1
|
Liu J, Lei D, Tang L, Zeng F, Guan Y, Wu Q, Li H. The influence of pH and calcium ions on the gelation of low methoxy pectin from potato. J Food Sci 2025; 90:e70202. [PMID: 40205772 DOI: 10.1111/1750-3841.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
In this study, pectin was extracted from potato with the hydrolysis of cellulose, as well as its acid-induced and Ca2+-induced gelation behavior was investigated, too. The gelation process of unhydrolyzed pectin might be used as a model for studying the gelation behavior and characteristic of pectin within the cell wall. The results showed that potato pectin solution (3%) could form a gel state at a minimal concentration of 0.25% CaCl2 or a maximum pH value of 4.60. Furthermore, acetic acid-induced and CaCl2-induced gels were both concentration-independent. Specifically, the gel strength increased with decreasing levels of pH and increasing concentrations of CaCl2. Moreover, CaCl2-induced gels exhibited superior gelation characteristics with a higher storage modulus (7.2 Pa), larger fractal dimension (2.58), smaller porosity (12.11%), shorter relaxation time T2, and a denser gel network structure. This disparity stemmed from different mechanism: acetic acid provided H+ to combine with free carboxyl groups on the pectin chains, reducing the repulsion between pectin molecules, narrowing chain spacing, and fostering hydrogen bond formation; whereas CaCl2 promoted gelation primarily via the information of the "egg box" structure involving non-covalent bonded calcium bridges. This research could provide a theoretical basis for acid-induced and Ca2+-induced gelation of unhydrolyzed pectin extracted from the cell wall.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Dandan Lei
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Luo Tang
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Fankui Zeng
- Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yufang Guan
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Qiaoyu Wu
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Haoxin Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang, People's Republic of China
| |
Collapse
|
2
|
Tsirtsidou K, Zou Y, Robbens J, Raes K. Pectin-chitosan hydrogels with modified properties for the encapsulation of strawberry phenolic compounds. Food Chem 2025; 463:141236. [PMID: 39293378 DOI: 10.1016/j.foodchem.2024.141236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Pectin-chitosan hydrogels with blends of low (50-190 kDa) and medium (310-395 KDa) molecular weight (MW) chitosan (LC and MC, respectively) were developed, and their characteristics were investigated before and after the encapsulation of an aqueous strawberry extract. The pectin to total chitosan mass ratio, the composition of the strawberry extract and the MW of chitosan greatly affected the interactions between pectin and chitosan at different pH values. More specifically, blends of low and medium MW chitosan improved the stability of the strawberry-gels in acidic conditions compared to their corresponding MC-gels, showed better flow and texture profiles, as well as slower release of phenolic compounds during in vitro digestion compared to the only stable LC-gel. Therefore, by manipulating the length range of chitosan chains would allow the formation of pectin-chitosan hydrogels with improved properties for the development of functional food products.
Collapse
Affiliation(s)
- Kyriaki Tsirtsidou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Cell Blue Biotech and Food Integrity, Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, ILVO Jacobsenstraat 1, 8400 Ostend, Belgium.
| | - Yang Zou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Johan Robbens
- Cell Blue Biotech and Food Integrity, Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, ILVO Jacobsenstraat 1, 8400 Ostend, Belgium.
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
3
|
Kanniyappan H, Gnanasekar V, Parise V, Debnath K, Sun Y, Thakur S, Thakur G, Perumal G, Kumar R, Wang R, Merchant A, Sriram R, Mathew MT. Harnessing extracellular vesicles-mediated signaling for enhanced bone regeneration: novel insights into scaffold design. Biomed Mater 2024; 19:10.1088/1748-605X/ad5ba9. [PMID: 38917828 PMCID: PMC11305091 DOI: 10.1088/1748-605x/ad5ba9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.
