1
|
Kunyanee K, Luangsakul N. The impact of heat moisture treatment on the physicochemical properties and in vitro glycemic index of rice flour with different amylose contents and associated effects on rice dumpling quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
2
|
Yadav S, Chauhan M, Jacob M, Malhotra P. Distinguished performance of biogenically synthesized reduced-graphene-oxide-based mesoporous Au–Cu 2O/RGO ternary nanocomposites for sonocatalytic reduction of nitrophenols in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj00745b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au-Cu2O supported on reduced graphene oxide was synthesised employing a novel one pot greener approach using sugarcane bagasse waste and Fehling’s solution. It was used for catalytic reduction of nitrophenols under ultrasonic irradiation in water.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi-110007, India
| | - Maruf Chauhan
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi-110007, India
| | - MercyKutty Jacob
- Department of Chemistry, Shri. Venkateswara College, University of Delhi, Delhi-110007, India
| | - Priti Malhotra
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi-110007, India
| |
Collapse
|
3
|
Wan J, Xu J, Zhu S, Li J, Wang B, Zeng J, Li J, Chen K. Eco-Friendly Superhydrophobic Composites with Thermostability, UV Resistance, and Coating Transparency. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61681-61692. [PMID: 34913682 DOI: 10.1021/acsami.1c20419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the market demand for biofiber assemblies endowed with superhydrophobicity being huge, the current approaches to their production are complicated, time-consuming, and even pose a serious threat to the environment. Here, we report a simple surface treatment strategy to prepare environmentally friendly superhydrophobic biofiber composites. The obtained samples have certain UV resistance properties, which are mainly determined by the titanium dioxide (TiO2) dosage. Additionally, the sample has excellent thermal stability, and the contact angle is maintained at 153.26° after heat treatment at 140 °C for 1 h. Quite encouragingly, thermal annealing of samples can transform translucent coatings into transparent structures and increase the tensile strength. The results also showed that this strategy could be integrated into the mass production process of other biofiber components as coating, such as coated paper, pulp boards, cotton gauzes, tissues, and so forth. Due to the facile preparation and environment-friendliness, this sustainable paper-based product can be used in diversified applications: packaging and storage of liquid food, protection of ancient books, UV- and rain-proof materials, and teaching demonstrations relevant to bionics, among others.
Collapse
Affiliation(s)
- Jinming Wan
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Shiyun Zhu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jinpeng Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
4
|
Cruz-Benítez MM, Gónzalez-Morones P, Hernández-Hernández E, Villagómez-Ibarra JR, Castro-Rosas J, Rangel-Vargas E, Fonseca-Florido HA, Gómez-Aldapa CA. Covalent Functionalization of Graphene Oxide with Fructose, Starch, and Micro-Cellulose by Sonochemistry. Polymers (Basel) 2021; 13:490. [PMID: 33557420 PMCID: PMC7915305 DOI: 10.3390/polym13040490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
In this work, we report the synthesis of graphene oxide (GO) nanohybrids with starch, fructose, and micro-cellulose molecules by sonication in an aqueous medium at 90 °C and a short reaction time (30 min). The final product was washed with solvents to extract the nanohybrids and separate them from the organic molecules not grafted onto the GO surface. Nanohybrids were chemically characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy and analyzed by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). These results indicate that the ultrasound energy promoted a chemical reaction between GO and the organic molecules in a short time (30 min). The chemical characterization of these nanohybrids confirms their covalent bond, obtaining a grafting percentage above 40% the weight in these nanohybrids. This hybridization creates nanometric and millimetric nanohybrid particles. In addition, the grafted organic molecules can be crystallized on GO films. Interference in the ultrasound waves of starch hybrids is due to the increase in viscosity, leading to a partial hybridization of GO with starch.
