1
|
Xiang H, Yang Z, Liu X, Lu F, Zhao F, Chai L. Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications. Adv Colloid Interface Sci 2025; 338:103403. [PMID: 39862803 DOI: 10.1016/j.cis.2025.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater. Despite the growing interest in adsorption-based REEs separation, comprehensive reviews of both traditional and novel adsorbents toward REEs recovery remain limited. This review aims to provide a thorough analysis of various adsorbents for the recovery of REEs. The types of adsorbents examined include activated carbons, functionalized silica nanoparticles, and microbial synthetic adsorbents, with a detailed evaluation of their adsorption capacities, selectivity, and regeneration potential. This study focuses on the mechanisms of REEs adsorption, including electrostatic interactions, ion exchange, surface complexation, and surface precipitation, highlighting how surface modifications can enhance REEs recovery efficiency. Future efforts in designing high-performance adsorbents should prioritize the optimization of the density of functional groups to enhance both selectivity and adsorption capacity, while also maintaining a balance between overall capacity, cost, and reusability. The incorporation of covalently bonded functional groups onto mechanically robust adsorbents can significantly strengthen chemical interactions with REEs and improve the structural stability of the adsorbents during reuse. Additionally, the development of materials with high specific surface areas and well-defined porous structures is benifitial to facilitating mass transfer of REEs and maximizing adsorption efficiency. Ultimately, the advancement of the design of efficient, highly selective and recyclable adsorbents is critical for addressing the growing demand for REEs across diverse industrial applications.
Collapse
Affiliation(s)
- Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoyun Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Feiyu Lu
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
2
|
Jeon S, Odom TL, Williams CA, Callmann CE. Glycopolymer-Mediated Selective Separation of Middle Rare Earth Elements. Angew Chem Int Ed Engl 2025; 64:e202417505. [PMID: 39514796 DOI: 10.1002/anie.202417505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The selective separation of rare earth elements (REEs) remains a formidable challenge due to limitations of current methodologies, which struggle to achieve the separation efficiency required for their critical industrial applications. Middle REEs (MREEs), characterized by their intermediate ionic radii, are particularly challenging to separate without size-specific trapping mechanisms. In this study, we report a novel approach that synergistically combines heavy metal sequestration with size-selective separation, utilizing negatively charged glycopolymers to achieve the targeted separation of MREEs. We systematically investigated the binding affinities of these glycopolymers for various REEs, focusing on the selective isolation of MREEs through a controlled variation of glycopolymer properties, including degree of polymerization (DP) and charge density. Our findings reveal a distinctive U-shaped selectivity profile, with a marked preference for Samarium (Sm) and Europium (Eu) over other REEs such as Cerium (Ce), Gadolinium (Gd), and Holmium (Ho). This selectivity underscores the potential for designing tailored separation processes optimized for specific MREEs. Moreover, enrichment experiments demonstrated the practical viability of our methodology, achieving over 10 % selectivity for Sm in a Ce/Sm mixture with a 10 : 1 Ce/Sm ratio, a trend that held for Sm in a Ho/Sm Mixture with a 10 : 1 Ho/Sm ratio, indicating significant selectivity over both light and heavy REEs. A subsequent separation experiment using a 1 : 1 Ce/Sm mixture yielded a 15 % enrichment after only five passes through a filter containing minimal amounts of glycopolymer, highlighting the promise of further refinement for enhanced separation efficiency.
Collapse
Affiliation(s)
- Sungjin Jeon
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street WEL 4.216, Austin, TX 78712, United States
| | - Tyler L Odom
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street WEL 4.216, Austin, TX 78712, United States
| | - Cole A Williams
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street WEL 4.216, Austin, TX 78712, United States
| | - Cassandra E Callmann
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street WEL 4.216, Austin, TX 78712, United States
| |
Collapse
|
3
|
Xu J, Wang D, Yang J, He J, Yang T, Zhao X, Liu X, Zhang J, Zhang L, Zhao Y. Efficient Recovery of Rare Earth Elements from Acidic Wastewater by a Green β-CDs-Functionalized Nanosponge. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404002. [PMID: 39194487 DOI: 10.1002/smll.202404002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Indexed: 08/29/2024]
Abstract
The recovery of rare earth elements (REEs) from acidic wastewater is crucial to sustainable development, industrial processes, and human health. In this research, β-cyclodextrin-based nanosponges (β-CD/PVA-SA NSs) have been proposed as potential adsorbents for europium (Eu), dysprosium (Dy), and gadolinium (Gd) recovery. The nanosponges are synthesized by cross-linking β-cyclodextrin (β-CD) functionalized polyvinyl alcohol (PVA) and sodium alginate (SA). Experimental results indicate that β-CD/PVA-SA NSs exhibit favorable selectivity for Eu, Dy, and Gd, with the maximum adsorption capacity of 222, 217, and 204 mg/g, respectively, in addition to stability and cyclicity. β-CD/PVA-SA NSs maintain selective adsorption effects towards RE ions that are present in acidic mine drainage (AMD), thereby highlighting their potential for practical applications. Furthermore, density functional theory (DFT) simulations have unveiled the fundamental interactions between the functional groups anchored in β-CD/PVA-SA NSs and the REEs, providing vital insights into their adsorption mechanism. Hence, the utilization of β-CD/PVA-SA NSs has the potential to advance initiatives in remediating acidic water pollution and facilitating the sustainable recycling of RE resources.
