1
|
da Costa E Silva RMF, Andrade ÂL, Freitas ETF, Valverde TM, Lara LRS, Martins DA, Lopez JL, Stumpf HO, Nascentes CC, de Goes AM, Domingues RZ. Formation and stability of green and low-cost magnetoliposomes of the soy lecithin, stigmasterol, and β-sitosterol for hyperthermia treatments. Sci Rep 2025; 15:2831. [PMID: 39843908 PMCID: PMC11754809 DOI: 10.1038/s41598-024-82480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential. The iron oxide phase stability was assessed using no conventional X-ray diffraction (high-resolution transmission electron microscopy), energy loss electron spectroscopy, and selected area electron diffraction) in time zero (fresh sample) and 6 months. The high zeta potential measured for magnetoliposomes, │53│ mV, indicated a low tendency to agglomerate. Lip-Fe3O4@lecithin with concentrations of 0.58 mg mL-1 of liposome showed high cell viability and are potential candidates for drug delivery and hyperthermia treatments in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays.
Collapse
Affiliation(s)
| | - Ângela Leão Andrade
- Depto de Química, ICEB, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, MG, CEP 35400-000, Brazil
| | - Erico Tadeu Fraga Freitas
- Centro de Microscopia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Thalita Marcolan Valverde
- Depto de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Luciano Roni Silva Lara
- Universidade Estadual de Mato Grosso do Sul, Dourados, MS, CEP 79.804-970, Brazil
- Depto de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Darliane Aparecida Martins
- Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas, Campus Pouso Alegre, Av. Maria da Conceição Santos, 900 - Parque Real, Pouso Alegre, MG, CEP 37550-000, Brazil
| | - Jorge Luis Lopez
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, UFAC, Rio Branco, AC, CEP 69.920-900, Brazil
| | - Humberto Osório Stumpf
- Depto de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | | | - Alfredo Miranda de Goes
- Depto de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | | |
Collapse
|
2
|
Soe HMSH, Loftsson T, Jansook P. The application of cyclodextrins in drug solubilization and stabilization of nanoparticles for drug delivery and biomedical applications. Int J Pharm 2024; 666:124787. [PMID: 39362296 DOI: 10.1016/j.ijpharm.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles (NPs) have gained significant attention in recent years due to their potential applications in pharmaceutical formulations, drug delivery systems, and various biomedical fields. The versatility of colloidal NPs, including their ability to be tailored with various components and synthesis methods, enables drug delivery systems to achieve controlled release patterns, improved solubility, and increased bioavailability. The review discusses various types of NPs, such as nanocrystals, lipid-based NPs, and inorganic NPs (i.e., gold, silver, magnetic NPs), each offering unique advantages for drug delivery. Despite the promising potential of NPs, challenges such as physical instability and the need for surface stabilization remain. Strategies to overcome these challenges include the use of surfactants, polymers, and cyclodextrins (CDs). This review highlights the role of CDs in stabilizing colloidal NPs and enhancing drug solubility. The combination of CDs with NPs presents a synergistic approach that enhances drug delivery and broadens the range of biomedical applications. Additionally, the potential of CDs to enhance the stability and therapeutic efficacy of colloidal NPs, making them promising candidates for advanced drug delivery systems, is comprehensively reviewed.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Karkad AA, Pirković A, Milošević M, Stojadinović B, Šavikin K, Marinković A, Jovanović AA. Silibinin-Loaded Liposomes: The Influence of Modifications on Physicochemical Characteristics, Stability, and Bioactivity Associated with Dermal Application. Pharmaceutics 2024; 16:1476. [PMID: 39598599 PMCID: PMC11597119 DOI: 10.3390/pharmaceutics16111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The aims of the presented study were the development of four types of silibinin-loaded liposomes (multilamellar liposomes-MLVs, sonicated small unilamellar liposomes-SUVs, UV-irradiated liposomes, and lyophilized liposomes) and their physicochemical characterization and biological potential related to skin health benefits. METHODS The characterization was performed via the determination of the encapsulation efficiency (EE), particle size, polydispersity index, zeta potential, conductivity, mobility, storage stability, density, surface tension, viscosity, FT-IR, and Raman spectra. In addition, cytotoxicity on the keratinocytes and antioxidant and anti-inflammatory potential were also determined. RESULTS UV irradiation significantly changed the rheological and chemical properties of the liposomes and increased their cytotoxic effect. The lyophilization of the liposomes caused significant changes in their EE and physical characteristics, decreased their ABTS and DPPH radical scavenging potential, and increased their potential to reduce the expression of interleukin 1 beta (IL-1β) in cells treated with bacterial lipopolysaccharide. Sonication significantly changed the EE and physical and rheological properties of the liposomes, and slightly increased their cytotoxicity and reduction effect on IL-1β, while the anti-ABTS and anti-DPPH capacity of the liposomes significantly increased. All developed liposomes showed an increasing trend in particle size and a decreasing trend in zeta potential (absolute values) during storage. CONCLUSIONS Silibinin-loaded liposomes (MLVs and lyophilized) showed promising antioxidant activity (toward reactive oxygen species generated in cells) and anti-inflammatory effects (reducing macrophage inhibitory factor expression) on keratinocytes and did not lead to a change in their viability. Future perspectives will focus on wound healing, anti-aging, and other potential of developed liposomes with silibinin in sophisticated cell-based models of skin diseases, wounds, and aging.
Collapse
Affiliation(s)
- Amjed Abdullah Karkad
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
- Faculty of Medical Technology, Elmergib University, Msallata 7310500, Libya
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Milena Milošević
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bojan Stojadinović
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia;
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr Josif Pančić”, 11000 Belgrade, Serbia;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| |
Collapse
|
4
|
Liñán-Atero R, Aghababaei F, García SR, Hasiri Z, Ziogkas D, Moreno A, Hadidi M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants (Basel) 2024; 13:488. [PMID: 38671935 PMCID: PMC11047511 DOI: 10.3390/antiox13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (β-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.
