10.1016/j.chemosphere.2022.134104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Developing low-cost and efficient materials for dye pollutant removal under mild condition remains a great challenge. Here K+ and Tb3+ co-doped porous MnO2 (K-Tb-MnO2) nanoparticles with tailored properties including crystal structure, surface area and catalytic activity have been synthesized. Experimental results reveal that K-Tb-MnO2 nanoparticle has higher specific surface area, Mn3+ content and surface oxygen vacancies than pristine MnO2 nanoparticle and single-doped MnO2 materials, showing the uniqueness of dual-doped metal ions. Using methyl blue (MB) as a model pollutant, its removal efficiency by K-Tb-MnO2 nanoparticles within 5 min is 93.6%, which is 18, 8.3, and 2.9 times higher than that of MnO2, K-MnO2, and Tb-MnO2 nanomaterials, respectively. Oxalic acid triggered MnO2 material dissolving assay and FT-IR spectrum suggested that remarkable performance of K-Tb-MnO2 nanoparticle toward MB removal can be attributed to a combined effect of adsorption (16% MB removal) and catalytic degradation (84% MB removal). Moreover, K-Tb-MnO2 nanoparticle mediated MB degradation is demonstrated to be a combination of non-radical oxidation by Mn3+ and radical-participated degradation, with 1O2 as the main species. And the intermediates and pathways of MB degradation were studied by liquid chromatography-mass spectrometry. Importantly, cell viability experiment suggests that the toxicity of MB dye could be efficiently alleviated after the treatment with K-Tb-MnO2 nanoparticle. These results demonstrate the great potential of the novel K-Tb-MnO2 particles to be used as a highly effective nanomaterials to reduce the risk of dye wastes toward the environment and human health.
Collapse
Affiliation(s)
- Haiqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Chao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Yongtao Xu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
18
|
Khan MJ, Singh N, Mishra S, Ahirwar A, Bast F, Varjani S, Schoefs B, Marchand J, Rajendran K, Banu JR, Saratale GD, Saratale RG, Vinayak V. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: Updates, challenges and innovations. CHEMOSPHERE 2022; 288:132589. [PMID: 34678344 DOI: 10.1016/j.chemosphere.2021.132589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers. Such biopolymers are produced either by microbes at anode and algae at cathode or vice versa. The biopolymers recovered from these biological sources can be added in wastewater alone or in combination with nanomaterials to act as nanoadsorbents. These nanoadsorbents further increase the efficiency of PMFC by removing the pollutants like metals and dyes. In this review firstly the effect of different light intensities on the growth of microalgae, importance of diatoms in a PMFC and their impact on PMFCs efficiencies have been narrated. Secondly recovery of biopolymers from different biological sources and their role in removal of metals, dyes along with their impact on circular bioeconomy have been discussed. Thereafter bottlenecks and future perspectives in this field of research have been narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Nikhil Singh
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Felix Bast
- Department of Botany, Central University of Punjab, Ghudda-VPO, Bathinda, 151401, Punjab, 151001, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamilnadu, Thiruvar, 610005, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
19
|
Bio and photoactive starch/MnO 2 and starch/MnO 2/cotton hydrogel nanocomposite. Int J Biol Macromol 2021; 193:681-692. [PMID: 34717975 DOI: 10.1016/j.ijbiomac.2021.10.168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023]
Abstract
Here a starch and starch hydrogel nanocomposite and superabsorbent cotton fabric was fabricated and characterized. The optimized starch hydrogel nanocomposite was synthesized by using 0.008 M potassium permanganate, 0.7 g starch and 0.6 M sodium hydroxide at 50-55 °C. potassium permanganate as a strong and inexpensive oxidizing agent were used to potentially nano cross-link the starch molecular chains and graft the starch to cellulose molecular chains along with synthesizing manganese dioxide nanoparticles (MnO2) to further obtain antibacterial, antifungal and photocatalytic properties. The stability of products in water and the water absorption indicated the highest water content of 800% for the optimum sample. The same materials and conditions were also applied to the cotton fabric to produce a superabsorbent fabric. The simple one-step synthesis procedure, in-situ production of nanoparticles, cost-effectiveness and having desired features including photocatalytic, antibacterial properties of 93% against S. aureus, and biocompatibility make the starch hydrogel nanocomposite a suitable candidate for various applications such as agriculture, medical, textile engineering and water treatment.
Collapse
|
20
|
Jiao C, Wei N, Liu D, Wang J, Liu S, Fu F, Liu T, Li T. Sustainable Fenton-like degradation of methylene blue over MnO 2-loaded poly(amidoxime-hydroxamic acid) cellulose microrods. Int J Biol Macromol 2021; 193:1952-1961. [PMID: 34748785 DOI: 10.1016/j.ijbiomac.2021.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Catalysts based on cellulose/metal oxide hybrids are considered effective for the remediation of dye wastewater. However, the difficult recovery of commonly used nanocellulose and the weak binding strength of metal oxide nanoparticles restrict their wide application. Herein, MnO2 nanoparticle-loaded poly(amidoxime-hydroxamic acid) modified microcrystalline cellulose (pAHA-MCC@MnO2) catalysts were synthesized via an oximation reaction followed by in-situ growth. Morphology, crystallinity and textural characteristics of pAHA-MCC before and after deposition of MnO2 nanoparticles were characterized by SEM, EDS, FTIR, XRD and XPS analyses. The main results indicated the formation of hierarchical porous structured cellulose microrods with uniform distribution of hydrangea flower-like MnO2 nanoparticles. In the presence of H2O2, pAHA-MCC@MnO2 displayed good catalytic performance toward the degradation of methylene blue (MB) over a wide pH range of 3-10, due to the advanced Fenton-like catalysis. Reaction conditions, such as amount of H2O2 used, the initial MB concentration and catalyst dosage were also investigated. The optimized system showed 97.6% removal of MB in 25 min for 100 mg/L MB solution, with very little decrease in performance after 5 cycles. This work provides a facile and promising strategy for the development of biodegradable and sustainable architectures capable of efficiently degrading dye wastewater.