Collapse
Affiliation(s)
- Junxin Xu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Dandan Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Jianmei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Junnan He
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Xiaoqing Liu
- Shenzhen Kewode Technology Co., Ltd, Shenzhen, 518028, P. R. China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| |
Collapse
|
4
|
Rani Sethy T, Biswal T, Kumar Sahoo P. An Indigenous tool for the adsorption of rare earth metal ions from the spent magnet e-waste: An eco-friendly chitosan biopolymer nanocomposite hydrogel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Enhancement of Cerium Sorption onto Urea-Functionalized Magnetite Chitosan Microparticles by Sorbent Sulfonation—Application to Ore Leachate. Molecules 2022; 27:molecules27217562. [DOI: 10.3390/molecules27217562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The recovery of strategic metals such as rare earth elements (REEs) requires the development of new sorbents with high sorption capacities and selectivity. The bi-functionality of sorbents showed a remarkable capacity for the enhancement of binding properties. This work compares the sorption properties of magnetic chitosan (MC, prepared by dispersion of hydrothermally precipitated magnetite microparticles (synthesized through Fe(II)/Fe(III) precursors) into chitosan solution and crosslinking with glutaraldehyde) with those of the urea derivative (MC-UR) and its sulfonated derivative (MC-UR/S) for cerium (as an example of REEs). The sorbents were characterized by FTIR, TGA, elemental analysis, SEM-EDX, TEM, VSM, and titration. In a second step, the effect of pH (optimum at pH 5), the uptake kinetics (fitted by the pseudo-first-order rate equation), the sorption isotherms (modeled by the Langmuir equation) are investigated. The successive modifications of magnetic chitosan increases the maximum sorption capacity from 0.28 to 0.845 and 1.25 mmol Ce g−1 (MC, MC-UR, and MC-UR/S, respectively). The bi-functionalization strongly increases the selectivity of the sorbent for Ce(III) through multi-component equimolar solutions (especially at pH 4). The functionalization notably increases the stability at recycling (for at least 5 cycles), using 0.2 M HCl for the complete desorption of cerium from the loaded sorbent. The bi-functionalized sorbent was successfully tested for the recovery of cerium from pre-treated acidic leachates, recovered from low-grade cerium-bearing Egyptian ore.
Collapse
|
6
|
Removal of La(III) by amino-phosphonic acid functionalized polystyrene microspheres prepared via electron beam irradiation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Zhao Y, Liang T, Miao P, Chen T, Han X, Hu G, Gao J. Green Preparation of Aminated Magnetic PMMA Microspheres via EB Irradiation and Its Highly Efficient Uptake of Ce(III). MATERIALS (BASEL, SWITZERLAND) 2022; 15:6553. [PMID: 36233885 PMCID: PMC9572679 DOI: 10.3390/ma15196553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The modification of polymers can significantly improve the ability to remove rare earth ions from wastewater, but so far few studies have focused on the irradiation-induced grafting method. In this study, a novel magnetic chelating resin for Ce(III) uptake was first synthesized by suspension polymerization of PMMA@Fe3O4 microspheres followed by irradiation-induced grafting of glycidyl methacrylate (GMA) and subsequent amination with polyethyleneimine (PEI). The FT-IR, SEM, TG and XRD characterization confirmed that we had successfully fabricated magnetic PMMA-PGMA-PEI microspheres with a well-defined structure and good thermal stability. The obtained adsorbent exhibited a satisfactory uptake capacity of 189.81 mg/g for Ce(III) at 318.15 K and an initial pH = 6.0. Additionally, the impact of the absorbed dose and GMA monomer concentration, pH, adsorbent dosage, contact time and initial concentration were thoroughly examined. The pseudo-second order and Langmuir models were able to describe the kinetics and isotherms of the adsorption process well. In addition, the thermodynamic data indicated that the uptake process was spontaneous and endothermic. Altogether, this research enriched the Ce(III) trapping agent and provided a new method for the removal rare earth pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Gao
- Correspondence: (T.C.); (J.G.)
| |
Collapse
|
8
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
9
|
Simultaneously Remove and Visually Detect Ce4+ Based on Nanocomposite of UiO-66-NH2/CPA-MA. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/3090373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective strategies to deal with rare earth pollution are urgently needed due to the overexploitation of rare earths resource. In this study, a novel nanocomposite of UiO-66-NH2/CPA-MA denoted as UA was successfully synthesized, which can simultaneously remove and detect Ce4+ in water. The hybrid consists of UiO-66-NH2 and CPA-MA. Based on the high adsorption performance of UiO-66-NH2, it can remove Ce4+ with high capacity by adsorption. Moreover, it can change its color from olive drab to light cyan depending on the adsorbed Ce4+ concentration, and the chroma is linearly related to the Ce4+ concentration. So, UA can be used to qualitatively and quantitatively detect Ce4+ by its color changing. The kinetics of adsorption course was investigated in details. The anti-inference ability of the nanocomposite in coexisting systems was carefully evaluated. The results indicate that UiO-66-NH2/CPA-MA is highly potential to deal with Ce4+ pollutions due to its bifunctionality.