Collapse
Affiliation(s)
- Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | | | - Samuel Rodríguez García
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran;
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Baranauskaite J, Aydin M, Uner B, Tas C. Formulation of Metoclopramide Hydrochloride-Loaded Lipid Carriers by QbD Approach for Combating Nausea: Safety and Bioavailability Evaluation in New Zealand Rabbit. AAPS PharmSciTech 2024; 25:73. [DOI: 8.https:/doi.org/10.1208/s12249-024-02791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/12/2024] [Indexed: 03/30/2025] Open
|
6
|
Baranauskaite J, Aydin M, Uner B, Tas C. Formulation of Metoclopramide Hydrochloride-Loaded Lipid Carriers by QbD Approach for Combating Nausea: Safety and Bioavailability Evaluation in New Zealand Rabbit. AAPS PharmSciTech 2024; 25:73. [PMID: 38575825 DOI: 10.1208/s12249-024-02791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
The focus of the research was to overcome the limitations of metoclopramide (MTC) when administered intranasally. The aim was to improve its bioavailability, increase patient compliance, and prolong its residence time in the nasal cavity. MTC-loaded liposomes were prepared by applying the film hydration method. A study was conducted to determine how formulation variables affected encapsulation efficiency (EE %), mean particle size (MPS), and zeta potential (ZP). The MTC-liposomes were further loaded into the in situ gel (gellan gum) for longer residence times following intranasal administration. pH, gelling time, and in vitro release tests were conducted on the formulations produced. In vivo performance of the MTC-loaded in situ gels was appraised based on disparate parameters such as plasma peak concentration, plasma peak time, and elimination coefficient compared to intravenous administration. When the optimal liposome formulation contained 1.98% of SPC, 0.081% of cholesterol, 97.84% of chloroform, and 0.1% of MTC, the EE of MTC was 83.21%, PS was 107.3 nm. After 5 h, more than 80% of the drug was released from MTC-loaded liposome incorporated into gellan gum in situ gel formulation (Lip-GG), which exhibited improved absorption and higher bioavailability compared to MTC loaded into gellan gum in situ gel (MTC-GG). Acceptable cell viability was also achieved. It was found out that MTC-loaded liposomal in situ gel formulations administered through the nasal route could be a better choice than other options due to its ease of administration, accurate dosing, and higher bioavailability in comparison with MTC-GG.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Department of Pharmaceutical Technology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| | - Meryem Aydin
- Department of Pharmaceutical Technology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| | - Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, Missouri, USA.
| | - Cetin Tas
- Department of Pharmaceutical Technology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| |
Collapse
|
7
|
Huang J, Fang Z, Bai C, Mo Y, Liu D, Yang B, Jia X, Feng L. Novel nano-encapsulated limonene: Utilization of drug-in-cyclodextrin-in-liposome formulation to improve the stability and enhance the antioxidant activity. Int J Pharm 2024; 653:123914. [PMID: 38373597 DOI: 10.1016/j.ijpharm.2024.123914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Drug-in-cyclodextrin-in-liposome (DCL) combines advantages of cyclodextrin and liposome. Here, DCL formulation was successfully prepared to encapsulate limonene (Lim), whose characterization revealed that particle size was 147.5 ± 1.3 nm and zeta potential was -48.7 ± 0.8 mV. And the complexation mechanism of Lim/HP-β-CD inclusion complex (the intermediate of DCL) was analyzed by molecular dynamics simulation, showing that Lim was entrapped into the cavity of HP-β-CD through electrostatic and hydrophobic interaction with a molar ratio of 1:1. Notably, DCL formulation not only reduced Lim volatilization in 25℃, but also enhanced the free radical (DPPH· and ABTS·+) scavenging ability of Lim. In summary, Lim-DCL formulation improved the stability and enhanced the antioxidant activity of Lim. DCL nanocarrier system is suitable to preserve volatile and hydrophobic compounds, enlarging their application in pharmaceutics industries.
Collapse
Affiliation(s)
- Junming Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhanmin Fang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chun Bai
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yulin Mo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Dingkun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| |
Collapse
|
8
|
Zhang W, Ezati P, Khan A, Assadpour E, Rhim JW, Jafari SM. Encapsulation and delivery systems of cinnamon essential oil for food preservation applications. Adv Colloid Interface Sci 2023; 318:102965. [PMID: 37480830 DOI: 10.1016/j.cis.2023.102965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Food safety threats and deterioration due to the invasion of microorganisms has led to economic losses and food-borne diseases in the food industry; so, development of natural food preservatives is urgently needed when considering the safety of chemically synthesized preservatives. Because of its outstanding antioxidant and antibacterial properties, cinnamon essential oil (CEO) is considered a promising natural preservative. However, CEO's low solubility and easy degradability limits its application in food products. Therefore, some encapsulation and delivery systems have been developed to improve CEO efficiency in food preservation applications. This work discusses the chemical and techno-functional properties of CEO, including its key components and antioxidant/antibacterial properties, and summarizes recent developments on encapsulation and delivery systems for CEO in food preservation applications. Since CEO is currently added to most biopolymeric films/coatings (BFCs) for food preservation, most studies have shown that encapsulation systems can improve the food preservation performance of BFCs containing CEOs. It has been confirmed that various delivery systems could improve the stability and controlled-release properties of CEO, thereby enhancing its ability to extend the shelf life of foods. These encapsulation techniques include spray drying, emulsion systems, complex coacervation (nanoprecipitation), ionic gelation, liposomes, inclusion complexation (cyclodextrins, silica), and electrospinning.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Parya Ezati
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
9
|
Kubiliene A, Munius E, Songailaite G, Kokyte I, Baranauskaite J, Liekis A, Sadauskiene I. A Comparative Evaluation of Antioxidant Activity of Extract and Essential Oil of Origanum onites L. In Vivo. Molecules 2023; 28:5302. [PMID: 37513176 PMCID: PMC10383675 DOI: 10.3390/molecules28145302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In the present study, the effects of Origanum onites L. extract and essential oil of O. onites L. on the antioxidant status of the liver and brain of mice were investigated. Due to certain disadvantages of essential oils, such as poor solubility, high volatility and sensitivity to UV light and heat, formulation of liposomes with Oregano essentials (OE) was optimized and used in this study. The results demonstrated that the best composition of the lipid carriers and OE were conducted in terms of the polydispersity index (PDI), mean particle size and encapsulation efficiency (EE). For further study the LE4 formulation was used, which contained Lipoid S100 at 45 mg, Lipoid S75 at 45 mg and 90 mg of EO. The administration of O. onites L. extract to mice for 21 days significantly decreased the glutathione (GSH) level in the livers and brains of the mice as well as the malondialdehyde (MDA) concentration in the livers. In the brains of the mice, MDA level significantly increased after this extract consumption. Whereas liposomes with OE significantly decreased GSH concentration in the mouse brain and MDA concentration in the mouse liver, there was an increased (p > 0.05) GSH level in the liver and MDA concentration in the brain of mice compared with the control group. It was found that both O. onites. ethanolic extract as well as liposomes with OE of this plant material affect the antioxidant status in the livers and brains of mice.