Collapse
Affiliation(s)
- Hemalatha Kanniyappan
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
- Department of Chemistry, Illinois Institute of Technology (IIT), Chicago, IL, United States of America
| | - Varun Gnanasekar
- University of Wisconsin-Madison, Madison, WI, United States of America
| | - Vincent Parise
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Koushik Debnath
- College of Dentistry, University of Illinois, Chicago, IL, United States of America
| | - Yani Sun
- Department of Material Sciences, University of Illinois, Chicago, IL, United States of America
| | - Shriya Thakur
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Gitika Thakur
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Govindaraj Perumal
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Rong Wang
- Department of Chemistry, Illinois Institute of Technology (IIT), Chicago, IL, United States of America
| | - Aftab Merchant
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Ravindran Sriram
- College of Dentistry, University of Illinois, Chicago, IL, United States of America
| | - Mathew T Mathew
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| |
Collapse
|
4
|
Yu H, Kim H, Chang PS. Fabrication and characterization of chitosan-pectin emulsion-filled hydrogel prepared by cold-set gelation to improve bioaccessibility of lipophilic bioactive compounds. Food Chem 2024; 437:137927. [PMID: 37944393 DOI: 10.1016/j.foodchem.2023.137927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Chitosan-pectin emulsion-filled hydrogel (EFH) was developed to enhance the bioaccessibility of lipophilic bioactive compounds through intestinal delivery. The EFH, incorporating a sodium caseinate-stabilized emulsion, was prepared using cold-set gelation under acidic conditions without crosslinking agents. Increasing the pectin concentration (0.75-1.50%, w/v) improved the mechanical strength and compactness of the EFH. The pH-responsive EFH retained the emulsion at pH 2.0 and released it at pH 7.4. In vitro digestion demonstrated that the EFH remained intact during oral and gastric stages, while the emulsion alone became destabilized. During intestinal digestion, the release of free fatty acids from the EFH decreased from 58.67% to 43.76% as the pectin concentration increased from 0.75% to 1.50%. EFH with 0.75% and 1.00% pectin significantly improved curcumin bioaccessibility compared to the emulsion alone. These findings demonstrate the potential of chitosan-pectin EFH as a novel carrier system for enhancing the bioaccessibility of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Hyunjong Yu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
| | - Huisu Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Morello G, De Iaco G, Gigli G, Polini A, Gervaso F. Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels 2023; 9:132. [PMID: 36826302 PMCID: PMC9957157 DOI: 10.3390/gels9020132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrogels are fascinating biomaterials that can act as a support for cells, i.e., a scaffold, in which they can organize themselves spatially in a similar way to what occurs in vivo. Hydrogel use is therefore essential for the development of 3D systems and allows to recreate the cellular microenvironment in physiological and pathological conditions. This makes them ideal candidates for biological tissue analogues for application in the field of both tissue engineering and 3D in vitro models, as they have the ability to closely mimic the extracellular matrix (ECM) of a specific organ or tissue. Polysaccharide-based hydrogels, because of their remarkable biocompatibility related to their polymeric constituents, have the ability to interact beneficially with the cellular components. Although the growing interest in the use of polysaccharide-based hydrogels in the biomedical field is evidenced by a conspicuous number of reviews on the topic, none of them have focused on the combined use of two important polysaccharides, chitosan and pectin. Therefore, the present review will discuss the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Gianvito De Iaco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
6
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|
7
|
Araújo LDCB, de Matos HK, Facchi DP, de Almeida DA, Gonçalves BMG, Monteiro JP, Martins AF, Bonafé EG. Natural carbohydrate-based thermosensitive chitosan/pectin adsorbent for removal of Pb(II) from aqueous solutions. Int J Biol Macromol 2021; 193:1813-1822. [PMID: 34774866 DOI: 10.1016/j.ijbiomac.2021.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
Biodegradable and eco-friendly adsorbents composed of natural carbohydrates have been used to replace carbon-based materials. This study presents a natural carbohydrate-based chitosan/pectin (CS/Pec) hydrogel adsorbent to remove Pb(II) from aqueous solutions. The physical CS/Pec hydrogel was prepared by blending aqueous CS and Pec solutions at 65 °C, preventing the use of toxic chemistries (crosslinking agents). The thermosensitive CS/Pec hydrogel was quickly created by cooling CS/Pec blend at room temperature. The used strategy created stable CS/Pec hydrogel against disintegration and water dissolution. The as-prepared hydrogel was characterized by infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The adsorbent had 1.688 mmol -COO- for each gram. These ionized sites bind Pb(II) ions, promoting their adsorption. The adsorption kinetic and equilibrium studies indicated that the Elovich and pseudo-second-order models adjusted well to the experimental data, respectively. The maximum removal capacities (qm) predicted by the Langmuir and Sips isotherms achieved 108.2 and 97.55 mg/g at 0.83 g/L adsorbent dosage (pH 4.0). The hydrogel/Pb(II) pair was characterized by scanning electron microscopy (SEM), X-ray dispersive energy (EDS), and differential scanning calorimetry (DSC). The chemisorption seems to play an essential role in the Pb(II) adsorption. Therefore, the adsorbent was not recovered, showing low potential for reusability.