Collapse
|
10
|
Bessaies H, Iftekhar S, Asif MB, Kheriji J, Necibi C, Sillanpää M, Hamrouni B. Characterization and physicochemical aspects of novel cellulose-based layered double hydroxide nanocomposite for removal of antimony and fluoride from aqueous solution. J Environ Sci (China) 2021; 102:301-315. [PMID: 33637256 DOI: 10.1016/j.jes.2020.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 06/12/2023]
Abstract
A series of novel adsorbents composed of cellulose (CL) with Ca/Al layered double hydroxide (CCxA; where x represent the Ca/Al molar ratio) were prepared for the adsorption of antimony (Sb(V)) and fluoride (F-) ions from aqueous solutions. The CCxA was characterized by Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), elemental analysis (CHNS/O), thermogravimetric analysis (TGA-DTA), zeta potential, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) analysis. The effects of varying parameters such as dose, pH, contact time, temperature and initial concentration on the adsorption process were investigated. According to the obtained results, the adsorption processes were described by a pseudo-second-order kinetic model. Langmuir adsorption isotherm model provided the best fit for the experimental data and was used to describe isotherm constants. The maximum adsorption capacity was found to be 77.2 and 63.1 mg/g for Sb(V) and F-, respectively by CC3A (experimental conditions: pH 5.5, time 60 min, dose 15 mg/10 mL, temperature 298 K). The CC3A nanocomposite was able to reduce the Sb(V) and F- ions concentration in synthetic solution to lower than 6 μg/L and 1.5 mg/L, respectively, which are maximum contaminant levels of these elements in drinking water according to WHO guidelines.
Collapse
Affiliation(s)
- Hanen Bessaies
- Laboratory of Desalination and Water Treatment LR19ES01, Faculty of Sciences of Tunis, Tunis El Manar University, El Manar I 2092, Tunisia
| | - Sidra Iftekhar
- Department of Environmental Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan; Department of Applied Physics, University of Eastern Finland, Kuopio 70210, Finland.
| | - Muhammad Bilal Asif
- A lnstitute of Environmental Engineering and Nano-Technology, Tsinghua Shezhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jamel Kheriji
- Laboratory of Desalination and Water Treatment LR19ES01, Faculty of Sciences of Tunis, Tunis El Manar University, El Manar I 2092, Tunisia
| | - Chaker Necibi
- International Water Research Institute, Mohammed VI Polythechnic University, Green City Ben Guerir 43150, Morocco
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD 4350, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein 2028, South Africa
| | - Bechir Hamrouni
- Laboratory of Desalination and Water Treatment LR19ES01, Faculty of Sciences of Tunis, Tunis El Manar University, El Manar I 2092, Tunisia
| |
Collapse
|
11
|
Shirokikh SA, Kulieva LE, Koroleva MY, Yurtov EV. Effect of the Stability of Highly Concentrated Emulsions Containing Styrene–Divinylbenzene Mixtures on the Structure of Highly Porous Copolymers Formed on Their Basis. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20060137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Luo J, Huang Z, Liu L, Wang H, Ruan G, Zhao C, Du F. Recent advances in separation applications of polymerized high internal phase emulsions. J Sep Sci 2020; 44:169-187. [PMID: 32845083 DOI: 10.1002/jssc.202000612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Polymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.
Collapse
Affiliation(s)
- Jinhua Luo
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Zhujun Huang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Linqi Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Fuyou Du
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| |
Collapse
|
13
|
Chen J, Jiang X, Yin D, Zhang W. Preparation of a Hydrogel-Based Adsorbent for Metal Ions through High Internal Phase Emulsion Polymerization. ACS OMEGA 2020; 5:19920-19927. [PMID: 32832746 PMCID: PMC7439275 DOI: 10.1021/acsomega.9b03405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, a porous hydrogel-based adsorbent for metal ions was prepared through the copolymerization of acrylic acid and 2-hydroxyethyl methacrylate using a high internal phase emulsion (HIPE) method. Stretched molecular chains in the hydrogel ensure the excellent accessibility of functional sites by the metal ions. A highly open cellular structure endows the P(AANa-co-HEMA) gel with high transport rates as a promising adsorbent. Adsorption properties were investigated by three isotherm models and two kinetic models. X-ray photoelectron spectroscopy analysis proved a chelating interaction between -COO- and metal ions. The adsorption capacity reached 630 mg·g-1 for Pb2+ under 303 K and a 400 μg·mL-1 initial concentration. The results show that the as-prepared PolyHIPE-based P(AANa-co-HEMA) gel possesses an open cellular structure, high adsorption capacity, and high selectivity for Pb2+.