Collapse
Affiliation(s)
- Asta Kubiliene
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu St. 13, LT-50161 Kaunas, Lithuania
| | - Edvinas Munius
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu St. 13, LT-50161 Kaunas, Lithuania
| | - Gabriele Songailaite
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu St. 13, LT-50161 Kaunas, Lithuania
| | - Indre Kokyte
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu St. 13, LT-50161 Kaunas, Lithuania
| | - Juste Baranauskaite
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu St. 13, LT-50161 Kaunas, Lithuania
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul 34755, Turkey
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania
| | - Ilona Sadauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania
| |
Collapse
|
10
|
Ebrahimi A, Hamishehkar H, Amjadi S. Development of gelatin-coated nanoliposomes loaded with β-cyclodextrin/vitamin D 3 inclusion complex for nutritional therapy. Food Chem 2023; 424:136346. [PMID: 37201470 DOI: 10.1016/j.foodchem.2023.136346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
The aim of this study was to synthesize of β-cyclodextrin/Vitamin D3 (βCD/VitD3) inclusion complex and encapsulation of this complex with gelatin-coated nanoliposomes (NLPs). Fourier transform infrared spectroscopy confirmed the formation of βCD/VitD3 inclusion complex. In the next step, different gelatin concentrations (1, 2, and 4 mg/mL) were used to surface coat the blank NLPs. The concentration of 2 mg/mL of gelatin was chosen as the optimal concentration for coating the complex-loaded NLPs by considering particle size, morphology, and zeta potential. The particle size and zeta potential of the coated complex-loaded NLPs were 117 ± 2.55 nm and 19.8 ± 1.25 mV, respectively. The images taken by transmission electron microscopy confirmed the formation of a biopolymer layer of gelatin around the NLPs' vesicles. The complex encapsulation efficiency inside the NLPs was 81.09%. The βCD/VitD3 complex loaded NLPs and its coated form exhibited a controlled release profile in simulated gastrointestinal condition.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student Research Committee and Biotechnology Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| |
Collapse
|
11
|
Li X, Wang X, Zhang H, Gong L, Meng X, Liu B. OSA-starch stabilized EPA nanoliposomes: preparation, characterization, stability and digestion in vitro and in vivo. Food Chem 2023; 419:136040. [PMID: 37027978 DOI: 10.1016/j.foodchem.2023.136040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
OSA-starch stabilized EPA nanoliposomes (OSA-EPA-NLs) were prepared by thin film rehydration/dispersion method. The physical properties and morphology of OSA-EPA-NLs were characterized. The best formulated sample was used to measure the storage stability and oxidative properties of EPA under different environmental stresses and to determine release and absorption of OSA-EPA-NLs in vitro and in vivo. The results showed that the encapsulation efficiency of OSA-EPA-NLs was 84.61%. All samples were relatively stable under different environmental stresses, and the release rate of EPA in simulated intestine stage (89.87%) was higher than that in the simulated gastric stage (5.86%). The areas under the EPA concentration-time curve of OSA-EPA-NLs group and EPA-NLs group through in vivo study were 0.42 and 0.32, respectively, which indicated that OSA-starch could improve the stability of EPA nanoliposomes and enhance EPA bioavailability in the form of ethyl esters.
Collapse
|
12
|
Ge X, Hu Y, Shen H, Liang W, Sun Z, Zhang X, Li W. Pheophorbide-a as a Light-Triggered Liposomal Switch: For the Controlled Release of Alpinia galanga ( A. galanga) Essential Oil and Its Stability, Antioxidant, and Antibacterial Activity Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1667-1678. [PMID: 36629793 DOI: 10.1021/acs.jafc.2c07082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, Alpinia galanga essential oil liposomes (EO-Lip) were prepared with soybean lecithin and cholesterol as wall materials. A light-responsive liposome (EO-PLip) was designed for the controlled release of A. galanga oil based on the light-responsive properties of Pheophorbide-a. The dependence of Pheophorbide-a on illumination time was proved by UV spectroscopy. Characterization techniques such as UV spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy demonstrated that the essential oils were successfully encapsulated in liposomes. Moreover, the particle size of EO-PLip was 166.30 nm, the polydispersity index was 0.22, the zeta potential was -49.50 mV, and the encapsulation efficiency was 30.83%. Both EO-Lip and EO-Plip have high sustained-release effects on essential oil and showed light-responsive release characteristics under infrared stimulation. The prepared liposomes had good storage stability at 4 °C for 28 d. EO-PLip showed excellent transient antioxidant and bacteriostatic properties based on the ability to respond to light and slow release. This EO-PLip provided a platform for essential oils and might be used as a potent and controllable solution.
Collapse
Affiliation(s)
- Xiangzhen Ge
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi712100, P. R. China
- Key Laboratory of Agro-products Quality and Safety Controlling Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing100193, P. R. China
| | - Yayun Hu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi712100, P. R. China
| | - Huishan Shen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi712100, P. R. China
| | - Wei Liang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi712100, P. R. China
| | - Zhuangzhuang Sun
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi712100, P. R. China
| | - Xiuyun Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi712100, P. R. China
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi712100, P. R. China
- Key Laboratory of Agro-products Quality and Safety Controlling Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing100193, P. R. China
| |
Collapse
|
13
|
Development and evaluation of clove and cinnamon oil-based nanoemulsions against adult fleas (Xenopsylla cheopis). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Premanath R, James JP, Karunasagar I, Vaňková E, Scholtz V. Tropical plant products as biopreservatives and their application in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Ockun MA, Baranauskaite J, Uner B, Kan Y, Kırmızıbekmez H. Preparation, characterization and evaluation of liposomal-freeze dried anthocyanin-enriched Vaccinium arctostaphylos L. fruit extract incorporated into fast dissolving oral films. J Drug Deliv Sci Technol 2022; 72:103428. [DOI: 25.https:/doi.org/10.1016/j.jddst.2022.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
16
|
Ockun MA, Baranauskaite J, Uner B, Kan Y, Kırmızıbekmez H. Preparation, characterization and evaluation of liposomal-freeze dried anthocyanin-enriched Vaccinium arctostaphylos L. fruit extract incorporated into fast dissolving oral films. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Safta DA, Bogdan C, Moldovan ML. Vesicular Nanocarriers for Phytocompounds in Wound Care: Preparation and Characterization. Pharmaceutics 2022; 14:pharmaceutics14050991. [PMID: 35631577 PMCID: PMC9147886 DOI: 10.3390/pharmaceutics14050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023] Open
Abstract
The need to develop wound healing preparations is a pressing challenge given the limitations of the current treatment and the rising prevalence of impaired healing wounds. Although herbal extracts have been used for many years to treat skin disorders, due to their wound healing, anti-inflammatory, antimicrobial, and antioxidant effects, their efficacy can be questionable because of their poor bioavailability and stability issues. Nanotechnology offers an opportunity to revolutionize wound healing therapies by including herbal compounds in nanosystems. Particularly, vesicular nanosystems exhibit beneficial properties, such as biocompatibility, targeted and sustained delivery capacity, and increased phytocompounds’ bioavailability and protection, conferring them a great potential for future applications in wound care. This review summarizes the beneficial effects of phytocompounds in wound healing and emphasizes the advantages of their entrapment in vesicular nanosystems. Different types of lipid nanocarriers are presented (liposomes, niosomes, transferosomes, ethosomes, cubosomes, and their derivates’ systems), highlighting their applications as carriers for phytocompounds in wound care, with the presentation of the state-of-art in this field. The methods of preparation, characterization, and evaluation are also described, underlining the properties that ensure good in vitro and in vivo performance. Finally, future directions of topical systems in which vesicle-bearing herbal extracts or phytocompounds can be incorporated are pointed out, as their development is emerging as a promising strategy.
