1
|
Zhang W, Xu R, Chen J, Xiong H, Wang Y, Pang B, Du G, Kang Z. Advances and challenges in biotechnological production of chondroitin sulfate and its oligosaccharides. Int J Biol Macromol 2023; 253:126551. [PMID: 37659488 DOI: 10.1016/j.ijbiomac.2023.126551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023]
Abstract
Chondroitin sulfate (CS) is a member of glycosaminoglycans (GAGs) and has critical physiological functions. CS is widely applied in medical and clinical fields. Currently, the supply of CS relies on traditional animal tissue extraction methods. From the perspective of medical applications, the biggest drawback of animal-derived CS is its uncontrollable molecular weight and sulfonated patterns, which are key factors affecting CS activities. The advances of cell-free enzyme catalyzed systems and de novo biosynthesis strategies have paved the way to rationally regulate CS sulfonated pattern and molecular weight. In this review, we first present a general overview of biosynthesized CS and its oligosaccharides. Then, the advances in chondroitin biosynthesis, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) synthesis and regeneration, and CS biosynthesis catalyzed by sulfotransferases are discussed. Moreover, the progress of mining and expression of chondroitin depolymerizing enzymes for preparation of CS oligosaccharides is also summarized. Finally, we analyze and discuss the challenges faced in synthesizing CS and its oligosaccharides using microbial and enzymatic methods. In summary, the biotechnological production of CS and its oligosaccharides is a promising method in addressing the drawbacks associated with animal-derived CS and enabling the production of CS oligosaccharides with defined structures.
Collapse
Affiliation(s)
- Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| | - Bo Pang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023; 360:888-912. [PMID: 37482344 DOI: 10.1016/j.jconrel.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) consists of a complex combination of proteins, proteoglycans, and other biomolecules. ECM-based materials have been demonstrated to have high biocompatibility and bioactivity, which may be harnessed for drug delivery and tissue engineering applications. Herein, nanoparticles incorporating ECM-based materials and their applications in drug delivery and tissue engineering are reviewed. Proteins such as gelatin, collagen, and fibrin as well as glycosaminoglycans including hyaluronic acid, chondroitin sulfate, and heparin have been employed for cancer therapeutic delivery, gene delivery, and wound healing and regenerative medicine. Strategies for modifying and functionalizing these materials with synthetic and natural polymers or to enable stimuli-responsive degradation and drug release have increased the efficacy of these materials and nano-systems. The incorporation and modification of ECM-based materials may be used to drive drug targeting and increase tissue-specific cell differentiation more effectively.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marissa R Perez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Huang D, Gui J, Chen X, Yu R, Gong T, Zhang Z, Fu Y. Chondroitin Sulfate-Derived Paclitaxel Nanocrystal via π-π Stacking with Enhanced Stability and Tumor Targetability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51776-51789. [PMID: 36350778 DOI: 10.1021/acsami.2c15881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanocrystals with high drug loading have become a viable strategy for solubilizing drugs with poor aqueous solubility. It remains challenging, however, to synthesize nanocrystals with sufficient stability and targeting potential. Here, we report a novel nanocrystal platform synthesized using paclitaxel (PTX) and Fmoc-8-amino-3,6-dioxaoctanoic acid (Fmoc-AEEA)-conjugated chondroitin sulfate (CS) (CS-Fmoc) via π-π stacking to afford a stable formulation with CD44 targetability (PTX NC@CS-Fmoc). The PTX NC@CS-Fmoc exhibited rodlike shapes with an average hydrodynamic size of 173.6 ± 0.7 nm (PDI = 0.11 ± 0.04) and a drug loading of up to 31.3 ± 0.6%. Next, PTX NC@CS-Fmoc was subjected to lyophilization in the absence of cryoprotectants for long-term storage, and after redispersion, PTX NC@CS-Fmoc displayed an average hydrodynamic size of 205.3 ± 2.9 nm (PDI = 0.15 ± 0.01). In murine Panc02 cells, PTX NC@CS-Fmoc showed higher internalization efficiency than that of PTX nanocrystals without CS modification (PTX NC@F127) (P < 0.05) or that of CS-Fmoc micelles (P < 0.05). Moreover, PTX NC@CS-Fmoc appeared to accumulate in both lysosomes and Golgi apparatus, while CS-Fmoc micelles accumulated specifically in the Golgi apparatus. In the orthotopic Panc02 tumor-bearing mice model, PTX NC@CS-Fmoc showed higher tumor-specific accumulation than CS-Fmoc micelles, which also demonstrated comparable tumor growth inhibition as to Nab-PTX. Overall, the CS-Fmoc-derived nanocrystals represent a neat and viable formulation strategy for targeted chemotherapy with great potential for translational studies.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Jiajia Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Xue Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu610072, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| |
Collapse
|
4
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
5
|