Collapse
|
14
|
Asadollahzadeh M, Torkaman R, Torab-Mostaedi M. Extraction and Separation of Rare Earth Elements by Adsorption Approaches: Current Status and Future Trends. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1792930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mehdi Asadollahzadeh
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Rezvan Torkaman
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Meisam Torab-Mostaedi
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
15
|
Yang Y, Li J, Dong Y, Wang J, Cao L. Preparation of porous monoliths via CO
2
‐in‐water HIPEs template and the in situ growth of metal organic frameworks on it for multiple applications. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongxia Yang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous RegionXinjiang University Urumqi People's Republic of China
- Analysis and Evaluation Department, Research Institute of Experiment and Detection, PetroChina Xinjiang Oilfield Company Karamay People's Republic of China
| | - Jing Li
- Food and Agricultural Products Quality Supervision and Inspection Institute, Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute Urumqi People's Republic of China
| | - Yong Dong
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous RegionXinjiang University Urumqi People's Republic of China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous RegionXinjiang University Urumqi People's Republic of China
| | - Liqin Cao
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous RegionXinjiang University Urumqi People's Republic of China
| |
Collapse
|
16
|
Wang F, Zhu Y, Wang A. Preparation of Carboxymethyl Cellulose- g- Poly(acrylamide)/Attapulgite Porous Monolith With an Eco-Friendly Pickering-MIPE Template for Ce(III) and Gd(III) Adsorption. Front Chem 2020; 8:398. [PMID: 32528928 PMCID: PMC7262556 DOI: 10.3389/fchem.2020.00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Due to their high specific surface and metal-binding functional groups in their crosslinked polymeric networks, monolithic materials incorporating a porous structure have been considered one of the most efficient kinds of adsorbents for rare earth element recovery. Herein, a facile and novel monolithic multi-porous carboxymethyl cellulose-g-poly(acrylamide)/attapulgite was synthesized by free radical polymerization via green vegetable oil-in-water Pickering medium internal phase emulsion (O/W Pickering-MIPEs), which was synergically stabilized by attapulgite and tween-20. The homogenizer rotation speed and time were investigated to form stable Pickering-MIPEs. The effects of different types of oil phase on the formation of Pickering-MIPEs were investigated with stability tests and rheological characterization. The structure and composition of the porous material when prepared with eight kinds of vegetable oil were characterized by FTIR and SEM. The results indicate that the obtained materials, which have abundant interconnected porosity, are comparable to those fabricated with Pickering-HIPE templates. The adsorption experiment demonstrated that the prepared materials have a fast capture rate and high adsorption capacities for Ce(III) and Gd(III), respectively. The saturation adsorption capacities for Ce(III) and Gd(III) are 205.48 and 216.73 mg/g, respectively, which can be reached within 30 min. Moreover, the monolithic materials exhibit excellent regeneration ability and reusability. This work provides a feasible and eco-friendly pathway for the construction of a multi-porous adsorbent for adsorption and separation applications.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,Qinzhou Key Laboratory of Biowaste Resources for Selenium-Enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
17
|
Bessaies H, Iftekhar S, Doshi B, Kheriji J, Ncibi MC, Srivastava V, Sillanpää M, Hamrouni B. Synthesis of novel adsorbent by intercalation of biopolymer in LDH for the removal of arsenic from synthetic and natural water. J Environ Sci (China) 2020; 91:246-261. [PMID: 32172974 DOI: 10.1016/j.jes.2020.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
This study focuses on the synthesis of nanocomposites named CCA and CZA that were prepared by the incorporation of cellulose (CL) in the Ca/Al and Zn/Al layered double hydroxide (LDH), respectively. These materials were then used for the uptake of As(III) and As(V) from aqueous medium. Characterization of both nanocomposites (CCA and CZA) was done using FTIR and Raman analysis to identify the functional groups, N2 adsorption-desorption isotherms to determine the specific surface area and pore geometry and XPS analysis to obtain the surface atomic composition. Some other characters were investigated using simultaneous TGA and DTA and elemental chemical analysis (CHNS/O). The crystallinity of the prepared nanocomposites was displayed by XRD patterns. Furthermore, the sheet-like structure of the LDHs and the irregularity of surface morphology with porous structure were observed by TEM and SEM microphotographs. Optimization of maximum adsorption capacity was adjusted using different parameters including pH, contact time and adsorbent dosage. The pseudo-second-order model was in good fitting with kinetics results. The adsorption isotherm results showed that CZA exhibits better adsorption capacity for As(III) than CCA and the Langmuir isotherm model described the data well for both nanocomposites. Thermodynamic studies illustrated the endothermic nature of CCA and exothermic nature on CZA, as well as the fact that the adsorption process is spontaneous. A real water sample collected from well located in Gabes (Tunisia), has also been treated. The obtained experimental results were confirmed that these sorbents are efficient for the treatment of hazardous toxic species such as.
Collapse
Affiliation(s)
- Hanen Bessaies
- Laboratory of Desalination and Water Treatement LR19ES01, Faculty of Sciences of Tunis, Tunis El Manar University, 2092, El Manar I, Tunisia; Department of Separation Science, Lappeenranta-Lahti University of Technology (LUT), Sammonkatu 12, FI-50130, Mikkeli, Finland.
| | - Sidra Iftekhar
- Department of Separation Science, Lappeenranta-Lahti University of Technology (LUT), Sammonkatu 12, FI-50130, Mikkeli, Finland; Department of Environmental Engineering, University of Engineering and Technology, Taxila, Pakistan.