Collapse
Affiliation(s)
- Chenlu Jiao
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Nana Wei
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Die Liu
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Wang
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Siliang Liu
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fan Fu
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tao Liu
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tingting Li
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
21
|
Li J, Zhou L, Song Y, Yu X, Li X, Liu Y, Zhang Z, Yuan Y, Yan S, Zhang J. Green fabrication of porous microspheres containing cellulose nanocrystal/MnO 2 nanohybrid for efficient dye removal. Carbohydr Polym 2021; 270:118340. [PMID: 34364594 DOI: 10.1016/j.carbpol.2021.118340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 06/13/2021] [Indexed: 01/01/2023]
Abstract
Microspheres based on cellulose nanocrystal (CNC)/metal oxide hybrid materials have great application prospects in wastewater treatment due to simultaneously adsorption, degradation ability, easily separation and recycling properties. However, the relatively small porosity and specific surface area of the CNC-based microspheres limit their adsorption ability. Herein, we reported a facile strategy to prepare porous microsphere based on CNC/MnO2 by freeze-drying the air-bubble templated emulsion, in which the sodium alginate (SA) was used as the crosslinked matrix. Thus-obtained CNC/MnO2/SA microspheres showed low density of 0.027 g/cm3 and high porosity of 98.23%. Benefiting from the high porosity, synergetic effect of CNC electrostatic adsorption and oxidative degradation ability of MnO2, the decolorization ratio of methylene blue (800 mg/mL) could be up to 95.4% in 10 min, and the equilibrium decolorization could reach 114.5 mg/g. This study provides a green and facile strategy to design porous CNC-based material for dye wastewater treatment.
Collapse
Affiliation(s)
- Jianlong Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lijuan Zhou
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yingkun Song
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xin Yu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiaolin Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yunxiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhanrui Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yuan Yuan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
22
|
Zhang L, Guo L, Wei G. Recent Advances in the Fabrication and Environmental Science Applications of Cellulose Nanofibril-Based Functional Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5390. [PMID: 34576613 PMCID: PMC8469206 DOI: 10.3390/ma14185390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Cellulose is one of the important biomass materials in nature and has shown wide applications in various fields from materials science, biomedicine, tissue engineering, wearable devices, energy, and environmental science, as well as many others. Due to their one-dimensional nanostructure, high specific surface area, excellent biodegradability, low cost, and high sustainability, cellulose nanofibrils/nanofibers (CNFs) have been widely used for environmental science applications in the last years. In this review, we summarize the advance in the design, synthesis, and water purification applications of CNF-based functional nanomaterials. To achieve this aim, we firstly introduce the synthesis and functionalization of CNFs, which are further extended for the formation of CNF hybrid materials by combining with other functional nanoscale building blocks, such as polymers, biomolecules, nanoparticles, carbon nanotubes, and two-dimensional (2D) materials. Then, the fabrication methods of CNF-based 2D membranes/films, three-dimensional (3D) hydrogels, and 3D aerogels are presented. Regarding the environmental science applications, CNF-based nanomaterials for the removal of metal ions, anions, organic dyes, oils, and bio-contents are demonstrated and discussed in detail. Finally, the challenges and outlooks in this promising research field are discussed. It is expected that this topical review will guide and inspire the design and fabrication of CNF-based novel nanomaterials with high sustainability for practical applications.
Collapse
Affiliation(s)
- Lianming Zhang
- School of Resources and Environmental engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
23
|
Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives. Processes (Basel) 2021. [DOI: 10.3390/pr9040719] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Naturally occurring substances or polymeric biomolecules synthesized by living organisms during their entire life cycle are commonly defined as biopolymers. Different classifications of biopolymers have been proposed, focusing on their monomeric units, thus allowing them to be distinguished into three different classes with a huge diversity of secondary structures. Due to their ability to be easily manipulated and modified, their versatility, and their sustainability, biopolymers have been proposed in different fields of interest, starting from food, pharmaceutical, and biomedical industries, (i.e., as excipients, gelling agents, stabilizers, or thickeners). Furthermore, due to their sustainable and renewable features, their biodegradability, and their non-toxicity, biopolymers have also been proposed in wastewater treatment, in combination with different reinforcing materials (natural fibers, inorganic micro- or nano-sized fillers, antioxidants, and pigments) toward the development of novel composites with improved properties. On the other hand, the improper or illegal emission of untreated industrial, agricultural, and household wastewater containing a variety of organic and inorganic pollutants represents a great risk to aquatic systems, with a negative impact due to their high toxicity. Among the remediation techniques, adsorption is widely used and documented for its efficiency, intrinsic simplicity, and low cost. Biopolymers represent promising and challenging adsorbents for aquatic environments’ decontamination from organic and inorganic pollutants, allowing for protection of the environment and living organisms. This review summarizes the results obtained in recent years from the sustainable removal of contaminants by biopolymers, trying to identify open questions and future perspectives to overcome the present gaps and limitations.