Collapse
|
18
|
Microencapsulation of Natural Food Antimicrobials: Methods and Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Some natural food antimicrobials with strong antimicrobial activity and low toxicity have been considered as alternatives for current commercial food preservatives. Nonetheless, these natural food antimicrobials are hardly applied directly to food products due to issues such as food flavor or bioavailability. Recent advances in microencapsulation technology have the potential to provide stable systems for these natural antibacterials, which can then be used directly in food matrices. In this review, we focus on the application of encapsulated natural antimicrobial agents, such as essential oils, plant extracts, bacteriocins, etc., as potential food preservatives to extend the shelf-life of food products. The advantages and drawbacks of the mainly used encapsulation methods, such as molecular inclusion, spray drying, coacervation, emulsification, supercritical antisolvent precipitation and liposome and alginate microbeads, are discussed. Meanwhile, the main current applications of encapsulated antimicrobials in various food products, such as meat, dairy and cereal products for controlling microbial growth, are presented.
Collapse
|
19
|
Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5272592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The potency of plant bioactives may decline drastically upon exposure to harsh external environments including gastrointestinal conditions. The protective role played by liposomes contributes to desirable properties including increased stability, slow/controlled release, improved bioactivity, and enhanced bioavailability of the encapsulated bioactives. Also, the incorporation of plant bioactives encapsulated liposomes in food matrices has resulted in augmented sensory attributes and improved quality of the foods further exhibiting the aptness of liposomal applications in food. Excitingly, new opportunities that circumvent the major shortfalls of utilizing liposomal formulations in the food industry have arisen paving the way to yield food products with high quality.
Collapse
|
20
|
Reis DR, Ambrosi A, Luccio MD. Encapsulated essential oils: a perspective in food preservation. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
21
|
Ramtin M, Sharifnia F, Larypoor M, Mirpour M, Zarrabi S. Antimicrobial and antioxidant activity of
Carum copticum
(L.) Link and
Iris pseudacorus
L. essential oils before and after the encapsulation in polyamide. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maryam Ramtin
- Department of Microbiology, North Tehran Branch Islamic Azad University Tehran Iran
| | - Fariba Sharifnia
- Department of Biology, North Tehran Branch Islamic Azad University Tehran Iran
| | - Mohaddeseh Larypoor
- Department of Microbiology, North Tehran Branch Islamic Azad University Tehran Iran
| | - Mirsassan Mirpour
- Department of Microbiology, Lahijan Branch Islamic Azad University Lahijan Iran
| | - Saeid Zarrabi
- Department of Chemistry, Lahijan Branch Islamic Azad University Lahijan Iran
| |
Collapse
|
22
|
Cyclodextrins-in-Liposomes: A Promising Delivery System for Lippia sidoides and Syzygium aromaticum Essential Oils. Life (Basel) 2022; 12:life12010095. [PMID: 35054487 PMCID: PMC8779023 DOI: 10.3390/life12010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/17/2022] Open
Abstract
Biological activity of essential oils (EOs) has been extensively reported; however, their low aqueous solubility, high photosensitivity, and volatility compromise a broad industrial use of these compounds. To overcome these limitations, we proposed a nanoencapsulation approach to protect EOs, that aims to increase their stability and modulate their release profile. In this study, drug-in-cyclodextrin-in-liposomes encapsulating two essential oils (Lippia sidoides and Syzygium aromaticum) and their respective major compounds (thymol and eugenol) were produced by ethanol injection and freeze-dried to form proliposomes and further physicochemically characterized. Liposomes showed high physical stability over one month of storage at 4 °C, with slight changes in the mean size, polydispersity index (PDI), and zeta potential. Reconstituted proliposomes showed a mean size between 350 and 3300 nm, PDI from 0.29 to 0.41, and zeta potential between -22 and -26 mV. Differential scanning calorimetry and X-ray diffraction of proliposomes revealed a less-ordered crystalline structure, leading to high retention of the major bioactive compounds (between 73% and 93% for eugenol, and 74% and 84% for thymol). This work highlights the advantages of using drug-in-cyclodextrin-in-liposomes as delivery systems to retain volatile compounds, increasing their physicochemical stability and their promising potential to be utilized as carriers in products in the pharmaceutical, food, and cosmetic industries.
Collapse
|
23
|
Hammoud Z, Kayouka M, Trifan A, Sieniawska E, Jemâa JMB, Elaissari A, Greige-Gerges H. Encapsulation of α-Pinene in Delivery Systems Based on Liposomes and Cyclodextrins. Molecules 2021; 26:molecules26226840. [PMID: 34833931 PMCID: PMC8623189 DOI: 10.3390/molecules26226840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
The essential oil component α-pinene has multiple biological activities. However, its application is limited owing to its volatility, low aqueous solubility, and chemical instability. For the aim of improving its physicochemical properties, α-pinene was encapsulated in conventional liposomes (CLs) and drug-in-cyclodextrin-in-liposomes (DCLs). Hydroxypropyl-β-cyclodextrin/α-pinene (HP-β-CD/α-pinene) inclusion complexes were prepared in aqueous solution, and the optimal solubilization of α-pinene occurred at HP-β-CD:α-pinene molar ratio of 7.5:1. The ethanol-injection method was applied to produce different formulations using saturated (Phospholipon 90H) or unsaturated (Lipoid S100) phospholipids in combination with cholesterol. The size, the phospholipid and cholesterol incorporation rates, the encapsulation efficiency (EE), and the loading rate (LR) of α-pinene were determined, and the storage stability of liposomes was assessed. The results showed that α-pinene was efficiently entrapped in CLs and DCLs with high EE values. Moreover, Lipoid S100 CLs displayed the highest LR (22.9 ± 2.2%) of α-pinene compared to the other formulations. Both carrier systems HP-β-CD/α-pinene inclusion complex and Lipoid S100 CLs presented a gradual release of α-pinene. Furthermore, the DPPH radical scavenging activity of α-pinene was maintained upon encapsulation in Lipoid S100 CLs. Finally, it was found that all formulations were stable after three months of storage at 4 °C.