Collapse
Affiliation(s)
- Lucas Del Coli B Araújo
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Henrique K de Matos
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Débora P Facchi
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Débora A de Almeida
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Bruna M G Gonçalves
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Johny P Monteiro
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil.
| | - Elton G Bonafé
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Analitycal Applied in Lipids, Sterols, and Antioxidants (APLE-A), State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
8
|
Morello G, Quarta A, Gaballo A, Moroni L, Gigli G, Polini A, Gervaso F. A thermo-sensitive chitosan/pectin hydrogel for long-term tumor spheroid culture. Carbohydr Polym 2021; 274:118633. [PMID: 34702456 DOI: 10.1016/j.carbpol.2021.118633] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Hydrogels represent a key element in the development of in vitro tumor models, by mimicking the typical 3D tumor architecture in a physicochemical manner and allowing the study of tumor mechanisms. Here we developed a thermo-sensitive, natural polymer-based hydrogel, where chitosan and pectin were mixed and, after a weak base-induced chitosan gelation, a stable semi-Interpenetrating Polymer Network formed. This resulted thermo-responsive at 37 °C, injectable at room temperature, stable up to 6 weeks in vitro, permeable to small/medium-sized molecules (3 to 70 kDa) and suitable for cell-encapsulation. Tunable mechanical and permeability properties were obtained by varying the polymer content. Optimized formulations successfully supported the formation and growth of human colorectal cancer spheroids up to 44 days of culture. The spheroid dimension and density were influenced by the semi-IPN stiffness and permeability. These encouraging results would allow the implementation of faithful tumor models for the study and development of personalized oncological treatments.
Collapse
Affiliation(s)
- Giulia Morello
- Institute of Nanotechnology, CNR, Lecce 73100, Italy; Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Lecce 73100, Italy
| | | | | | - Lorenzo Moroni
- Institute of Nanotechnology, CNR, Lecce 73100, Italy; Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht 6229ER, the Netherlands
| | - Giuseppe Gigli
- Institute of Nanotechnology, CNR, Lecce 73100, Italy; Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Lecce 73100, Italy
| | | | | |
Collapse
|
9
|
Huang ST, Yang CH, Lin PJ, Su CY, Hua CC. Multiscale structural and rheological features of colloidal low-methoxyl pectin solutions and calcium-induced sol-gel transition. Phys Chem Chem Phys 2021; 23:19269-19279. [PMID: 34524316 DOI: 10.1039/d1cp02778f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multiscale structural and rheological features of a series of dilute and semidilute low-methoxyl (LM) pectin solutions and a representative pectin/calcium sol-gel sample were systematically explored using a comprehensive combination of dynamic (DLS) and static light/X-ray scattering (SALS/SLS/SAXS), rheology, and microscopy (OM/SEM) characterizations. The study focused on the rarely explored colloidal aspect of LM pectin solutions and sol-gel transition, in contrast to the polymeric features extensively explored in previous studies. A highly uniform colloid-like, micron-sized agglomerate species was revealed in dilute solutions, with a progressively increased degree of flocculation in the semidilute regime (≥1.5 wt%). The agglomerate species in these solutions was resolved to be formed by random associations of individual pectin chains (L = 30 nm, r = 0.4 nm). Adding a critical amount of Ca2+ (10 wt%) to a semidilute solution (2 wt%) has an instant and pronounced effect of enhancing the agglomerate flocculation and resulting in a locally jammed state. Meanwhile, the agglomerate interior underwent microstructural transformation, leading to hierarchical structures defined by intermediate (spherical) aggregate species (Rg,aggregate ≈ 150 nm) and its packing cylindrical bundle (d ≈ 4 nm) composed of five pectin chains. Novel rheological features observed during the LM pectin/Ca2+ sol-gel transition include the following: the dynamic modulus data exhibited excellent TTS (gelling time/relaxation time superposition) as previously observed for weakly attractive colloidal gels. Three yield points were noticed for the final gel sample, suggested to mark the bond breaking of the cluster network, cage breaking of the resulting jammed flocculates, and, eventually, breakup of a flocculate into smaller agglomerates with increasing stress amplitude.