Collapse
|
24
|
Rahdar S, Rahdar A, Sattari M, Hafshejani LD, Tolkou AK, Kyzas GZ. Barium/Cobalt@Polyethylene Glycol Nanocomposites for Dye Removal from Aqueous Solutions. Polymers (Basel) 2021; 13:polym13071161. [PMID: 33916426 PMCID: PMC8038570 DOI: 10.3390/polym13071161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dyes are known as one of the most dangerous industrial pollutants which can cause skin diseases, allergy, and provoke cancer and mutation in humans. Therefore, one of the important environmental issues is the effective removal of dyes from industrial wastewater. In the current work, BaFe12O19/CoFe2O4@polyethylene glycol (abbreviated as BFO/CFO@PEG) nanocomposite was synthesized and evaluated regarding its capacity for adsorptive removal of a model dye Acid Blue 92 (denoted as AB92) from aqueous solutions. The characteristics of the prepared nanocomposite was determined by tests such as X-ray diffraction (XRD), scanning electron microscope (SEM), vibration sample magnetization (VSM), and Fourier transform infrared spectroscopy (FTIR). The effects of conditional parameters including pH (2–12), initial concentration of dye (20–100 mg/L), adsorbent dosage (0.02–0.1 g/L) and contact time (0-180 min) on the adsorption of dye were investigated and then optimized. The results indicated that with the increase of the adsorbent dosage from 0.02 to 0.1 g/L, the removal efficiency increased from 74.1% to 78.6%, and the adsorbed amount decreased from 148.25 to 31.44 mg/g. The maximum removal efficiency (77.54%) and adsorption capacity (31.02 mg/g) were observed at pH 2. Therefore, the general optimization conditions revealed that the maximum adsorption efficiency of dye was obtained in condition of initial concentration of 20 mg/L, contact time of 1 h and pH of solution equal 2. The adsorption isotherm and kinetic data were evaluated using a series of models. The pseudo-second order kinetic model and Freundlich isotherm model show the best fitting with experimental data with R2∼0.999.
Collapse
Affiliation(s)
- Somayeh Rahdar
- Department of Environmental Health, Zabol University of Medical Sciences, Zabol 9861615881, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
- Correspondence: (A.R.); (G.Z.K.); Tel.: +30-2510-462218 (G.Z.K.)
| | - Mostafa Sattari
- Department of Mathematics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran;
| | - Laleh Divband Hafshejani
- Department of Environmental Engineering, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz 6135743136, Iran;
| | - Athanasia K. Tolkou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
- Correspondence: (A.R.); (G.Z.K.); Tel.: +30-2510-462218 (G.Z.K.)
| |
Collapse
|
25
|
Zhang L, Yang Z, He W, Ren J, Wong CY. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy. J Colloid Interface Sci 2021; 599:543-555. [PMID: 33964699 DOI: 10.1016/j.jcis.2021.03.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) have attracted a great deal of interest, but tumor hypoxia and glutathione (GSH) overproduction still limit their further applications. Herein, an intelligent reactive oxygen species (ROS) nanogenerator Ce6/GOx@ZIF-8/PDA@MnO2 (denoted as CGZPM; Ce6, GOx, ZIF-8, PDA, MnO2 are chlorin e6, glucose oxidase, zeolitic imidazolate framework-8, polydopamine and manganese dioxide respectively) with O2-generating and GSH-/glucose-depleting abilities was constructed by a facile and green one-pot method. After intake by tumor cells, the outer MnO2 was rapidly degraded by the acidic pH, and the overexpression of hydrogen peroxide (H2O2) and GSH with abundant Mn2+ and O2 produced would eventually achieve multifunctionality. The Mn2+ acted as an ideal Fenton-like agent and magnetic resonance (MR) imaging contrast agent, while the O2 promoted the PDT via hypoxia relief and facilitated the intratumoral glucose oxidation by GOx for starvation therapy (ST). Benefiting from the GOx-based glycolysis process, sufficient H2O2 was generated to improve the CDT efficacy through Mn2+-mediated Fenton-like reaction. Notably, MnO2 and PDA could decrease the tumor antioxidant activity by consuming GSH, resulting in remarkably enhanced PDT/CDT. Such a novel cascade bioreactor with tumor microenvironment (TME)-modulating capability opens new opportunities for ROS-based and combinational treatment paradigms.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Wenshan He
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
26
|
Tabatabaeian R, Dinari M, Aliabadi HM. Cross-linked bionanocomposites of hydrolyzed guar gum/magnetic layered double hydroxide as an effective sorbent for methylene blue removal. Carbohydr Polym 2021; 257:117628. [DOI: 10.1016/j.carbpol.2021.117628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
|
27
|
Yang J, Ao Z, Wu H, Zhang S. Immobilization of chitosan-templated MnO 2 nanoparticles onto filter paper by redox method as a retrievable Fenton-like dip catalyst. CHEMOSPHERE 2021; 268:128835. [PMID: 33158502 DOI: 10.1016/j.chemosphere.2020.128835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
By exploiting the hydrophilicity of cellulose filter paper (FP) and the excellent chelating property of chitosan (CH) for Mn2+, we have designed an efficient and retrievable dip catalyst MnO2/CH-FP for Fenton-like degradation of methylene blue (MB) over a wide pH range from 2.8 to 11.2. The MnO2 nanoparticles were uniformly immobilized in the CH-FP matrix by in-situ redox precipitation method where Mn(NO3)2 was treated with KMnO4 at mild conditions. A series of MnO2/CH-FP hybrids with different MnO2 loading were fabricated via varying concentration of Mn(NO3)2 solution, and their structure-function relationships were discussed based on detailed characterization. The optimal catalyst 1.0MnO2/CH-FP could cooperate with multiple low-concentration dosages of H2O2 to efficiently degrade 95.6% MB in 90 min (50 mg L-1 MB, 1 g L-1 catalyst, 30 mg L-1 H2O2, pH 7). It is also shown that 1.0MnO2/CH-FP could still keep 83.3% degradation efficiency of MB after six cycles. Moreover, the activity of this composite greatly surpassed that of bare MnO2 for nearly 50%, owing to its larger surface area and more accessible active sites. This method for preparing MnO2/CH-FP could effectively avoid the agglomeration of MnO2 nanoparticles and make the reaction turn on/off almost instantaneously by mere insertion/removal.