| | - Bhairavi Doshi
- Department of Separation Science, Lappeenranta-Lahti University of Technology (LUT), Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Jamel Kheriji
- Laboratory of Desalination and Water Treatement LR19ES01, Faculty of Sciences of Tunis, Tunis El Manar University, 2092, El Manar I, Tunisia
| | - Mohamed Chaker Ncibi
- International Water Research Institute, Mohammed VI Polytechnic University, Green City Ben Guerir 43150, Morocco
| | - Varsha Srivastava
- Department of Separation Science, Lappeenranta-Lahti University of Technology (LUT), Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174, USA
| | - Bechir Hamrouni
- Laboratory of Desalination and Water Treatement LR19ES01, Faculty of Sciences of Tunis, Tunis El Manar University, 2092, El Manar I, Tunisia
| |
Collapse
|
18
|
Tshikovhi A, Mishra SB, Mishra AK. Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 2020; 152:616-632. [PMID: 32097743 DOI: 10.1016/j.ijbiomac.2020.02.221] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
Polymers derived from plant and animal sources are of great interest in wastewater remediation due to their cost-effectiveness and renewable adsorption capabilities, one such polymer is nanocellulose (NC). NC has gained a lot of attention in various research fields due to its abundance in nature, nano-dimension, high surface area, stability and bio-compatibility. As a result, NC has emerged as a great potential adsorbent for the removal of contaminants such as heavy metals, organic dyes, oils, pharmaceutical and etc. in the environmental remediation. This review focuses on the description of the building blocks, structure, properties, isolation and also discusses the potential of nanocellulose based composites materials with reinforcements such as activated carbon, carbon nanotube, graphene oxides, metals, non-metals and ceramics that were effectively used as an adsorbents for diverse organic and inorganic contaminants in water.
Collapse
Affiliation(s)
- A Tshikovhi
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, 1709 Johannesburg, South Africa
| | - Shivani B Mishra
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, 1709 Johannesburg, South Africa
| | - Ajay K Mishra
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, 1709 Johannesburg, South Africa.
| |
Collapse
|
19
|
Zhu Y, Wang W, Yu H, Wang A. Preparation of porous adsorbent via Pickering emulsion template for water treatment: A review. J Environ Sci (China) 2020; 88:217-236. [PMID: 31862064 DOI: 10.1016/j.jes.2019.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 05/27/2023]
Abstract
Porous materials as emerging potential adsorbents have received much more attention because they are capable of capturing various pollutants with fast adsorption rate, high adsorption capacity, good selectivity and excellent reusability. In order to prepare porous materials with decent porous structure, Pickering emulsion template method has been proved to be one of the most effective technologies to create pore structure. This paper reviewed comprehensively the latest research progress on the preparation of porous materials from various Pickering emulsions and their applications in the decontamination of pollutants (e.g., heavy metal ions, organic pollutants) and in the oil/water separation. It was expected that the summaries and discussions in this review will provide insights into the design and fabrication of new efficient porous adsorbents, and also give us a better understanding of the subject.
Collapse
Affiliation(s)
- Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hui Yu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
20
|
Adsorption of La (III) on Chitosan-Imprinted Nano Zero-Valent Iron Nanocomposite (CS@nZVI): Process Optimization, Isotherm, Kinetic, and Thermodynamic Studies. HEALTH SCOPE 2019. [DOI: 10.5812/jhealthscope.91419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Wang F, Zhu Y, Xu H, Wang A. Preparation of Carboxymethyl Cellulose-Based Macroporous Adsorbent by Eco-Friendly Pickering-MIPEs Template for Fast Removal of Pb 2+ and Cd 2. Front Chem 2019; 7:603. [PMID: 31552221 PMCID: PMC6746836 DOI: 10.3389/fchem.2019.00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, Pickering high internal phase emulsions (Pickering HIPEs) have been widely used to fabricate macroporous materials. However, the high usage of poisonous organic solvent in HIPEs not only greatly increases the cost but also is harmful to human health and environment, which leads to limited large-scale applications. In this study, we prepared a novel monolithic macroporous material of carboxymethyl cellulose-g-poly(acrylamide)/montmorillonite (CMC-g-PAM/MMT) by the free radical polymerization via oil-in-water Pickering medium internal phase emulsions (Pickering MIPEs), which used the non-toxic and eco-friendly flaxseed oil as continuous phase, MMT, and Tween-20 (T-20) as stabilizer. The pore structure of the resulting macroporous materials could be tuned easily by adjusting the content of MMT, co-surfactant T-20, and the oil phase volume fraction. The maximal adsorption capacities of the prepared macroporous material for Pb2+ and Cd2+ were 456.05 and 278.11 mg/g, respectively, and the adsorption equilibrium can be reached within 30 min. Otherwise, the macroporous monolith exhibited excellent reusability through five adsorption–desorption cycles. Thus, the eco-friendly Pickering-MIPEs is a potential alternative method to be used to fabricate multi-porous adsorption materials for environmental applications.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hui Xu
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
22
|
Bratskaya S, Privar Y, Slobodyuk A, Shashura D, Marinin D, Mironenko A, Zheleznov V, Pestov A. Cryogels of carboxyalkylchitosans as a universal platform for the fabrication of composite materials. Carbohydr Polym 2019; 209:1-9. [PMID: 30732787 DOI: 10.1016/j.carbpol.2018.12.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/10/2018] [Accepted: 12/29/2018] [Indexed: 12/28/2022]
Abstract
Here we report a new simple method for fabrication of supermacroporous beads and monoliths via cross-linking of carboxyalkylated chitosan derivatives with hexamethylene diisocyanate in aqueous solution at subzero temperature. These materials provide high filtration rate and good mass-transfer that in combination with high binding capacity toward metal ions allows their application as a universal platform for fabrication of composite catalysts, sorbents, and metal-affine chromatography stationary phases. Using N-(2-carboxyethyl)chitosan (CEC), we have demonstrated that optimum chitosan carboxylation degree for cryogels synthesis is close to 1.0. Cu(II)-chelated CEC cryogels have shown high efficiency as metal-affinity sorbents for ciprofloxacin recovery. Co(II)-chelated CEC cryogels have been used for fabrication of Co(II) ferrocyanide-containing composite with the distribution coefficient for 137Cs of 140,000 ml/g and the adsorption capacity of ˜1 mmol/g. Composite Pd-catalysts supported on CEC cryogel provided tenfold higher reaction rate in 4-nitrophenol reduction in comparison with Pd-catalyst supported on chitosan beads.