Collapse
Affiliation(s)
- Ssu-Ting Huang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Cheng-Hao Yang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Peng-Ju Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Chien-You Su
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Chi-Chung Hua
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| |
Collapse
|
10
|
Morello G, Polini A, Scalera F, Rizzo R, Gigli G, Gervaso F. Preparation and Characterization of Salt-Mediated Injectable Thermosensitive Chitosan/Pectin Hydrogels for Cell Embedding and Culturing. Polymers (Basel) 2021; 13:2674. [PMID: 34451215 PMCID: PMC8398595 DOI: 10.3390/polym13162674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, growing attention has been directed to the development of 3D in vitro tissue models for the study of the physiopathological mechanisms behind organ functioning and diseases. Hydrogels, acting as 3D supporting architectures, allow cells to organize spatially more closely to what they physiologically experience in vivo. In this scenario, natural polymer hybrid hydrogels display marked biocompatibility and versatility, representing valid biomaterials for 3D in vitro studies. Here, thermosensitive injectable hydrogels constituted by chitosan and pectin were designed. We exploited the feature of chitosan to thermally undergo sol-gel transition upon the addition of salts, forming a compound that incorporates pectin into a semi-interpenetrating polymer network (semi-IPN). Three salt solutions were tested, namely, beta-glycerophosphate (βGP), phosphate buffer (PB) and sodium hydrogen carbonate (SHC). The hydrogel formulations (i) were injectable at room temperature, (ii) gelled at 37 °C and (iii) presented a physiological pH, suitable for cell encapsulation. Hydrogels were stable in culture conditions, were able to retain a high water amount and displayed an open and highly interconnected porosity and suitable mechanical properties, with Young's modulus values in the range of soft biological tissues. The developed chitosan/pectin system can be successfully used as a 3D in vitro platform for studying tissue physiopathology.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (G.M.); (G.G.)
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Francesca Scalera
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Riccardo Rizzo
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (G.M.); (G.G.)
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| |
Collapse
|
11
|
Shitrit Y, Bianco-Peled H. Insights into the formation mechanisms and properties of pectin hydrogel physically cross-linked with chitosan nanogels. Carbohydr Polym 2021; 269:118274. [PMID: 34294306 DOI: 10.1016/j.carbpol.2021.118274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
This study explores hydrogels based on the physical interaction between soluble pectin and chitosan nanogels. A simple technique for creating chitosan nanogels of controllable size was developed based on a two-step process: physical cross-linking with tripolyphosphate (TPP) and chemical cross-linking with genipin. The particles were stable at acidic pH, which allowed hydrogel formation. Thixotropy experiments demonstrated that the concentration but not the size of the nanogels strongly affected the gel shear modulus. The influence of the post-assembly conditions, including exposure to monovalent salts (NaCl, NaI, and NaF) and pH (2.5 or 5.5), on the gel swelling and mechanical properties was studied. Small angle x-ray scattering (SAXS) results provide evidence that these physical hydrogels are indeed a cross-linked network. These experiments provided insights into the influence of hydrogen bonds and electrostatic interactions on the gel network.
Collapse
Affiliation(s)
- Yulia Shitrit
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
12
|
Nisin induces lamellar to cubic liquid-crystalline transition in pectin and polygalacturonic acid liposomes. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Hybrid Acrylated Chitosan and Thiolated Pectin Cross-Linked Hydrogels with Tunable Properties. Polymers (Basel) 2021; 13:polym13020266. [PMID: 33466959 PMCID: PMC7830417 DOI: 10.3390/polym13020266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
We developed and characterized a new hydrogel system based on the physical and chemical interactions of pectin partially modified with thiol groups and chitosan modified with acrylate end groups. Gelation occurred at high pectin thiol ratios, indicating that a low acrylated chitosan concentration in the hydrogel had a profound effect on the cross-linking. Turbidity, Fourier transform infrared spectroscopy, and free thiol determination analyses were performed to determine the relationships of the different bonds inside the gel. At low pH values below the pKa of chitosan, more electrostatic interactions were formed between opposite charges, but at high pH values, the Michael-type addition reaction between acrylate and thiol took place, creating harder hydrogels. Swelling experiments and Young’s modulus measurements were performed to study the structure and properties of the resultant hydrogels. The nanostructure was examined using small-angle X-ray scattering. The texture profile analysis showed a unique property of hydrogel adhesiveness. By implementing changes in the preparation procedure, we controlled the hydrogel properties. This hybrid hydrogel system can be a good candidate for a wide range of biomedical applications, such as a mucosal biomimetic surface for mucoadhesive testing.