Collapse
Affiliation(s)
- Jinfan Yang
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Zhifeng Ao
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hao Wu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China.
| | - Sufeng Zhang
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
28
|
Complex interior and surface modified alginate reinforced reduced graphene oxide-hydroxyapatite hybrids: Removal of toxic azo dyes from the aqueous solution. Int J Biol Macromol 2021; 175:361-371. [PMID: 33556402 DOI: 10.1016/j.ijbiomac.2021.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/10/2023]
Abstract
In this study, alginate reinforced reduced graphene oxide@hydroxyapatite (rGO@HAP-Alg) hybrids have been fabricated via co-precipitation technique. The developed adsorbent was effectively utilized for the removal of Reactive Blue 4 (RB4), Indigo Carmine (IC) and Acid Blue 158 (AB158) azo dyes from aqueous solution, and found to have the adsorption efficiency of 45.56, 47.16 and 48.26 mg/g, respectively. The thermodynamic parameters demonstrated the endothermic and spontaneous nature of the adsorption process. The adsorption system was pH-dependent and showed maximum dye removal at pH 6-7, which was indicative of the electrostatic interactions, surface complexation and the hydrogen bonding mechanisms involved between the adsorbate and adsorbent during the adsorption process. Furthermore, the renewability studies demonstrated the reusability and stability of rGO@HAP-Alg hybrids up to five successive cycles. This study delivers a promising strategy for removing dye molecules and extends the potential application of rGO@HAP-Alg hybrids to treat practical dye contaminated water/wastewater.
Collapse
|
29
|
Ammar C, El-Ghoul Y, Jabli M. Characterization and valuable use of Calotropis gigantea seedpods as a biosorbent of methylene blue. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1085-1094. [PMID: 33511852 DOI: 10.1080/15226514.2021.1876629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, powdered Calotropis gigantea seedpods were characterized and used as biosorbents of methylene blue dye from aqueous solution. FT-IR spectroscopy demonstrated functional groups characteristics of cellulose. Steric exclusion chromatography donated an average molecular weight of 230 kg/mol of the biopolymer. The polymolecularity index value (1.95) proved the good homogeneity of the polysaccharide. Scanning electron microscopy features displayed a homogenous morphology and porous structure. X-ray diffraction patterns showed peaks characteristics of cellulose and non-cellulose compositions. Thermogravimetric analysis/differential thermal analysis displayed exothermal decompositions at 316.9 °C and 456 °C. The maximum biosorption capacity of methylene blue was 88.36 mg/g at pH = 6, time = 60 min, and T = 21 °C. The level was comparable to some other studied agricultural wastes. The adsorption mechanism followed pseudo-second-order and Freundlich models. As it is abundant, available, low-cost, and easily recovered from solution, C. gigantea seedpods could be used as an effective biomaterial for the removal of organic pollutants from contaminated waters. Novelty statement: An abundant, available, and low-cost Calotropis gigantea seedpod was used, for the first time, as an effective biomaterial for the biosorption of organic pollutants. The biosorption level was found to be comparable to some other agricultural wastes studied previously in the literature.
Collapse
Affiliation(s)
- Chiraz Ammar
- Department of Fashion Design, College of Design, Qassim University, Al Fayziyyah Buraydah, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir, Tunisia
| | - Yassine El-Ghoul
- Textile Engineering Laboratory, University of Monastir, Monastir, Tunisia
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Mahjoub Jabli
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
- Textile Materials and Processes Research Unit, Tunisia National Engineering School of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
30
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 2021; 251:116986. [PMID: 33142558 PMCID: PMC8648070 DOI: 10.1016/j.carbpol.2020.116986] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials owing to their outstanding structural features, abundant availability, and nontoxicity, ease of modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. Water is one of the world's foremost environmental stress concerns. Nanomaterial-adorned polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic metals and organic/inorganic pollutants from wastewater. This review encompasses recent advancements, trends and challenges for natural biopolymers assembled from renewable resources for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-derived (nano)materials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
31
|
Phan DN, Khan MQ, Nguyen NT, Phan TT, Ullah A, Khatri M, Kien NN, Kim IS. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydr Polym 2021; 252:117175. [DOI: 10.1016/j.carbpol.2020.117175] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
|
32
|
Thamer BM, Aldalbahi A, Moydeen A M, Rahaman M, El-Newehy MH. Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. Polymers (Basel) 2020; 13:E20. [PMID: 33374681 PMCID: PMC7793529 DOI: 10.3390/polym13010020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
Electrospun polymer nanofibers (EPNFs) as one-dimensional nanostructures are characterized by a high surface area-to-volume ratio, high porosity, large number of adsorption sites and high adsorption capacity. These properties nominate them to be used as an effective adsorbent for the removal of water pollutants such as heavy metals, dyes and other pollutants. Organic dyes are considered one of the most hazardous water pollutants due to their toxic effects even at very low concentrations. To overcome this problem, the adsorption technique has proven its high effectiveness towards the removal of such pollutants from aqueous systems. The use of the adsorption technique depends mainly on the properties, efficacy, cost and reusability of the adsorbent. So, the use of EPNFs as adsorbents for dye removal has received increasing attention due to their unique properties, adsorption efficiency and reusability. Moreover, the adsorption efficiency and stability of EPNFs in aqueous media can be improved via their surface modification. This review provides a relevant literature survey over the last two decades on the fabrication and surface modification of EPNFs by an electrospinning technique and their use of adsorbents for the removal of various toxic dyes from contaminated water. Factors affecting the adsorption capacity of EPNFs, the best adsorption conditions and adsorption mechanism of dyes onto the surface of various types of modified EPNFs are also discussed. Finally, the adsorption capacity, isotherm and kinetic models for describing the adsorption of dyes using modified and composite EPNFs are discussed.