Collapse
Affiliation(s)
- Zahraa Hammoud
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Jdeidet El-Metn 90656, Lebanon; (Z.H.); (M.K.)
- UMR-5280, CNRS-University Lyon-1, 5 rue de la Doua, 69100 Villeurbanne, France;
| | - Maya Kayouka
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Jdeidet El-Metn 90656, Lebanon; (Z.H.); (M.K.)
| | - Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16, 700115 Iasi, Romania;
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (E.S.); (H.G.-G.)
| | - Jouda Mediouni Ben Jemâa
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, El Menzah 1004, Tunisia;
| | | | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Jdeidet El-Metn 90656, Lebanon; (Z.H.); (M.K.)
- Correspondence: (E.S.); (H.G.-G.)
| |
Collapse
|
24
|
Sodium caseinate-coated and β-cyclodextrin/vitamin E inclusion complex-loaded nanoliposomes: A novel stabilized nanocarrier. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel) 2021; 14:1083. [PMID: 34832865 PMCID: PMC8619682 DOI: 10.3390/ph14111083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The multifunctional role of the human skin is well known. It acts as a sensory and immune organ that protects the human body from harmful environmental impacts such as chemical, mechanical, and physical threats, reduces UV radiation effects, prevents moisture loss, and helps thermoregulation. In this regard, skin disorders related to skin integrity require adequate treatment. Lipid nanoparticles (LN) are recognized as promising drug delivery systems (DDS) in treating skin disorders. Solid lipid nanoparticles (SLN) together with nanostructured lipid carriers (NLC) exhibit excellent tolerability as these are produced from physiological and biodegradable lipids. Moreover, LN applied to the skin can improve stability, drug targeting, occlusion, penetration enhancement, and increased skin hydration compared with other drug nanocarriers. Furthermore, the features of LN can be enhanced by inclusion in suitable bases such as creams, ointments, gels (i.e., hydrogel, emulgel, bigel), lotions, etc. This review focuses on recent developments in lipid nanoparticle systems and their application to treating skin diseases. We point out and consider the reasons for their creation, pay attention to their advantages and disadvantages, list the main production techniques for obtaining them, and examine the place assigned to them in solving the problems caused by skin disorders.
Collapse
Affiliation(s)
- Stefan R. Stefanov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | | |
Collapse
|
26
|
Selective antibacterial activities and storage stability of curcumin-loaded nanoliposomes prepared from bovine milk phospholipid and cholesterol. Food Chem 2021; 367:130700. [PMID: 34352694 DOI: 10.1016/j.foodchem.2021.130700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Present study prepared curcumin-loaded nanoliposomes using bovine milk, krill phospholipids and cholesterol; and investigated the effects of cholesterol on membrane characteristics, storage stability and antibacterial properties of the curcumin nanoliposomes. Bovine milk phospholipids which have higher saturation than krill phospholipids resulted in formation of curcumin-loaded nanoliposomes with higher encapsulation efficiency (84.78%), larger absolute value of zeta potential and vesicle size (size: 159.15 ± 5.27 nm, zeta potential: -28.3 ± 0.62 mV). Cholesterol helps to formation of a more hydrophobic, compact and tighter bilayer membrane structure which improved the storage stability of nanoliposomes under alkaline (66.25 ± 0.46%), heat (43.25 ± 0.69%) and sunlight (49.44 ± 1.78%) conditions. In addition, curcumin-loaded nanoliposomes can effectively target infectious bacteria which secrete pore-forming toxins such as Staphylococcus aureus by causing the bacterial cell wall to lysis. Findings from present work can guide future development of novel antibacterial agents for use in food preservation.
Collapse
|
27
|
Post-Processing Techniques for the Improvement of Liposome Stability. Pharmaceutics 2021; 13:pharmaceutics13071023. [PMID: 34371715 PMCID: PMC8309137 DOI: 10.3390/pharmaceutics13071023] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Liposomes have been utilized as a drug delivery system to increase the bioavailability of drugs and to control the rate of drug release at the target site of action. However, the occurrence of self-aggregation, coalescence, flocculation and the precipitation of aqueous liposomes during formulation or storage can cause degradation of the vesicle structure, leading to the decomposition of liposomes. To increase the stability of liposomes, post-processing techniques have been applied as an additional process to liposomes after formulation to remove water and generate dry liposome particles with a higher stability and greater accessibility for drug administration in comparison with aqueous liposomes. This review covers the effect of these techniques including freeze drying, spray drying and spray freeze drying on the stability, physicochemical properties and drug encapsulation efficiency of dry liposomes. The parameters affecting the properties of liposomes during the drying process are also highlighted in this review. In addition, the impact of using a protective agent to overcome such limitations of each process is thoroughly discussed through various studies.
Collapse
|
28
|
Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021; 22:7055. [PMID: 34209023 PMCID: PMC8269010 DOI: 10.3390/ijms22137055] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (A.I.); (R.P.); (D.G.); (N.K.); (E.B.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Xiao Z, Zhang Y, Niu Y, Ke Q, Kou X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr Polym 2021; 269:118292. [PMID: 34294318 DOI: 10.1016/j.carbpol.2021.118292] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are edible and biocompatible natural cyclic compounds that can encapsulate essential oils, flavours, volatile aroma compounds, and other substances. Complexation with CD-based materials improves the solubility and stability of volatile compounds and protects the bioactivity of the core materials. Therefore, the development of CD/volatile compound nanosystems is a key research area in the food, cosmetic, and pharmaceutical industries. This review briefly introduces the main types of natural CD; preparation methods of CD-based materials as carriers for aromatic substances or essential oils; characterisation methods used to calculate the interaction between CDs and volatile aroma compounds; molecular docking and simulation methods; and the application of CD-based nanosystems in different industries. The review aims to provide guidance for relevant practitioners in selecting appropriate CD materials and characterisation methods.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yaqi Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
30
|
Lammari N, Louaer O, Meniai AH, Fessi H, Elaissari A. Plant oils: From chemical composition to encapsulated form use. Int J Pharm 2021; 601:120538. [PMID: 33781879 DOI: 10.1016/j.ijpharm.2021.120538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
The last decade has witnessed a burgeoning global movement towards essential and vegetable oils in the food, agriculture, pharmaceutical, cosmetic, and textile industries thanks to their natural and safe status, broad acceptance by consumers, and versatile functional properties. However, efforts to develop new therapy or functional agents based on plant oils have met with challenges of limited stability and/or reduced efficacy. As a result, there has been increased research interest in the encapsulation of plant oils, whereby the nanocarriers serve as barrier between plant oils and the environment and control oil release leading to improved efficacy, reduced toxicity and enhanced patient compliance and convenience. In this review, special concern has been addressed to the encapsulation of essential and vegetable oils in three types of nanocarriers: polymeric nanoparticles, liposomes and solid lipid nanoparticles. First, the chemical composition of essential and vegetable oils was handled. Moreover, we gather together the research findings reported by the literature regarding the different techniques used to generate these nanocarriers with their significant findings. Finally, differences and similarities between these nanocarriers are discussed, along with current and future applications that are warranted by their structures and properties.