Kesharwani P, Chadar R, Sheikh A, Rizg WY, Safhi AY. CD44-Targeted Nanocarrier for Cancer Therapy. Front Pharmacol 2022; 12:800481. [PMID: 35431911 PMCID: PMC9008230 DOI: 10.3389/fphar.2021.800481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Cluster of differentiation 44 (CD44) is a cell surface glycoprotein overexpressed in varieties of solid tumors including pancreatic, breast, ovary, brain, and lung cancers. It is a multi-structural glycoprotein of the cell surface which is majorly involved in cell proliferation, cell-to-cell interaction, cellular migration, inflammation, and generation of immune responses. Numerous studies focus on the development of nanocarriers for active targeting of the CD44 receptor to improve efficacy of targeting chemotherapy and achieve precise chemotherapy by defining the release, uptake, and accumulation of therapeutic agents. The CD44 receptor has a selective binding affinity towards hyaluronic and chondroitin sulfate (CS). Taking this into consideration, this review focused on the role of CD44 in cancer and its therapy using several nanocarriers such as polymeric/non-polymeric nanoparticles, dendrimer, micelles, carbon nanotubes, nanogels, nanoemulsions etc., for targeted delivery of several chemotherapeutic molecules and nucleic acid. This review also illuminates the role of hyaluronic acid (HA) in cancer therapy, interaction of HA with CD44, and various approaches to target CD44-overexpressed neoplastic cells.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- *Correspondence: Prashant Kesharwani,
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
6
|
Li M, Zhao Y, Zhang W, Zhang S, Zhang S. Multiple-therapy strategies via polysaccharides-based nano-systems in fighting cancer. Carbohydr Polym 2021; 269:118323. [PMID: 34294335 DOI: 10.1016/j.carbpol.2021.118323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
Polysaccharide-based biomaterials (e.g., chitosan, dextran, hyaluronic acid, chondroitin sulfate and heparin) have received great attention in healthcare, particularly in drug delivery for tumor therapy. They are naturally abundant and available, outstandingly biodegradable and biocompatible, and they generally have negligible toxicity and low immunogenicity. In addition, they are easily chemically or physically modified. Therefore, PSs-based nanoparticles (NPs) have been extensively investigated for the enhancement of tumor treatment. In this review, we introduce the synthetic pathways of amphiphilic PS derivatives, which allow the constructs to self-assemble into NPs with various structures. We especially offer an overview of the emerging applications of self-assembled PSs-based NPs in tumor chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), gene therapy and immunotherapy. We believe that this review can provide criteria for a rational and molecular level-based design of PS-based NPs, and comprehensive insight into the potential of PS-based NPs used in multiple cancer therapies.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
7
|
Topological cyclodextrin nanoparticles as crosslinkers for self-healing tough hydrogels as strain sensors. Carbohydr Polym 2021; 264:117978. [PMID: 33910754 DOI: 10.1016/j.carbpol.2021.117978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022]
Abstract
Hydrogels have been widely used for various applications, and thus addressing the challenges associated with the design of sustainable hydrogels has become an important issue. However, little attention has been devoted toward the design of crosslinkers which are often toxic, lack self-healing capabilities, and derived from petrochemicals. Herein, novel cyclodextrin topological nanoparticles (TNPs) have been constructed. These TNPs were found to possess crosslinking capabilities and the corresponding TNPs-crosslinked hydrogels showed excellent mechanical performances with a high stretchability of 1860 % and stress of 180 kPa and good anti-fatigue abilities. These hydrogels could be readily recycled and used for modular assembly and disassembly in various shapes and could serve as flexible strain sensors to monitor human activities with a sensing range of 0-1800 %, controllable sensitivity, and good fatigue resistance. These topological nanoparticles can inspire the design of novel physical crosslinkers for novel flexible strain sensors, tough and self-healing hydrogels, and soft robotics.
Collapse
|
8
|
Multi-layered cellulose nanocrystal system for CD44 receptor-positive tumor-targeted anticancer drug delivery. Int J Biol Macromol 2020; 162:798-809. [DOI: 10.1016/j.ijbiomac.2020.06.193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
|
9
|
Amhare AF, Lei J, Deng H, Lv Y, Han J, Zhang L. Biomedical application of chondroitin sulfate with nanoparticles in drug delivery systems: systematic review. J Drug Target 2020; 29:259-268. [PMID: 33021406 DOI: 10.1080/1061186x.2020.1833018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chondroitin sulphate captured an increasing amount of attention in the field of drug delivery systems. Nanoparticles and chondroitin sulphate were combined in different ways to form effective target nanocarriers. The study aimed to evaluate the biomedical application of chondroitin sulphate with nanoparticles in drug delivery systems. We searched PubMed, Google Scholar, and MEDLINE for studies that included data for the application of chondroitin sulphate and nanoparticles in targeting drug delivery published in English up to 25 February 2020. OHAT (Office of Health Assessment and Translation) Risk-of-Bias Tool was used to assessing the quality and risk of bias of each study. We performed a qualitative synthesis of findings from included studies. The toxicity of developed drugs has been evaluated using cell viability percentage and 50% inhibitory concentration of drugs. Twenty original articles reported the application of chondroitin sulphate on drug delivery systems were selected. Drug loading and encapsulation efficiency were from 2% to 16.1% and from 39.50% to 93.97%, respectively. The drug release was fast at start time and followed by a slow and sustain released stage. The risk of bias was rated as high in two out of twenty studies. Most of the studies presented baseline characteristics and outcomes appropriately.