Collapse
Affiliation(s)
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (B.M.T.); (M.M.A.); (M.R.); (M.H.E.-N.)
| | | | | | | |
Collapse
|
33
|
Ao C, Zhao J, Li Q, Zhang J, Huang B, Wang Q, Gai J, Chen Z, Zhang W, Lu C. Biodegradable all-cellulose composite membranes for simultaneous oil/water separation and dye removal from water. Carbohydr Polym 2020; 250:116872. [DOI: 10.1016/j.carbpol.2020.116872] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
|
34
|
Al-Ghamdi YO, Jabli M, Soury R, Ali Khan S. A Cellulosic Fruit Derived from Nerium oleander Biomaterial: Chemical Characterization and Its Valuable Use in the Biosorption of Methylene Blue in a Batch Mode. Polymers (Basel) 2020; 12:polym12112539. [PMID: 33142972 PMCID: PMC7693694 DOI: 10.3390/polym12112539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/02/2022] Open
Abstract
Cellulose substrate waste has demonstrated great potential as a biosorbent of pollutants from contaminated water. In this study, Neriumoleander fruit, an agricultural waste biomaterial, was used for the biosorption of methylene blue from synthetic solution. Fourier-transform infrared (FTIR) spectroscopy indicated the presence of the main absorption peak characteristics of cellulose, hemicellulose, and lignin compositions. X-ray diffraction (XRD) pattern exhibited peaks at 2θ = 14.9° and 2θ = 22°, which are characteristics of cellulose I. Scanning electron microscopy (SEM) showed a rough and heterogeneous surface intercepted by some cavities. Thermogravimetric analysis (TGA) showed more than a thermal decomposition point, suggesting that Nerium fruit is composed of cellulose and noncellulosic matters. The pHpzc value of Nerium surface was experimentally determined to be 6.2. Nerium dosage, pH, contact time, dye concentration, and temperature significantly affected the adsorption capacity. The adsorption capacity reached 259 mg/g at 19 °C. The mean free energy ranged from 74.53 to 84.52 KJ mol−1, suggesting a chemisorption process. Thermodynamic parameters define a chemical, exothermic, and nonspontaneous mechanism. The above data suggest that Nerium fruit can be used as an excellent biomaterial for practical purification of water without the need to impart chemical functionalization on its surface.
Collapse
Affiliation(s)
- Youssef O. Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Mahjoub Jabli
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
- Correspondence:
| | - Raoudha Soury
- Chemistry Department, Faculty of Science of Hail, University of Hail, Hail 81451, Saudi Arabia;
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Swabi Anbar, Khyber Pakhtunkhwa 23561, Pakistan;
| |
Collapse
|
35
|
Hazarika KK, Hazarika D, Bharali P. Binary α‐Fe
2
O
3
–Co
3
O
4
nanostructures for advanced oxidation process: Role of synergy for enhanced catalysis. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Debashis Hazarika
- Department of Chemical Sciences Tezpur University Napaam Assam 784 028 India
| | - Pankaj Bharali
- Department of Chemical Sciences Tezpur University Napaam Assam 784 028 India
| |
Collapse
|
36
|
Yang Z, Liu H, Li J, Yang K, Zhang Z, Chen F, Wang B. High-Throughput Metal Trap: Sulfhydryl-Functionalized Wood Membrane Stacks for Rapid and Highly Efficient Heavy Metal Ion Removal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15002-15011. [PMID: 32149496 DOI: 10.1021/acsami.9b19734] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution is a severe problem worldwide. Great efforts have been devoted in developing effective and eco-friendly ways to remove heavy metal ions from contaminated water. However, challenges remain in terms of the high cost, the complex preparation processes required, low efficiency, and difficulties in scaling-up. Here, we report a sulfhydryl-functionalized wood (SH-wood) membrane featuring three-dimensional mesoporous and low-tortuosity lumens, which serve as multisite metal traps to achieve highly efficient heavy metal ion removal from wastewater. Benefiting from the unique microstructure of wood, the resulting membrane exhibits a high saturation uptake capacity of 169.5, 384.1, 593.9, and 710.0 mg·g-1 for Cu2+, Pb2+, Cd2+, and Hg2+ ions, respectively. Meanwhile, the SH-wood membrane can be easily regenerated at least eight times without apparent performance loss. Furthermore, stacking multilayers of the SH-wood filter is designed. Because of its high yet universal heavy metal ion absorbance capability, the multilayer SH-wood filter can effectively remove diverse heavy metal ions from real contaminated water, meeting the WHO standards while also displaying a high flux rate of 1.3 × 103 L·m-2·h-1. Our work presents a promising strategy for the scalable and highly efficient removal of heavy metal ions from sewage for environmental remediation.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Hanwen Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Juan Li
- State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchang, Gansu 737100, PR China
| | - Ke Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Zhengze Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Fengjuan Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
37
|
Hazarika KK, Talukdar H, Sudarsanam P, Bhargava SK, Bharali P. Highly dispersed Mn
2
O
3
−Co
3
O
4
nanostructures on carbon matrix as heterogeneous Fenton‐like catalyst. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Hiya Talukdar
- Department of Chemical SciencesTezpur University Napaam 784 028 Assam India
| | - Putla Sudarsanam
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of ScienceRMIT University Melbourne VIC 3001 Australia
- Center for Sustainable Catalysis and EngineeringKU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of ScienceRMIT University Melbourne VIC 3001 Australia
| | - Pankaj Bharali
- Department of Chemical SciencesTezpur University Napaam 784 028 Assam India
| |
Collapse
|
38
|
Wang L, Shi C, Wang L, Pan L, Zhang X, Zou JJ. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. NANOSCALE 2020; 12:4790-4815. [PMID: 32073021 DOI: 10.1039/c9nr09274a] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The shortage of water resources and increasingly serious water pollution have driven the development of high-efficiency water treatment technology. Among a variety of technologies, adsorption is widely used in environmental remediation. As a class of typical adsorbents, metal oxides have been developed for a long time and continued to attract widespread attention, since they have unique physicochemical properties, including abundant surface active sites, high chemical stability, and adjustable shape and size. In this review, the basic principles of the adsorption process will be first elucidated, including affecting factors, evaluation index, adsorption mechanisms, and common kinetic and isotherm models. Then, the adsorption properties of several typical metal oxides, and key parameters affecting the adsorption performance such as particle/pore size, morphology, functionalization and modification, supports and calcination temperature will be discussed, as well as their application in the removal of various inorganic and organic contaminants. In addition, desorption and recycling of the spent adsorbent are summarized. Finally, the future development of metal oxide based adsorbents is also discussed.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