Collapse
Affiliation(s)
- María Montserrat Cruz-Benítez
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Carretera Pachuca—Tulancingo km 4.5, C.P. 42184 Mineral de la Reforma, Mexico; (M.M.C.-B.); (J.R.V.-I.); (J.C.-R.); (E.R.-V.)
| | - Pablo Gónzalez-Morones
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna Hermosillo, No. 140, C.P. 25294 Saltillo, Mexico; (P.G.-M.); (E.H.-H.)
| | - Ernesto Hernández-Hernández
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna Hermosillo, No. 140, C.P. 25294 Saltillo, Mexico; (P.G.-M.); (E.H.-H.)
| | - José Roberto Villagómez-Ibarra
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Carretera Pachuca—Tulancingo km 4.5, C.P. 42184 Mineral de la Reforma, Mexico; (M.M.C.-B.); (J.R.V.-I.); (J.C.-R.); (E.R.-V.)
| | - Javier Castro-Rosas
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Carretera Pachuca—Tulancingo km 4.5, C.P. 42184 Mineral de la Reforma, Mexico; (M.M.C.-B.); (J.R.V.-I.); (J.C.-R.); (E.R.-V.)
| | - Esmeralda Rangel-Vargas
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Carretera Pachuca—Tulancingo km 4.5, C.P. 42184 Mineral de la Reforma, Mexico; (M.M.C.-B.); (J.R.V.-I.); (J.C.-R.); (E.R.-V.)
| | - Heidi Andrea Fonseca-Florido
- CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Ing. Enrique Reyna H. No. 140, C.P. 25294 Saltillo, Mexico
| | - Carlos Alberto Gómez-Aldapa
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Carretera Pachuca—Tulancingo km 4.5, C.P. 42184 Mineral de la Reforma, Mexico; (M.M.C.-B.); (J.R.V.-I.); (J.C.-R.); (E.R.-V.)
| |
Collapse
|
5
|
Duan W, Li X, Shen Y, Yang K, Zhang H. Synthesis of highly branched water-soluble polyester and its surface sizing agent strengthening mechanism. E-POLYMERS 2020. [DOI: 10.1515/epoly-2021-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Solvent-free and highly branched water-soluble polyester (WPET) is prepared through self-emulsification methodology, using dimethyl terephthalate (DMT), sodium dimethyl isophthalate-5-sulfonate (SIPM), trimethylolpropane (TMP), and ethylene glycol (EG) by the transesterification and polycondensation. The WPET were first utilized as surface-sizing agents for cellulose fiber paper. The structure, average molecular weights, and physical properties of the water-soluble polyester were characterized by FTIR, 1H NMR, gel permeation chromatography (GPC), dynamic light scattering (DLS), X-ray diffraction (XRD), and dynamic rheometer. The effects of polymer structure and properties, as well as the surface sizing of the paper, were investigated. WPET displayed better surface sizing properties when it was prepared under the following conditions: –COO/–OH molar ratio of 1:2, the SIPM content of 17.98%, and TMP content of 11.10%. The relationships between the WPET structure and sized paper were clearly illustrated. The mechanical properties and water resistance of sized paper did not only depend on multi-branched hydroxyl groups of the WPET chains but also relied on the interactions among polymers and fibers, as well as the high toughness of surface sizing agent. The sizing paper possesses excellent mechanical properties as well as water resistance.
Collapse
Affiliation(s)
- Wangwang Duan
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology , Xi’an 710021 , People's Republic of China
| | - Xiaorui Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology , Xi’an 710021 , People's Republic of China
| | - Yiding Shen
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology , Xi’an 710021 , People's Republic of China
| | - Kai Yang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology , Xi’an 710021 , People's Republic of China
| | - Hua Zhang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology , Xi’an 710021 , People's Republic of China
| |
Collapse
|
6
|
Abstract
Sonochemistry is a significant contributor to green science as it includes: (i) the use of less toxic compounds and environmentally safe solvents, (ii) improvement of reaction conditions and selectivity, (iii) no toxic sludge generation, (iv) reduction in the energy use for chemical transformations, (v) reusability of materials. In water and wastewater treatment, ultrasound is used as an advanced oxidation process to eliminate refractory pollutants. Ultrasound is also used as a very effective sludge pretreatment technology in wastewater treatment plants to facilitate biogas production. Moreover, sonochemical synthesis of nanoparticles has recently attracted great attention as a greener protocol. This paper presents the main applications of ultrasound in environmental remediation and protection. The study also introduces mechanism for the degradation of pollutants from water via sonication in aqueous media and the principle factors affecting the cavitational effect.