Collapse
|
14
|
Uptake of Methylene Blue from Aqueous Solution by Pectin–Chitosan Binary Composites. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4030095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To address the need to develop improved hybrid biopolymer composites, we report on the preparation of composites that contain chitosan and pectin biopolymers with tunable adsorption properties. Binary biopolymer composites were prepared at variable pectin–chitosan composition in a solvent directed synthesis, dimethyl sulfoxide (DMSO) versus water. The materials were characterized using complementary methods (infrared spectroscopy, thermal gravimetric analysis, pH at the point-of-zero charge, and dye-based adsorption isotherms). Pectin and chitosan composites prepared in DMSO yielded a covalent biopolymer framework (CBF), whereas a polyelectrolyte complex (PEC) was formed in water. The materials characterization provided support that cross-linking occurs between amine groups of chitosan and the –COOH groups of pectin. CBF-based composites had a greater uptake of methylene blue (MB) dye over the PEC-based composites. Composites prepared in DMSO were inferred to have secondary adsorption sites for enhanced MB uptake, as evidenced by a monolayer uptake capacity that exceeded the pectin–chitosan PECs by 1.5-fold. This work provides insight on the role of solvent-dependent cross-linking of pectin and chitosan biopolymers. Sonication-assisted reactions in DMSO favor CBFs, while cross-linking in water yields PECs. Herein, composites with tunable structures and variable physicochemical properties are demonstrated by their unique dye adsorption properties in aqueous media.
Collapse
|
15
|
|
16
|
In vitro digestion of polysaccharide including whey protein isolate hydrogels. Carbohydr Polym 2020; 229:115469. [DOI: 10.1016/j.carbpol.2019.115469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023]
|
17
|
Shitrit Y, Davidovich-Pinhas M, Bianco-Peled H. Shear thinning pectin hydrogels physically cross-linked with chitosan nanogels. Carbohydr Polym 2019; 225:115249. [DOI: 10.1016/j.carbpol.2019.115249] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/28/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
|
18
|
Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109873. [DOI: 10.1016/j.msec.2019.109873] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 01/24/2023]
|
19
|
Mohammadinejad R, Maleki H, Larrañeta E, Fajardo AR, Nik AB, Shavandi A, Sheikhi A, Ghorbanpour M, Farokhi M, Govindh P, Cabane E, Azizi S, Aref AR, Mozafari M, Mehrali M, Thomas S, Mano JF, Mishra YK, Thakur VK. Status and future scope of plant-based green hydrogels in biomedical engineering. APPLIED MATERIALS TODAY 2019; 16:213-246. [DOI: 10.1016/j.apmt.2019.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
20
|
Concentration-dependent rheological behavior and gelation mechanism of high acyl gellan aqueous solutions. Int J Biol Macromol 2019; 131:959-970. [PMID: 30910680 DOI: 10.1016/j.ijbiomac.2019.03.137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/23/2022]
|
21
|
Slavutsky AM, Bertuzzi MA. Formulation and characterization of hydrogel based on pectin and brea gum. Int J Biol Macromol 2019; 123:784-791. [DOI: 10.1016/j.ijbiomac.2018.11.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022]
|
22
|
Torkova AA, Lisitskaya KV, Filimonov IS, Glazunova OA, Kachalova GS, Golubev VN, Fedorova TV. Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLoS One 2018; 13:e0204261. [PMID: 30235297 PMCID: PMC6147495 DOI: 10.1371/journal.pone.0204261] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
The physicochemical characteristics and functional properties of pumpkin (Cucurbita maxima D. var. Cabello de Ángel) pectin obtained by cavitation facilitated extraction from pumpkin pulp have been evaluated and compared with commercial citrus and apple pectins. C. maxima pectin had an Mw value of 90 kDa and a high degree (72%) of esterification. The cytoprotective and antioxidant effects of citrus, apple and pumpkin pectin samples with different concentrations were studied in vitro in cell lines HT-29 (human colon adenocarcinoma) and MDCK1 (canine kidney epithelium). All pectin samples exhibited cytoprotective effect in HT-29 and MDCK1 cells after incubation with toxic concentrations of cadmium and mercury for 4 h. Pumpkin pectin increased the proliferation of cadmium-treated MDCK1 cells by 210%. The studied pectins