Collapse
Affiliation(s)
- Svetlana Bratskaya
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia.
| | - Yuliya Privar
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Arseny Slobodyuk
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Dariya Shashura
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Dmitry Marinin
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Alexandr Mironenko
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Veniamin Zheleznov
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Alexander Pestov
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20, S. Kovalevskoy str., Yekaterinburg 620990, Russia
| |
Collapse
|
23
|
Gupta NK, Gupta A, Ramteke P, Sahoo H, Sengupta A. Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.134] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Sun X, Zhu J, Gu Q, You Y. Surface-modified chitin by TEMPO-mediated oxidation and adsorption of Cd(II). Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Iftekhar S, Ramasamy DL, Srivastava V, Asif MB, Sillanpää M. Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review. CHEMOSPHERE 2018; 204:413-430. [PMID: 29677649 DOI: 10.1016/j.chemosphere.2018.04.053] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 05/10/2023]
Abstract
Over the past few decades, removal and recovery of Lanthanum (La) have received great attention due to its significance in different industrial processes. In this review, the application of various adsorbents viz. biosorbents, commercial and hybrid materials, nanoparticles, nanocomposites etc. have been summarized in terms of the removal and recovery of La. The influence of various operating parameters including pH, dosage, contact time, temperature, coexisting ions, adsorption kinetics, isotherm and thermodynamics were investigated. Statistical analysis of the obtained data revealed that 60% and 70% of the authors reported an optimum pH of 4-6 and a dose of 1-2 g/L, respectively. It can be concluded on the basis of an extensive literature survey that the adsorbent materials (especially hybrids nanocomposites) containing carboxyl, hydroxyl and amine groups offered efficient La removal over a wide range of pH with higher adsorption capacity as compared to other adsorbents (e.g., biosorbents and magnetic adsorbents). Also, in most cases, equilibrium and kinetics were followed by Langmuir and pseudo second-order model and adsorption was endothermic in nature. To evaluate the adsorption efficiency of several adsorbents towards La, desorption and regeneration of adsorbents should be given due consideration. The main objective of the review is to provide an insight into the important factors that may affect the recovery of La using various adsorbents.
Collapse
Affiliation(s)
- Sidra Iftekhar
- Department of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| | - Deepika Lakshmi Ramasamy
- Department of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Varsha Srivastava
- Department of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Muhammad Bilal Asif
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong NSW 2522, Australia
| | - Mika Sillanpää
- Department of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland; Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
26
|
Iftekhar S, Srivastava V, Hammouda SB, Sillanpää M. Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements. Carbohydr Polym 2018; 194:274-284. [PMID: 29801840 DOI: 10.1016/j.carbpol.2018.04.054] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022]
Abstract
The work focus to enhance the properties of xanthan gum (XG) by anchoring metal ions (Fe, Zr) and encapsulating inorganic matrix (M@XG-ZA). The fabricated nanocomposite was characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), surface area (BET) and zeta potential analysis. The adsorption of Sc, Nd, Tm and Yb was investigated after screening of synthesized materials in detail to understand the influence of pH, contact time, temperature and initial REE (rare earth element) concentration both in single and multicomponent system via batch adsorption. The adsorption mechanism was verified by FTIR, SEM and elemental mapping. The SEM images of Zr@XG-ZA demonstrate scutes structure, which disappeared after adsorption of REEs. The maximum adsorption capacities were 132.30, 14.01, 18.15 and 25.73 mg/g for Sc, Nd, Tm and Yb, respectively. The adsorption efficiency over Zr@XG-ZA in multicomponent system was higher than single system and the REEs followed the order: Sc > Yb > Tm > Nd. The Zr@XG-ZA demonstrate good adsorption behavior for REEs up to five cycles and then it can be used as photocatalyst for the degradation of tetracycline. Thus, the work adds a new insight to design and preparation of efficient bifunctional adsorbents from sustainable materials for water purification.