Collapse
|
7
|
Haske-Cornelius O, Hartmann A, Brunner F, Pellis A, Bauer W, Nyanhongo GS, Guebitz GM. Effects of enzymes on the refining of different pulps. J Biotechnol 2020; 320:1-10. [PMID: 32553829 DOI: 10.1016/j.jbiotec.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 11/30/2022]
Abstract
Comparative studies of the effects of two commercial enzyme formulations on fiber refining were conducted. Extensive basic characterisation of the enzymes involved, assessment of their hydrolytic activities on different model substrates as well as on different pulps (softwood sulfate, softwood sulfite, hardwood sulfate) were evaluated. Both enzyme formulations showed endoglucanase as well as some xylanase and β-glucosidase activity. In addition, Enzyme A reached a CMC end viscosity of 19.5 mPa compared to 11.1 mPa for Enzyme B. Reducing sugar release almost doubled from 695 μmol mL-1 for hardwood sulfate pulp to 1300 μmol mL-1 for softwood sulfite pulp with Enzyme B under the same conditions. Enzyme A increased the degree of refining even under non-ideal conditions from 23 °SR to up to 50 °SR. Further characterization of hand sheets, made from enzyme pre-treated and refined cellulose fibers with Enzyme A and B, showed that Enzyme A had the best effects leading to hand sheets with increased tensile strength and low air permeability. In summary, the increase in the degree of refining seen for Enzyme A correlated to higher xylanase and β-glucosidase activity and lower endoglucanase activity.
Collapse
Affiliation(s)
- Oskar Haske-Cornelius
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Alexandra Hartmann
- Graz University of Technology, Institute of Paper, Pulp and Fiber Technology, Inffeldgasse 23, Graz, 8010, Austria
| | - Florian Brunner
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Alessandro Pellis
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Wolfgang Bauer
- Graz University of Technology, Institute of Paper, Pulp and Fiber Technology, Inffeldgasse 23, Graz, 8010, Austria
| | - Gibson S Nyanhongo
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria.
| | - Georg M Guebitz
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria; Austrian Centre of Industrial Biotechnology, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| |
Collapse
|
8
|
Ulbrich M, Bai Y, Flöter E. The supporting effect of ultrasound on the acid hydrolysis of granular potato starch. Carbohydr Polym 2020; 230:115633. [DOI: 10.1016/j.carbpol.2019.115633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
|
9
|
Wang L, Zhang X, Xu J, Wang Q, Fan X. How starch-g-poly(acrylamide) molecular structure effect sizing properties. Int J Biol Macromol 2020; 144:403-409. [PMID: 31862373 DOI: 10.1016/j.ijbiomac.2019.12.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022]
Abstract
The effect of starch-g-poly(acrylamide) (S-g-PAM) molecular structure on sizing properties has been investigated. S-g-PAMs were synthesized with the catalysis of horseradish peroxidase (HRP) and Fourier transform infrared (FT-IR) confirmed the acrylamide (AM) units had been successfully grafted on starch chains. Structural parameters, including degree of branching (DB), degree of substitution (DS) and grafting ratio (GR) were characterized by 1H nuclear magnetic resonance (1H NMR), and were correlated with sizing properties of apparent viscosity, adhesion to cotton yarns and film mechanical properties. The apparent viscosity of S-g-PAMs has no obvious correlation with DB and DS (or GR), as the amylose content of the native starch might have more influence on the viscosity of grafted starches. DS (or GR) values of grafted starches have a positive relationship with the tensile strength of sized cotton yarns and are negatively related with tensile strength of starch film. These results can provide guidance in the section of starch with improved sizing properties.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi 214122, Jiangsu, China
| | - Xun Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi 214122, Jiangsu, China
| | - Jin Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi 214122, Jiangsu, China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
10
|
Ma X, Yan T, Hou F, Chen W, Miao S, Liu D. Formation of soy protein isolate (SPI)-citrus pectin (CP) electrostatic complexes under a high-intensity ultrasonic field: Linking the enhanced emulsifying properties to physicochemical and structural properties. ULTRASONICS SONOCHEMISTRY 2019; 59:104748. [PMID: 31473418 DOI: 10.1016/j.ultsonch.2019.104748] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 05/06/2023]
Abstract
In this study, a high-intensity ultrasonic field was applied to the electrostatic interactions between soy protein isolate (SPI) and citrus pectin (CP). The emulsifying properties of SPI-CP soluble complexes formed under different ultrasound powers and durations were investigated and peaked at 630 W for 10 min. Micrographs of emulsions revealed that ultrasound-treated complexes generated a more homogeneous emulsion with significantly reduced and uniformly-distributed droplet sizes. To better understand the mechanism for the improved emulsifying properties, the physicochemical and structural properties of the SPI-CP complexes at pH 3.5 with and without ultrasound treatment were investigated. It was revealed that ultrasound increased the absolute values of the zeta potential and surface hydrophobicity of complexes, but significantly decreased their particle sizes, fluorescence intensity and turbidity. Results indicated that cavitation effects resulted in structural modifications in both biomacromolecules, as well as enhanced the electrostatic interactions between SPI and CP, which in combination contributed to the more desirable emulsifying properties of the complex.