Collapse
Affiliation(s)
- Narimane Lammari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France; Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Ouahida Louaer
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France.
| |
Collapse
|
31
|
Andrade J, González-Martínez C, Chiralt A. Liposomal Encapsulation of Carvacrol to Obtain Active Poly (Vinyl Alcohol) Films. Molecules 2021; 26:molecules26061589. [PMID: 33805693 PMCID: PMC8001182 DOI: 10.3390/molecules26061589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/04/2022] Open
Abstract
Lecithins of different origins and compositions were used for the liposomal encapsulation of carvacrol within the framework of the development of active films for food packaging. Liposomes were incorporated into aqueous polymeric solutions from fully (F) and partially (P) hydrolysed Poly (vinyl alcohol) (PVA) to obtain the films by casting. The particle size distribution and ζ-potential of the liposomal suspensions, as well as their stability over time, were evaluated. Liposomal stability during film formation was analysed through the carvacrol retention in the dried film and the film microstructure. Subtle variations in the size distributions of liposomes from different lecithins were observed. However, the absolute values of the ζ-potential were higher (−52, −57 mV) for soy lecithin (SL) liposomes, followed by those of soy lecithin enriched with phosphatidylcholine (SL-PC) (−43, −50 mV) and sunflower lecithin (SFL) (−33, −38 mV). No significant changes in the liposomal properties were observed during the study period. Lyotropic mesomorphism of lipid associations and carvacrol leakage occurred to differing extents during the film drying step, depending on the membrane lipid composition and surface charge. Liposomes obtained with SL-PC were the most effective at maintaining the stability of carvacrol emulsion during film formation, which led to the greatest carvacrol retention in the films, whereas SFL gave rise to the least stable system and the highest carvacrol losses. P-PVA was less sensitive to the emulsion destabilisation due to its greater bonding capacity with carvacrol. Therefore, P-PVA with carvacrol-loaded SL-PC liposomes has great potential to produce active films for food packaging applications.
Collapse
|
32
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
33
|
Ajeeshkumar KK, Aneesh PA, Raju N, Suseela M, Ravishankar CN, Benjakul S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr Rev Food Sci Food Saf 2021; 20:1280-1306. [PMID: 33665991 DOI: 10.1111/1541-4337.12725] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Liposomes play a significant role in encapsulation of various bioactive compounds (BACs), including functional food ingredients to improve the stability of core. This technology can be used for promoting an effective application in functional food and nutraceuticals. Incorporation of traditional and emerging methods for the developments of liposome for loading BACs resulted in viable and stable liposome formulations for industrial applications. Thus, the advance technologies such as supercritical fluidic methods, microfluidization, ultrasonication with traditional methods are revisited. Liposomes loaded with plant and animal BACs have been introduced for functional food and nutraceutical applications. In general, application of liposome systems improves stability, delivery, and bioavailability of BACs in functional food systems and nutraceuticals. This review covers the current techniques and methodologies developed and practiced in liposomal preparation and application in functional foods.
Collapse
Affiliation(s)
| | | | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mathew Suseela
- ICAR - Central Institute of Fisheries Technology, Cochin, Kerala, 682029, India
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
34
|
Cimino C, Maurel OM, Musumeci T, Bonaccorso A, Drago F, Souto EMB, Pignatello R, Carbone C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13030327. [PMID: 33802570 PMCID: PMC8001530 DOI: 10.3390/pharmaceutics13030327] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Essential oils are being studied for more than 60 years, but a growing interest has emerged in the recent decades due to a desire for a rediscovery of natural remedies. Essential oils are known for millennia and, already in prehistoric times, they were used for medicinal and ritual purposes due to their therapeutic properties. Using a variety of methods refined over the centuries, essential oils are extracted from plant raw materials: the choice of the extraction method is decisive, since it determines the type, quantity, and stereochemical structure of the essential oil molecules. To these components belong all properties that make essential oils so interesting for pharmaceutical uses; the most investigated ones are antioxidant, anti-inflammatory, antimicrobial, wound-healing, and anxiolytic activities. However, the main limitations to their use are their hydrophobicity, instability, high volatility, and risk of toxicity. A successful strategy to overcome these limitations is the encapsulation within delivery systems, which enable the increase of essential oils bioavailability and improve their chemical stability, while reducing their volatility and toxicity. Among all the suitable platforms, our review focused on the lipid-based ones, in particular micro- and nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Oriana Maria Maurel
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (O.M.M.); (F.D.)
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (O.M.M.); (F.D.)