also inhibited oxidative stress induced by 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH) in cell cultures, as determined by measuring the production of intracellular reactive species using dihydrochlorofluorescein diacetate (DCFH-DA). Pectin from pumpkin pomace had the highest (p < 0.05) protective effect against reactive oxygen species generation in MDCK1 cells induced by AAPH. Distinctive features of pumpkin pectin were highly branched RG-I regions, the presence of RG-II regions and the highest galacturonic acid content among the studied samples of pectins. This correlates with a considerable protective effect of C. maxima pectin against oxidative stress and cytotoxicity induced by heavy metal ions. Thus, C. maxima pectin can be considered as a source of new functional foods of agricultural origin.
Collapse
Affiliation(s)
- Anna A. Torkova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ksenia V. Lisitskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan S. Filimonov
- Federal State-Owned Unitary Enterprise «All-Russian Research Institute for Optical and Physical Measurements», Moscow, Russia
| | - Olga A. Glazunova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Galina S. Kachalova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Russian National Research Center “Kurchatov Institute”, Moscow, Russia
| | | | - Tatyana V. Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Bao H, Zhou R, You S, Wu S, Wang Q, Cui SW. Gelation mechanism of polysaccharides from Auricularia auricula-judae. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Filho CMC, Bueno PVA, Matsushita AFY, Rubira AF, Muniz EC, Durães L, Murtinho DMB, Valente AJM. Synthesis, characterization and sorption studies of aromatic compounds by hydrogels of chitosan blended with β-cyclodextrin- and PVA-functionalized pectin. RSC Adv 2018; 8:14609-14622. [PMID: 35540733 PMCID: PMC9079937 DOI: 10.1039/c8ra02332h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 11/21/2022] Open
Abstract
Complex coacervation of chitosan with β-cyclodextrin- and poly(vinyl alcohol)-functionalized pectin: ability for simultaneous removal of six different aromatic compounds.
Collapse
Affiliation(s)
- Cesar M. C. Filho
- CQC
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| | - Pedro V. A. Bueno
- Grupo de Materiais Poliméricos e Compósitos (GMPC) – Departamento de Química
- Universidade Estadual de Maringá
- UEM
- Maringá
- Brazil
| | | | - Adley F. Rubira
- Grupo de Materiais Poliméricos e Compósitos (GMPC) – Departamento de Química
- Universidade Estadual de Maringá
- UEM
- Maringá
- Brazil
| | - Edvani C. Muniz
- Grupo de Materiais Poliméricos e Compósitos (GMPC) – Departamento de Química
- Universidade Estadual de Maringá
- UEM
- Maringá
- Brazil
| | - Luísa Durães
- CIEPQPF
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | | | | |
Collapse
|
25
|
Ozel B, Cikrikci S, Aydin O, Oztop MH. Polysaccharide blended whey protein isolate-(WPI) hydrogels: A physicochemical and controlled release study. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.04.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Engineering pectin-based hollow nanocapsules for delivery of anticancer drug. Carbohydr Polym 2017; 177:86-96. [PMID: 28962799 DOI: 10.1016/j.carbpol.2017.08.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 11/23/2022]
Abstract
Multifunctional capsules have great applications in biomedical fields. In this study, novel polysaccharide-based nanocapsules were prepared via a layer-by-layer technique using silica as the templates. The shell was constructed based on the electrostatic interactions between pectin and chitosan. The pectin-chitosan nanocapsules ((Pec/Cs)3Pec) could keep good colloidal stability within 96h in PBS solution and 48h in BSA solution. Meanwhile, the nanocapsules exhibited a high drug loading and pH-sensitive release property for doxorubicin hydrochloride. Moreover, (Pec/Cs)3Pec nanocapsules had no cytotoxicity to both human hepatocellular carcinoma cells (HepG2 cells) and mouse fibroblast cells (L929 cells). More importantly, (Pec/Cs)3Pec nanocapsules could be more easily uptaken by HepG2 cells when compared with L929 cells. In vitro anticancer activity tests indicated the carriers could effectively kill HepG2 cells. Overall, (Pec/Cs)3Pec nanocapsules have great potential as a novel anticancer drug carrier as a result of their pH-sensitivity, good colloidal stability and anticancer activity.