Collapse
Affiliation(s)
- Xiaobin Ma
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Furong Hou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Weijun Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Effects of ultrasound pretreatment on the enzymolysis of pectin: Kinetic study, structural characteristics and anti-cancer activity of the hydrolysates. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Ren L, Zhang Y, Wang Q, Zhou J, Tong J, Chen D, Su X. Convenient Method for Enhancing Hydrophobicity and Dispersibility of Starch Nanocrystals by Crosslinking Modification with Citric Acid. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2018. [DOI: 10.1515/ijfe-2017-0238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis study investigated the chemical, wettability, thermal and structural properties of starch nanocrystals (SNCs) modified through crosslinking modification using citric acid in aqueous medium. The results of Fourier transform infrared spectroscopy analysis suggested that new interactions occurred between starch and citric acid after modification and an increase of the reaction time increased the degree of substitution. X-ray diffraction analysis showed that the crystalline structure of SNCs was maintained after the crosslinking modification by adjusting the pH to 3.5, and destroyed after the modification by pretreatments without adjusting the pH of the citric acid solution. Crosslinking modification decreased the size and aggregation of SNCs and longer reaction time gave rise to the smaller particle size of SNCs modified by the pretreatments of adjusting the pH of the citric acid solution. The crosslinked SNCs had lower polarity and showed stronger hydrophobicity and dispersion stability which allowed them be used as reinforcements in hydrophobic polymer matrices.
Collapse
Affiliation(s)
- Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun130022, China
- College of Chemistry, Jilin University, Changchun130022, China
| | - Yuchen Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun130022, China
| | - Qian Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun130022, China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun130022, China
| | - Jin Tong
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun130022, China
| | - Donghui Chen
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun130022, China
| | - Xingguang Su
- College of Chemistry, Jilin University, Changchun130022, China
| |
Collapse
|
13
|
Bao C, Zeng H, Zhang Y, Zhang L, Lu X, Guo Z, Miao S, Zheng B. Structural characteristics and prebiotic effects of Semen coicis resistant starches (type 3) prepared by different methods. Int J Biol Macromol 2017; 105:671-679. [DOI: 10.1016/j.ijbiomac.2017.07.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/06/2017] [Accepted: 07/13/2017] [Indexed: 01/18/2023]
|
14
|
Stabilizing alkenyl succinic anhydride (ASA) emulsions with starch nanocrystals and fluorescent carbon dots. Carbohydr Polym 2017; 165:13-21. [DOI: 10.1016/j.carbpol.2017.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 11/22/2022]
|
15
|
Radosta S, Kiessler B, Vorwerg W, Brenner T. Molecular composition of surface sizing starch prepared using oxidation, enzymatic hydrolysis and ultrasonic treatment methods. STARCH-STARKE 2016. [DOI: 10.1002/star.201500314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sylvia Radosta
- Fraunhofer Institute for Applied Polymer Research; Potsdam Germany
| | | | - Waltraud Vorwerg
- Fraunhofer Institute for Applied Polymer Research; Potsdam Germany
| | | |
Collapse
|