Collapse
Affiliation(s)
- Sidra Iftekhar
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| | - Varsha Srivastava
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Samia Ben Hammouda
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Mika Sillanpää
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland; Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
27
|
Huang W, Liu S, Liu J, Zhang W, Pan J. 2-Methylol-12-crown-4 ether immobilized PolyHIPEs toward recovery of lithium(i). NEW J CHEM 2018. [DOI: 10.1039/c8nj01961d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A facile strategy to fabricate crown ether (2-methylol-12-crown-4, 2M12C4) immobilized porous polymers (PGMA-CE) was reported toward lithium(i) (Li+) recovery.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Shucheng Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jinxin Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Wenli Zhang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
- Department of Chemistry
| |
Collapse
|
28
|
Ponomarev N, Repo E, Srivastava V, Sillanpää M. Green thermal-assisted synthesis and characterization of novel cellulose-Mg(OH)2 nanocomposite in PEG/NaOH solvent. Carbohydr Polym 2017; 176:327-335. [DOI: 10.1016/j.carbpol.2017.08.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/23/2017] [Accepted: 08/19/2017] [Indexed: 11/25/2022]
|
29
|
Adsorption of rare earth metals from water using a kenaf cellulose-based poly(hydroxamic acid) ligand. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Khalil MMH, Atrees MS, Abd El Fatah AIL, Salem H, Roshdi R. Synthesis and application studies of chitosan acryloylthiourea derivative for the separation of rare earth elements. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1370674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - M. S. Atrees
- Egyptian Nuclear Materials Authority, El Maadi, Cairo, Egypt
| | | | - Hend Salem
- Egyptian Nuclear Materials Authority, El Maadi, Cairo, Egypt
| | - R. Roshdi
- Egyptian Nuclear Materials Authority, El Maadi, Cairo, Egypt
| |
Collapse
|
31
|
Lu T, Zhu Y, Qi Y, Wang W, Wang A. Magnetic chitosan-based adsorbent prepared via Pickering high internal phase emulsion for high-efficient removal of antibiotics. Int J Biol Macromol 2017; 106:870-877. [PMID: 28834703 DOI: 10.1016/j.ijbiomac.2017.08.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/01/2017] [Accepted: 08/14/2017] [Indexed: 12/07/2022]
Abstract
A novel magnetic chitosan-g-poly(2-acrylamide-2-methylpropanesulfonic acid) (CTS-g-AMPS) porous adsorbent was prepared by grafting the AMPS onto the CTS in the Fe3O4 stabilized Pickering high internal phase emulsions (Pickering-HIPEs) and used for the adsorptive removal of the antibiotics tetracycline (TC) and chlorotetracycline (CTC). The results of the structure characterization showed that porous structure of the adsorbent can be tuned easily by altering amount of Fe3O4-MNPs-M and the electrostatic attraction of between SO3- and CTC, TC was the main adsorption driving force. The adsorption capacities of the adsorbent for TC and CTC can be reached to 806.60 and 876.60mg/g in a wide pH ranged from 3.0 to 11.0, respectively. And the adsorption equilibrium can be reached within 90min for TC and 50min for CTC. The magnetic porous adsorbent had good reusability, which can still attain a high adsorption capacity of 759.82 and 842.99mg/g for TC and CTC after five consecutive adsorption cycles, respectively. Therefore, the as-prepared CTS-g-AMPS magnetic adsorbent is potential to be used for adsorption removal of antibiotics from water.
Collapse
Affiliation(s)
- Taotao Lu
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China; Graduate University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongfeng Zhu
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China
| | - Yanxing Qi
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China.
| | - Wenbo Wang
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China
| | - Aiqin Wang
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China.
| |
Collapse
|
32
|
Wang F, Zhu Y, Wang W, Zong L, Lu T, Wang A. Fabrication of CMC- g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue. Front Chem 2017. [PMID: 28642862 PMCID: PMC5462918 DOI: 10.3389/fchem.2017.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A series of superporous carboxymethylcellulose-graft-poly(acrylamide)/palygorskite (CMC-g-PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9–14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhou, China.,Graduate University of the Chinese Academy of SciencesBeijing, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhou, China
| | - Wenbo Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhou, China
| | - Li Zong
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhou, China
| | - Taotao Lu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhou, China.,Graduate University of the Chinese Academy of SciencesBeijing, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhou, China
| |
Collapse
|
33
|
Zhang N, Zhong S, Chen T, Zhou Y, Jiang W. Emulsion-derived hierarchically porous polystyrene solid foam for oil removal from aqueous environment. RSC Adv 2017. [DOI: 10.1039/c7ra02953e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A novel co-stabilizer consisting of Span 20 and Fe3O4 particles stabilized the emulsions well and generated the hierarchically porous Fe3O4/polystyrene foams.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- PR China
| | - Suting Zhong
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- PR China
| | - Teng Chen
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- PR China
| | - Yu Zhou
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- PR China
| | - Wei Jiang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- PR China
| |
Collapse
|
34
|
Zhu Y, Zheng Y, Wang F, Wang A. Fabrication of magnetic macroporous chitosan- g -poly (acrylic acid) hydrogel for removal of Cd 2+ and Pb 2+. Int J Biol Macromol 2016; 93:483-492. [DOI: 10.1016/j.ijbiomac.2016.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/07/2016] [Accepted: 09/01/2016] [Indexed: 01/16/2023]
|
35
|
Tolba AA, Mohamady SI, Hussin SS, Akashi T, Sakai Y, Galhoum AA, Guibal E. Synthesis and characterization of poly(carboxymethyl)-cellulose for enhanced La(III) sorption. Carbohydr Polym 2016; 157:1809-1820. [PMID: 27987899 DOI: 10.1016/j.carbpol.2016.11.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 11/26/2022]
Abstract
The grafting of amino and carboxylic acid groups on cellulose increased La(III) sorption efficiency of cellulose: maximum sorption capacity increased from 38mgLag-1 for cellulose to 101 and 170mgLag-1 for amino derivative (PAC) and amino-carboxylic derivative (PCMC). Langmuir equation successfully fits sorption isotherms while uptake kinetics are effectively modeled using the pseudo-first order rate equation (though resistance to intraparticle diffusion plays a significant role in the control of metal recovery). Uptake equilibrium occurred within 150-180min. The thermodynamic study shows that the reaction is spontaneous, endothermic and entropic. Nitric acid solutions (0.5M concentration) can be efficiently used for metal recovery and sorbent can be recycled for at least 5 cycles with limited decrease in sorption performance for the three sorbents. The materials were characterized by elemental analysis, acid-base titration, FTIR spectrometry, x-ray diffraction analysis, X-ray photoelectron spectroscopy, SEM-EDX analysis and also by TGA.