| | - Eliana Maria Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
- Correspondence:
| |
Collapse
|
35
|
Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110632] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
|
37
|
Chaudhari AK, Singh VK, Das S, Dubey NK. Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem Toxicol 2021; 149:112019. [PMID: 33508419 DOI: 10.1016/j.fct.2021.112019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Spoilage of food by mycotoxigenic fungi poses a serious risk to food security throughout the world. In view of the negative effects of synthetic preservatives, essential oils (EOs) and their bioactive constituents are gaining momentum as suitable substitute to ensure food safety by controlling mycotoxins. However, despite their proven preservative potential against mycotoxins, the use of EOs/bioactive constituents in real food system is still restricted due to instability caused by abiotic factors and negative impact on organoleptic attributes after direct application. Nanoencapsulation in this regard could be a promising approach to address these problems, since the process can increase the stability of EOs/bioactive constituents, barricades their loss and considerably prevent their interaction with food matrices, thus preserving their original organoleptic qualities. The aim of this review is to provide wider and up-to-date overview on recent advances in nanoencapsulation of EOs/bioactive constituents with the objective to control mycotoxin contamination in food system. Further, the information on polymer characteristics, nanoencapsulation techniques, factors affecting the nanoencapsulation, applications of nanoencapsulated formulations, and characterization along with the study on their release kinetics and impacts on organoleptic attributes of food are discussed. Finally, the safety aspects of nanoencapsulated formulations for their safe utilization are also explored.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
38
|
Synthesis, characterization and cytotoxicity of the Eugenia brejoensis essential oil inclusion complex with β-cyclodextrin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Gharib R, Jemâa JMB, Charcosset C, Fourmentin S, Greige‐Gerges H. Retention of Eucalyptol, a Natural Volatile Insecticide, in Delivery Systems Based on Hydroxypropyl‐β‐Cyclodextrin and Liposomes. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Riham Gharib
- Bioactive Molecules Research Laboratory Faculty of Sciences Lebanese University B.P. 90656 Jdaidet El‐Metn Lebanon
| | - Jouda Mediouni Ben Jemâa
- Laboratory of Biotechnology Applied to Agriculture National Agricultural Research Institute of Tunisia University of Carthage Rue Hedi Karray Ariana Tunis 2049 Tunisia
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés Université Claude Bernard Lyon 1 UMR 5007, CNRS, CPE, 43 bd du 11 Novembre Villeurbanne Cedex 691622 France
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492 SFR Condorcet FR CNRS 3417, Université du Littoral‐Côte d'Opale Dunkerque 59140 France
| | - Hélène Greige‐Gerges
- Bioactive Molecules Research Laboratory Faculty of Sciences Lebanese University B.P. 90656 Jdaidet El‐Metn Lebanon
| |
Collapse
|
40
|
Hammoud Z, Gharib R, Fourmentin S, Elaissari A, Greige-Gerges H. Drug-in-hydroxypropyl-β-cyclodextrin-in-lipoid S100/cholesterol liposomes: Effect of the characteristics of essential oil components on their encapsulation and release. Int J Pharm 2020; 579:119151. [DOI: 10.1016/j.ijpharm.2020.119151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/24/2023]
|
41
|
The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers (Basel) 2020; 12:polym12020497. [PMID: 32102448 PMCID: PMC7077722 DOI: 10.3390/polym12020497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 11/26/2022] Open
Abstract
Lecithin-encapsulated carvacrol has been incorporated into poly (vinyl alcohol) (PVA) for the purpose of obtaining active films for food packaging application. The influence of molecular weight (Mw) and degree of hydrolysis (DH) of the polymer on its ability to retain carvacrol has been analysed, as well as the changes in the film microstructure, thermal behaviour, and functional properties as packaging material provoked by liposome incorporation into PVA matrices. The films were obtained by casting the PVA aqueous solutions where liposomes were incorporated until reaching 0 (non-loaded liposomes), 5 or 10 g carvacrol per 100 g polymer. The non-acetylated, high Mw polymer provided films with a better mechanical performance, but less CA retention and a more heterogeneous structure. In contrast, partially acetylated, low Mw PVA gave rise to more homogenous films with a higher carvacrol content. Lecithin enhanced the thermal stability of both kinds of PVA, but reduced the crystallinity degree of non-acetylated PVA films, although it did not affect this parameter in acetylated PVA when liposomes contained carvacrol. The mechanical and barrier properties of the films were modified by liposome incorporation in line with the induced changes in crystallinity and microstructure of the films.
Collapse
|
42
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
43
|
Lopez-Polo J, Silva-Weiss A, Giménez B, Cantero-López P, Vega R, Osorio FA. Effect of lyophilization on the physicochemical and rheological properties of food grade liposomes that encapsulate rutin. Food Res Int 2019; 130:108967. [PMID: 32156401 DOI: 10.1016/j.foodres.2019.108967] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022]
Abstract
The potential use of liposomes as carriers for food active ingredients can be limited by their physical and chemical instabilities in aqueous dispersions, especially for long-term storage. Lyophilization, a process commonly used in the food industry, can also be applied to stabilize and preserve liposomes and to extend their shelf-life. In this work, liposomes with potential use for designing functional foods were prepared with soy phospholipids and rutin. Homogenization and ultrasound were used for particle size reduction. Liposomal stability was evaluated by Dynamic Light Scattering, microscopy and rheological properties. Spherical and unilamellar liposomes were obtained in this work. Zeta potential (ξ = values were around -40 mV), which indicates a great suspension stability even for more than 30 days of storage. Rutin exerted a protective effect by both preventing damage to the liposome bilayer and maintaining the spherical structure after 56 days of storage. Lyophilization caused an increase in the size of the vesicles, reaching sizes around 419 nm and aggregation of vesicles with probably structural damage after 21 storage days. However, it helped to keep the rutin encapsulated (81.9%) for longer time, when compared to refrigerated liposomes. Rheological measurements showed, in general, that the power law model fitted most of the experimental results and dynamic rheological tests showed a sol-gel phase transition between 35 and 45 °C. Lyophilization caused a significant change in all evaluated rheological parameters. For the in vitro release tests, the liposomal bilayer acted as a barrier for the rutin release to the food simulating medium; therefore, the release rate of the antioxidant from the rutin encapsulated liposome was slow compared to the free rutin release rate.
Collapse
Affiliation(s)
- Johana Lopez-Polo
- Department of Food Science and Technology, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3769, Santiago, Chile.
| | - Andrea Silva-Weiss
- Department of Food Science and Technology, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3769, Santiago, Chile
| | - Begoña Giménez
- Department of Food Science and Technology, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3769, Santiago, Chile
| | - Plinio Cantero-López
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago, Chile
| | - Ricardo Vega
- Department of Food Science and Technology, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3769, Santiago, Chile
| | - Fernando A Osorio
- Department of Food Science and Technology, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3769, Santiago, Chile.
| |
Collapse
|
44
|
Yang W, Wang L, Ban Z, Yan J, Lu H, Zhang X, Wu Q, Aghdam MS, Luo Z, Li L. Efficient microencapsulation of Syringa essential oil; the valuable potential on quality maintenance and storage behavior of peach. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Use of free and encapsulated nerolidol to inhibit the survival of Lactobacillus fermentum in fresh orange juice. Food Chem Toxicol 2019; 133:110795. [PMID: 31472225 DOI: 10.1016/j.fct.2019.110795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/23/2023]
Abstract
Lactobacillus fermentum is commonly responsible for fruit juice fermentation and spoilage. The aim of this study was to investigate the potential use of nerolidol to control the spoilage of fresh orange juice by L. fermentum. Nerolidol was incorporated into hydroxypropyl-β-cyclodextrin inclusion complex, conventional liposome, and drug-in-cyclodextrin-in liposome systems. The systems were lyophilized and characterized with respect to their nerolidol content, size, and morphology. The effects of the acidity and cold storage of orange juice on the survival of L. fermentum were evaluated. Subsequently, the antibacterial activity of nerolidol in refrigerated orange juice was assessed at pH 3.3. Nerolidol showed a faster antibacterial activity at 4 000 μM (5 days) compared to 2 000 μM (8 days). Under the same conditions, the inclusion complex completely killed bacteria within 6 days of incubation at 4 000 μM, suggesting its potential application in fruit juices. Nerolidol-loaded liposomes did not exhibit an antibacterial activity and altered the appearance of juice.