Collapse
|
27
|
Tentor FR, de Oliveira JH, Scariot DB, Lazarin-Bidóia D, Bonafé EG, Nakamura CV, Venter SA, Monteiro JP, Muniz EC, Martins AF. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int J Biol Macromol 2017; 102:1186-1194. [DOI: 10.1016/j.ijbiomac.2017.04.106] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/24/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
|
28
|
Pectin and polygalacturonic acid-coated liposomes as novel delivery system for nisin: Preparation, characterization and release behavior. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Neufeld L, Bianco-Peled H. Pectin–chitosan physical hydrogels as potential drug delivery vehicles. Int J Biol Macromol 2017; 101:852-861. [DOI: 10.1016/j.ijbiomac.2017.03.167] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
|
30
|
Wu T, Huang J, Jiang Y, Hu Y, Ye X, Liu D, Chen J. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem 2017; 240:361-369. [PMID: 28946284 DOI: 10.1016/j.foodchem.2017.07.052] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
Abstract
Novel hydrogels based on chitosan/sodium alginate (CS-ALG) were prepared to deliver and protect lysozyme while eliminating food-borne microorganisms. These hydrogels were characterized according to the zeta potential, optical microscopy, scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), fourier transform infrared (FT-IR), and small-angle X-ray scattering (SAXS). The results demonstrated that the resultant hydrogels were negatively charged and spherical in shape. In addition, the maximum swelling ratio was 45.66±7.62 for CS-ALG hydrogels loaded with lysozyme. The relative activity of the released lysozyme was 87.72±3.96%, indicating that CS-ALG hydrogels are promising matrices for enzyme loading and adsorption. Furthermore, a 100% bacterial clearance rate of CS/ALG loaded with lysozyme was observed to correspond to the superposition effect stimulated by CS and lysozyme, which improved the antibacterial activity against E. coli and S. aureus compared to CS/ALG, suggesting its potential use in the food industry as well as other applications.
Collapse
Affiliation(s)
- Tiantian Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaqi Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Jiang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yaqin Hu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xingqian Ye
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianchu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Alba K, Bingham RJ, Kontogiorgos V. Mesoscopic structure of pectin in solution. Biopolymers 2017; 107. [DOI: 10.1002/bip.23016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/07/2017] [Accepted: 01/25/2017] [Indexed: 01/08/2023]
Affiliation(s)
- K. Alba
- Department of Biological Sciences; University of Huddersfield; HD1 3DH United Kingdom
| | - R. J. Bingham
- Department of Biological Sciences; University of Huddersfield; HD1 3DH United Kingdom
| | - V. Kontogiorgos
- Department of Biological Sciences; University of Huddersfield; HD1 3DH United Kingdom
| |
Collapse
|
32
|
Ozel B, Uguz SS, Kilercioglu M, Grunin L, Oztop MH. Effect of different polysaccharides on swelling of composite whey protein hydrogels: A low field (LF) NMR relaxometry study. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12465] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Baris Ozel
- Food Engineering Department; Ahi Evran University; Kirsehir Turkey
- Food Engineering Department; Middle East Technical University; Ankara Turkey
| | - Sirvan S. Uguz
- Food Engineering Department; Middle East Technical University; Ankara Turkey
| | - Mete Kilercioglu
- Food Engineering Department; Middle East Technical University; Ankara Turkey
| | - Leonid Grunin
- Department of Physics, Volga State University of Technology, Yoshkar-Ola, Mari El, Russian Federation
| | - Mecit H. Oztop
- Food Engineering Department; Middle East Technical University; Ankara Turkey
| |
Collapse
|