39
|
Free-standing cellulose film containing manganese dioxide nanoparticles and its use in discoloration of indigo carmine dye. Carbohydr Polym 2020; 230:115621. [DOI: 10.1016/j.carbpol.2019.115621] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 11/20/2022]
|
40
|
Preparation of Manganese Dioxide Nanoparticles on Laterite for Methylene Blue Degradation. J CHEM-NY 2019. [DOI: 10.1155/2019/1602752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The laterite-coating manganese dioxide nanoparticle material (M2) prepared by the immersion method was used for the efficient removal of methylene blue (MB) from aqueous solution. The adsorption and heterogeneous Fenton catalytic oxidation experiments of M2 were investigated by changing the effective factors such as time, pH, amount of M2, and concentration of MB. The adsorption data of M2 showed good fitting with the Langmuir isotherm, suggesting that the adsorption of MB on the surface of M2 is a heterogeneous and physical adsorption process. Degradation of MB was also carried out to evaluate the heterogeneous Fenton catalytic oxidation characterization of a new catalytic oxidation material (M2). The results show that the M2 material has both adsorption and heterogeneous Fenton catalytic oxidation. However, the heterogeneous Fenton catalytic oxidation of the M2 material is the main performance. Hence, our groups have investigated the ability of the catalytic column treatment with high efficiency of 98–100% and the degradation efficiency after the sample running through the column almost does not change much. This proves that heterogeneous Fenton catalytic activity of the catalytic column is completely unaffected and reused many times after oxidizing MB. Specifically, even if the M2 material is reused for five times, the degradation efficiency still reaches 98.86%.
Collapse
|
41
|
Luo Y, Liu M, Chen Y, Wang T, Zhang W. Preparation and regeneration of iron-modified nanofibres for low-concentration phosphorus-containing wastewater treatment. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190764. [PMID: 31598304 PMCID: PMC6774935 DOI: 10.1098/rsos.190764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, nanocellulose (CNFs) was prepared by a mechanical shearing method, a simple and pollution-free process. Iron hydroxide was loaded on nanocellulose, a natural macromolecule derived from bamboo, to produce the second-generation iron-loaded nanocellulose for the removal of low-concentration phosphorus from wastewater. We found that the best modified ferric salt was ferric chloride. When the mass ratio of Fe(OH)3 and CNFs was 1.5 : 1, freeze-drying with liquid nitrogen yielded the best adsorption performance. The adsorption process of Fe(OH)3@CNFs followed the pseudo-second-order kinetics and belonged to chemical adsorption. Regeneration experiments showed that after 10 cycles of adsorption-regenerations of the adsorbent, the phosphorus adsorption efficiency was still stable at 80% of the initial material. The prepared adsorbent was characterized by the BET surface area measurement, scanning electron microscopy and FT-IR. The surface morphology, pore size and elements of materials before and after iron loading were analysed. Compared with other adsorbents, the phosphorus removal performances of the second-generation iron-loaded nanocellulose were superior. Compared with the first-generation material, the second-generation adsorbent is simpler and more environmentally friendly.
Collapse
Affiliation(s)
- Ying Luo
- College of Architecture and Environment, Sichuan University, Chengdu 610065, People's Republic of China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, People's Republic of China
- Sino-German Centre for Water and Health Research, Chengdu 610065, People's Republic of China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, People's Republic of China
- Sino-German Centre for Water and Health Research, Chengdu 610065, People's Republic of China
| | - Tingting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
42
|
Pan X, Cheng S, Su T, Zuo G, Zhao W, Qi X, Wei W, Dong W. Fenton-like catalyst Fe3O4@polydopamine-MnO2 for enhancing removal of methylene blue in wastewater. Colloids Surf B Biointerfaces 2019; 181:226-233. [DOI: 10.1016/j.colsurfb.2019.05.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 01/12/2023]
|
43
|
Jaganathan SK, Mani MP, Khudzari AZM. Electrospun Combination of Peppermint Oil and Copper Sulphate with Conducive Physico-Chemical properties for Wound Dressing Applications. Polymers (Basel) 2019; 11:polym11040586. [PMID: 30960571 PMCID: PMC6523533 DOI: 10.3390/polym11040586] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023] Open
Abstract
The ultimate goal in tissue engineering is to fabricate a scaffold which could mimic the native tissue structure. In this work, the physicochemical and biocompatibility properties of electrospun composites based on polyurethane (PU) with added pepper mint (PM) oil and copper sulphate (CuSO4) were investigated. Field Emission Electron microscope (FESEM) study depicted the increase in mean fiber diameter for PU/PM and decrease in fiber diameter for PU/PM/CuSO4 compared to the pristine PU. Fourier transform infrared spectroscopy (FTIR) analysis revealed the formation of a hydrogen bond for the fabricated composites as identified by an alteration in PU peak intensity. Contact angle analysis presented the hydrophobic nature of pristine PU and PU/PM while the PU/PM/CuSO4 showed hydrophilic behavior. Atomic force microscopy (AFM) analysis revealed the increase in the surface roughness for the PU/PM while PU/PM/CuSO4 showed a decrease in surface roughness compared to the pristine PU. Blood compatibility studies showed improved blood clotting time and less toxic behavior for the developed composites than the pristine PU. Finally, the cell viability of the fabricated composite was higher than the pristine PU as indicated in the MTS assay. Hence, the fabricated wound dressing composite based on PU with added PM and CuSO4 rendered a better physicochemical and biocompatible nature, making it suitable for wound healing applications.