Collapse
|
46
|
Gharib R, Haydar S, Charcosset C, Fourmentin S, Greige-Gerges H. First study on the release of a natural antimicrobial agent, estragole, from freeze-dried delivery systems based on cyclodextrins and liposomes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Wang X, Liu L, Xia S, Muhoza B, Cai J, Zhang X, Duhoranimana E, Su J. Sodium carboxymethyl cellulose modulates the stability of cinnamaldehyde-loaded liposomes at high ionic strength. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Lakshmeesha TR, Kalagatur NK, Mudili V, Mohan CD, Rangappa S, Prasad BD, Ashwini BS, Hashem A, Alqarawi AA, Malik JA, Abd Allah EF, Gupta VK, Siddaiah CN, Niranjana SR. Biofabrication of Zinc Oxide Nanoparticles With Syzygium aromaticum Flower Buds Extract and Finding Its Novel Application in Controlling the Growth and Mycotoxins of Fusarium graminearum. Front Microbiol 2019; 10:1244. [PMID: 31249558 PMCID: PMC6582371 DOI: 10.3389/fmicb.2019.01244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/20/2019] [Indexed: 12/24/2022] Open
Abstract
Fusarium graminearum is a leading plant pathogen that causes Fusarium head blight, stalk rot, and Gibberella ear rot diseases in cereals and posing the immense threat to the microbiological safety of the food. Herein, we report the green synthesis of zinc oxide nanoparticles from Syzygium aromaticum (SaZnO NPs) flower bud extract by combustion method and investigated their application for controlling of growth and mycotoxins of F. graminearum. Formation of SaZnO NPs was confirmed by spectroscopic methods. The electron microscopic (SEM and TEM) analysis revealed the formation of triangular and hexagonal shaped SaZnO NPs with size range 30-40 nm. The synthesized SaZnO NPs reduced the growth and production of deoxynivalenol and zearalenone of F. graminearum in broth culture. Further analysis revealed that treatment of mycelia with SaZnO NPs resulted in the accumulation of ROS in the dose-dependent manner. Also, SaZnO NPs treatment enhanced lipid peroxidation, depleted ergosterol content, and caused detrimental damage to the membrane integrity of fungi. Moreover, SEM observations revealed that the presence of diverged micro-morphology (wrinkled, rough and shrank surface) in the macroconidia treated with SaZnO NPs. Taken together, SaZnO NPs may find a potential application in agriculture and food industries due to their potent antifungal activity.
Collapse
Affiliation(s)
| | - Naveen Kumar Kalagatur
- Microbiology Division, Defence Food Research Laboratory, Mysore, India.,Toxicology and Immunology Division, DRDO-BU-Centre for Life Sciences, Bharathiar University, Coimbatore, India
| | - Venkataramana Mudili
- Toxicology and Immunology Division, DRDO-BU-Centre for Life Sciences, Bharathiar University, Coimbatore, India
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Mandya, India
| | | | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Abdulaziz A Alqarawi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jahangir Ahmad Malik
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | |
Collapse
|
49
|
Adu-Frimpong M, Qiuyu W, Firempong CK, Mukhtar YM, Yang Q, Omari-Siaw E, Lijun Z, Xu X, Yu J. Novel cuminaldehyde self-emulsified nanoemulsion for enhanced antihepatotoxicity in carbon tetrachloride-treated mice. J Pharm Pharmacol 2019; 71:1324-1338. [DOI: 10.1111/jphp.13112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Objectives
Cuminaldehyde self-emulsified nanoemulsion (CuA-SEN) was prepared and optimised to improve its oral bioavailability and antihepatotoxicity.
Methods
Cuminaldehyde self-emulsified nanoemulsion was developed through the self-nanoemulsification method using Box–Behnken Design (BBD) tool while appropriate physicochemical indices were evaluated. The optimised CuA-SEN was characterised via droplet size (DS), morphology, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, in-vitro release, and pharmacokinetic studies while its antihepatotoxicity was evaluated.
Key findings
Cuminaldehyde self-emulsified nanoemulsion with acceptable characteristics (mean DS-48.83 ± 1.06 nm; PDI-0.232 ± 0.140; ZP-29.92 ± 1.66 mV; EE-91.51 ± 0.44%; and drug-loading capacity (DL)-9.77 ± 0.75%) was formulated. In-vitro drug release of CuA-SEN significantly increased with an oral relative bioavailability of 171.02%. Oral administration of CuA-SEN to CCl4-induced hepatotoxicity mice markedly increased the levels of superoxide dismutase, glutathione and catalase in serum. Also, CuA-SEN reduced the levels of tumour necrosis factor-alpha and interleukin-6 in both serum and liver tissues while aspartate aminotransferase, alanine aminotransferase and malonaldehyde levels were significantly decreased.
Conclusions
These findings showed that the improved bioavailability of cuminaldehyde via SEN provided an effective approach for enhancing antioxidation, anti-inflammation and antihepatotoxicity of the drug.
Collapse
Affiliation(s)
- Michael Adu-Frimpong
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
- Department of Basic and Biomedical Sciences, College of Health and Well-Being, Kintampo, Bono Region, Ghana
| | - Wei Qiuyu
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Caleb Kesse Firempong
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yusif Mohammed Mukhtar
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qiuxuan Yang
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutical Sciences, Kumasi Technical University, Kumasi, Ghana
| | - Zhen Lijun
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
50
|
Liu H, Liu H, Yang S, Wang R, Wang T. Improved Expression and Optimization of Trehalose Synthase by Regulation of P glv in Bacillus subtilis. Sci Rep 2019; 9:6585. [PMID: 31036837 PMCID: PMC6488592 DOI: 10.1038/s41598-019-43172-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Trehalose synthase (TreS) converts maltose to trehalose, which has several important functions; therefore, enhancing TreS expression is desirable. Here, a recombinant Bacillus subtilis W800N (ΔamyE)-Pglv strain was constructed to achieve enhanced expression of TreS. Process optimization strategies were developed to improve the expression level of TreS in B. subtilis W800N (ΔamyE)-Pglv. Intracellular activity of TreS was induced using 60 g/L of maltose in shake flask culture. The protein activity reached 5211 ± 134 U/g at 33 °C and pH 7.0 in Luria-Bertani medium. A fed-batch fermentation strategy was applied in a 30 L fermenter containing 18 L terrific broth to achieve high cell density by replacing glycerol with high maltose syrup as a carbon source and an inducer. After 32 h of fermentation, recombinant B. subtilis W800N (ΔamyE)-Pglv activity reached 6850 ± 287 U/g dry cell weight. Our results demonstrate the efficiency of the Pglv promoter in increasing the expression of TreS in B. subtilis W800N (ΔamyE)-Pglv.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, 300457, China
| | - Hao Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, 300457, China
| | - Shaojie Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China. .,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|