Collapse
Affiliation(s)
- Ahmad A Tolba
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
| | - Said I Mohamady
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
| | - Shimaa S Hussin
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
| | - Takaya Akashi
- Hosei University, Faculty of Bioscience and Applied Chemistry, Japan.
| | - Yuka Sakai
- Hosei University, Faculty of Bioscience and Applied Chemistry, Japan.
| | - Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt; Hosei University, Faculty of Bioscience and Applied Chemistry, Japan; Ecole des mines d'Alès, Centre des Matériaux des Mines d'Alès, 6, Avenue de Clavières, F-30319 Alès Cedex, France.
| | - Eric Guibal
- Ecole des mines d'Alès, Centre des Matériaux des Mines d'Alès, 6, Avenue de Clavières, F-30319 Alès Cedex, France.
| |
Collapse
|
36
|
Carranza A, Pérez-García MG, Song K, Jeha GM, Diao Z, Jin R, Bogdanchikova N, Soltero AF, Terrones M, Wu Q, Pojman JA, Mota-Morales JD. Deep-Eutectic Solvents as MWCNT Delivery Vehicles in the Synthesis of Functional Poly(HIPE) Nanocomposites for Applications as Selective Sorbents. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31295-31303. [PMID: 27779385 DOI: 10.1021/acsami.6b09589] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report an alternative green strategy based on deep-eutectic solvents (DES) to deliver multiwalled carbon nanotubes (MWCNTs) for a bottom-up approach that allows for the selective interfacial functionalization of nonaqueous poly(high internal phase emulsions), poly(HIPEs). The formation and polymerization of methacrylic and styrenic HIPEs were possible through stabilization with nitrogen doped carbon nanotube (CNX) and surfactant mixtures using a urea-choline chloride DES as a delivering phase. Subtle changes in CNX concentration (less than 0.2 wt % to the internal phase) produced important changes in the macroporous monolith functionalization, which in turn led to increased monolith hydrophobicity and pore openness. These materials displayed great oleophilicity with water contact angles as high as 140° making them apt for biodiesel, diesel, and gasoline fuel sorption applications. Overall, styrene divinylbenzene (StDvB) based poly(HIPEs) showed hydrophobicity and fuel sorption capacities as high as 4.8 (g/g). Pore hierarchy, namely pore openness, regulated sorption capacity, and sorption times where greater openness resulted in faster sorption and increased sorption capacity. Monoliths were subject to 20 sorption-desorption cycles demonstrating recyclability and stable sorption capacity. Finally, CNX/surfactant hybrids made it possible to reduce surfactant requirements for successful HIPE formation and stabilization during polymerization. All poly(HIPEs) retained acceptable conversion as a function of CNX loading nearing 90% or better with thermal stability as high as 283 °C.
Collapse
Affiliation(s)
- Arturo Carranza
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - María G Pérez-García
- Centro Universitario de Tonalá, Universidad de Guadalajara , Tonalá, Jalisco 45425, México
| | - Kunlin Song
- School of Renewable Natural Resources, Louisiana State University Agricultural Center , Baton Rouge, Louisiana 70803, United States
| | - George M Jeha
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - Zhenyu Diao
- Department of Physics & Astronomy, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - Rongying Jin
- Department of Physics & Astronomy, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México , Ensenada, Baja California 22860, México
| | - Armando F Soltero
- Departamento de Ingeniería Química, Universidad de Guadalajara , Guadalajara, Jalisco 44430, México
| | - Mauricio Terrones
- Department of Physics and Center for 2-Dimensional and Layered Materials, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center , Baton Rouge, Louisiana 70803, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - Josué D Mota-Morales
- CONACYT-Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México , Ensenada, Baja California 22860, México
| |
Collapse
|
37
|
Zhu Y, Zheng Y, Zong L, Wang F, Wang A. Fabrication of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres via Pickering high internal phase emulsion for removal of Cu2+ and Cd2+. Carbohydr Polym 2016; 149:242-50. [DOI: 10.1016/j.carbpol.2016.04.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/21/2016] [Accepted: 04/23/2016] [Indexed: 11/25/2022]
|