Collapse
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- IJNUTM Cardiovascular Engineering center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Ahmad Zahran Md Khudzari
- IJNUTM Cardiovascular Engineering center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
| |
Collapse
|
44
|
Krivoshapkin P, Ivanets A, Torlopov M, Mikhaylov V, Srivastava V, Sillanpää M, Prozorovich V, Kouznetsova T, Koshevaya E, Krivoshapkina E. Nanochitin/manganese oxide-biodegradable hybrid sorbent for heavy metal ions. Carbohydr Polym 2019; 210:135-143. [DOI: 10.1016/j.carbpol.2019.01.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/29/2018] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
|
45
|
Solution Plasma-Assisted Green Synthesis of MnO2 Adsorbent and Removal of Cationic Pollutant. J CHEM-NY 2019. [DOI: 10.1155/2019/7494292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we proposed the solution plasma- (SP-) assisted green synthesis method using plants extracts, i.e., glucose, with the expectation of acting as a reducing agent and promotor for the formation of powder state of nanostructured MnO2. MnO2 was simply and rapidly synthesized within 10 min by the SP-assisted method. The structural features and morphology of as-synthesized MnO2 were characterized by XRD, Raman, FE-SEM, and TEM analyses. For potential application of as-synthesized MnO2, cationic dye, i.e., methylene blue (MB), removal performance was investigated by batch experiment at an initial concentration of C0 = 100 mg L−1. The obtained MnO2 exhibited effective dye removal ability given high C0, and simultaneously applied plasma discharging further enhanced removal efficiency. These contributions therefore open a new window not only on a powerful and environmentally benign synthesis route for efficient adsorbents but also on supporting multiple removal mechanism.
Collapse
|
46
|
Labidi A, Salaberria AM, Fernandes SCM, Labidi J, Abderrabba M. Functional Chitosan Derivative and Chitin as Decolorization Materials for Methylene Blue and Methyl Orange from Aqueous Solution. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E361. [PMID: 30682774 PMCID: PMC6384594 DOI: 10.3390/ma12030361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/21/2022]
Abstract
Dyes are classified as one of the major pollutants of water. They have negative impacts not only on environment but also on human health. In fact, wastewater that contains these harmful substances requires many types of treatments. Therefore, alternative methods and adsorption agents are needed. Herein, we propose to evaluate the decolorization of methylene blue (MB) and methyl orange (MO) as two models of soluble dyes from water using chitin and chitosan-graft-polyacrylamide. Furthermore, the applicability of these biomacromolecules as alternative adsorption agents, their sticking probability and desorption were also examined. Experimental parameters such as dye concentration, contact time, pH solution, adsorbent dosage and temperature were thoroughly examined for the grafted chitosan and chitin. The activation energy ( E a ) and the thermodynamic variables (i.e., standard Gibb's free energy ( Δ G 0 ), standard enthalpy ( Δ H 0 ), and standard entropy ( Δ S 0 )) were determined using the Van't Hoff and Arrhenius equations. The sticking probability ( S *) model for MB and MO removal by chitin and the chitosan derivative demonstrated that both dyes were successfully removed under the proposed conditions. Desorption studies of MB and MO showed the reusability of both materials, suggesting their application for removing dyes from aqueous solution.
Collapse
Affiliation(s)
- Abdelkader Labidi
- Preparatory Institute of Scientific and Technical Studies of Tunis, University of Carthage, Sidi Bou Said road, B.P. 51 2070, La Marsa, Tunisia.
- Chemistry Department, University of Sciences of Tunis, El Manar University, B.P: 248, El Manar II, 2092, Tunis, Tunisia.
| | - Asier M Salaberria
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plza. Europa1, 20018 Donostia-San Sebastian, Spain.
| | - Susana C M Fernandes
- CNRS/ Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, Umr 5254, 64000 Pau, France.
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plza. Europa1, 20018 Donostia-San Sebastian, Spain.
| | - Manef Abderrabba
- Preparatory Institute of Scientific and Technical Studies of Tunis, University of Carthage, Sidi Bou Said road, B.P. 51 2070, La Marsa, Tunisia.
| |
Collapse
|
47
|
Xiong W, Hu D. Fabrication of phosphonium bamboo cellulose by triphenylphosphine: preparation, characterization, and adsorption of Acid Black 24. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1880-1891. [PMID: 30460647 DOI: 10.1007/s11356-018-3711-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Cellulose from bamboo shavings (BC) separated and modified by grafting triphenylphosphine, which was used as an adsorbent for the removal of Acid Black 24 from aqueous solution. The quaternary phosphonium-based bamboo cellulose (PBC) was characterized by FTIR and SEM measurements. The FTIR studies showed that the quaternary phosphonium group was successfully grafted onto the BC molecular structure. The effects of PBC dosage, contact time, initial dye concentration, temperature, and pH on the adsorption performance were studied. The nonlinear fitting kinetics and isotherms models were also conducted. The pseudo-second-order, intra-particle diffusion and Langmuir models were more suitable for analyzing the adsorption behavior of PBC for Acid Black 24 dye. The adsorption activation energy was lower than 40 kJ mol-1, and the ΔH0 value was in the range of 20~80 kJ mol-1, indicating that PBC played a dominant role in the physical purification of dye. The results of thermodynamic analysis indicated that the adsorption was a spontaneous endothermic purification process. Adsorbents had a good reusability and high adsorption performance for dye removal. The adsorbents PBC had a good reusability and could effectively remove residual Acid Black 24 dye with good development prospects in the field of biomass adsorbent materials.
Collapse
Affiliation(s)
- Wei Xiong
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue East Road, Nanning, 530004, China
| | - Dongying Hu
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue East Road, Nanning, 530004, China.
| |
Collapse
|
48
|
Deng Y, Zhang T, Sharma BK, Nie H. Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1140-1154. [PMID: 30235600 DOI: 10.1016/j.scitotenv.2018.07.369] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Considering the phosphorus (P) reserve state and its value, recovery of P from microalgae has become a popular topic. In this study, an integrated system of a hydrothermal process for microalgae cell disruption to release P and magnesium modified hydrochar adsorption to capture P was set up. Emission scanning electron microscopy with Energy Dispersive X-ray spectroscopy and Three-Dimensional Excitation Emission matrix spectroscopy with parallel factor analysis were applied to evaluate the P release process from microalgae and found the optimal breaking-wall condition (P release 90.5%, hydrothermal digestion mixture of H2O2 and NaOH at 348 K). Parallel factor analysis showed there was a close relationship between P and humic-like substance. Hydrochar loaded with magnesium exhibited a strong affinity for P, with maximum capacity 89.61 mg/g at 318 K. The P adsorption fitted pseudo-second-order kinetic and Langmuir models. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were applied to reveal the mechanism of hydrochar modification and adsorption. It showed that Mg is loaded on the surface of hydrochar by electrostatic attraction and electron transfer with the carboxylic acid. P absorption was reached through anion exchange.
Collapse
Affiliation(s)
- Yaxin Deng
- Biomass Engineering Center, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Biomass Engineering Center, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306, USA.
| | - Brajendra K Sharma
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois, Urbana-Champaign, 1 Hazelwood Drive, Champaign, IL 61820, USA
| | - Haiyu Nie
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
49
|
Abraham R, Mathew S, Kurian S, Saravanakumar MP, Mary Ealias A, George G. Facile synthesis, growth process, characterisation of a nanourchin-structured α-MnO 2 and their application on ultrasonic-assisted adsorptive removal of cationic dyes: A half-life and half-capacity concentration approach. ULTRASONICS SONOCHEMISTRY 2018; 49:175-189. [PMID: 30146468 DOI: 10.1016/j.ultsonch.2018.07.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/15/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Textile dyes pose a serious threat in terms of water pollution due to its complex aromatic structures and poor degradability. In order to reduce the toxic effects of Crystal Violet (CV) and Methylene Blue (MB), an ultrasonic-assisted dye adsorption using urchin like α-MnO2 nanostructures was studied. The adsorbent was synthesised by hydrothermal method at low-temperature. The crystallinity and morphology were determined to investigate the growth mechanism of α-MnO2 nanourchins which consists of two main stages. The initial stage includes the formation of α-MnO2 microspheres followed by the epitaxial growth of nanoneedles on to the surface of them. The α-MnO2 was characterised by BET, XRD, FT-IR, XPS, SEM, TEM and TGA. At 5.6, the point of zero charge of α-MnO2 nanostructures was determined. The total pore volume and average pore radius were confirmed to be 4.751 × 10-2 cc/g and 10.99 Å respectively from the BET analysis. Batch adsorption experiments were performed to investigate the effect of pH, adsorbent dosage, sonication time, initial dye concentration, temperature, ultrasonic frequency and power. The adsorption mechanism was studied using several isotherm and kinetic models. The adsorption data of CV and MB at equilibrium was observed to adopt the Langmuir isotherm model and pseudo-second order kinetic model. The maximum adsorption capacities for CV and MB were found to be 5882.3 and 5000 mg/g respectively. The thermodynamic study predicted that the process was exothermic for CV and endothermic for MB. The effects of competitive ions, ionic strength and humic acid on the uptake of both the dyes were also investigated. And finally, the reusability of recovered α-MnO2 after dye adsorption was studied up to five cycles for its potential industrial applications.
Collapse
Affiliation(s)
- Ria Abraham
- School of Civil and Chemical Engineering, Vellore Institute of Technology, Vellore Campus, Vellore 632014, India
| | - Sarah Mathew
- School of Civil and Chemical Engineering, Vellore Institute of Technology, Vellore Campus, Vellore 632014, India
| | - Susanna Kurian
- School of Civil and Chemical Engineering, Vellore Institute of Technology, Vellore Campus, Vellore 632014, India
| | - M P Saravanakumar
- School of Civil and Chemical Engineering, Vellore Institute of Technology, Vellore Campus, Vellore 632014, India
| | - Anu Mary Ealias
- School of Civil and Chemical Engineering, Vellore Institute of Technology, Vellore Campus, Vellore 632014, India.
| | - Giphin George
- School of Civil and Chemical Engineering, Vellore Institute of Technology, Vellore Campus, Vellore 632014, India.
| |
Collapse
|
50
|
Geng H. A facile approach to light weight, high porosity cellulose aerogels. Int J Biol Macromol 2018; 118:921-931. [PMID: 29964109 DOI: 10.1016/j.ijbiomac.2018.06.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
This work reported a facile approach to make cellulose-based aerogels in NaOH/urea aqueous solution via freeze-drying hydrogels, which were obtained by mixing N,N'-methylene bisacrylamide (MBA) with cellulose solution at room temperature. The cellulose solution showed pronounced MBA-induced gelation behaviors. The obtained cellulose aerogels possessed a three dimensional network with macroporous structure (20-600 μm), low density (0.0820-0.0083 g/cm3), high porosity (90.3%-99.02%), moderate thermal stability (275 °C) and certain absorbency to Cu (II) (85 mg/g) and methylene blue (MB) (115 mg/g). Cellulose aerogels with different morphologies can be obtained by adjusting the cross-linking degree and the concentration of cellulose. This kind of aerogel provides an excellent matrix for the functionalization of cellulose-based aerogel.
Collapse
Affiliation(s)
- Hongjuan Geng
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199, PR China.
| |
Collapse
|