Collapse
Affiliation(s)
- Abebe Feyissa Amhare
- School of Public Health, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi, PR China
| | - Jian Lei
- School of Public Health, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi, PR China.,Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, Guangdong, PR China
| | - Huan Deng
- School of Public Health, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi, PR China
| | - Yizhen Lv
- School of Public Health, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi, PR China
| | - Jing Han
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, Guangdong, PR China
| | - Lei Zhang
- School of Public Health, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi, PR China.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia.,Department of Epidemiology and Biostatistics, College of Public health, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
10
|
Chondroitin sulfate-hybridized zein nanoparticles for tumor-targeted delivery of docetaxel. Carbohydr Polym 2020; 253:117187. [PMID: 33278965 DOI: 10.1016/j.carbpol.2020.117187] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Chondroitin sulfate-hybridized zein nanoparticles (zein/CS NPs) were developed for targeted delivery of docetaxel, which exhibited mean diameters of 157.8 ± 3.6 nm and docetaxel encapsulation efficiency of 64.2 ± 1.9 %. Docetaxel was released from the NPs in a sustained manner (∼72 h), following first-order kinetics. The zein/CS NPs showed improved colloidal stability, maintaining the initial size in serum for 12 h. The pre-treatment of CS reduced the uptake efficiency of the NPs by 23 % in PC-3 cells, suggesting the involvement of CD44-mediated uptake mechanism. The NPs showed 2.79-fold lower IC50 values than free docetaxel. Enhanced tumor accumulation of the NPs was confirmed in PC-3 xenograft mice by near-infrared fluorescence imaging (35.3-fold, versus free Cy5.5). The NPs exhibited improved pharmacokinetic properties (9.5-fold longer terminal half-life, versus free docetaxel) and anti-tumor efficacy comparable to Taxotere with negligible systemic toxicity, suggesting zein/CS NPs could be a promising nanoplatform for targeted cancer therapy.
Collapse
|
11
|
Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr Polym 2020; 251:117103. [PMID: 33142641 DOI: 10.1016/j.carbpol.2020.117103] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022]
Abstract
The polysaccharide-based biomaterials hyaluronic acid (HA) and chondroitin sulfate (CS) have aroused great interest for use in drug delivery systems for tumor therapy, as they have outstanding biocompatibility and great targeting ability for cluster determinant 44 (CD44). In addition, modified HA and CS can self-assemble into micelles or micellar nanoparticles (NPs) for targeted drug delivery. This review discusses the formation of HA- and CS-based NPs, and various types of CS-based NPs including CS-drug conjugates, CS-polymer NPs, CS-small molecule NPs, polyelectrolyte nanocomplexes (PECs), CS-metal NPs, and nanogels. We then focus on the applications of HA- and CS-based NPs in tumor chemotherapy, gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), and immunotherapy. Finally, this review is expected to provide guidelines for the development of various HA- and CS-based NPs used in multiple cancer therapies.
Collapse
|
12
|
Ji Y, Zhang S, Qiao M, Jiao R, Li J, Song P, Zhang X, Huang H. Synthesis of structurally defined chondroitin sulfate: Paving the way to the structure-activity relationship studies. Carbohydr Polym 2020; 248:116796. [PMID: 32919534 DOI: 10.1016/j.carbpol.2020.116796] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Chondroitin sulfate (CS) is one of the major and widespread glycosaminoglycans, a family of structurally complex, linear, anionic hetero-co-polysaccharides. CS plays a vital role in various normal physiological and pathological processes, thus, showing varieties of biological activities, such as anti-oxidation, anti-atherosclerosis, anti-thrombosis, and insignificant immunogenicity. However, the heterogeneity of the naturally occurring CS potentially leads to function unspecific and limits further structure-activity relationship studies. Therefore, the synthesis of CS with well-defined and uniform chain lengths is of major interest for the development of reliable drugs. In this review, we examine the remarkable progress that has been made in the chemical, enzymatic and chemoenzymatic synthesis of CS and its derivatives, providing a broad spectrum of options to access CS of well controlled chain lengths.
Collapse
Affiliation(s)
- Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shilin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruoyu Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
13
|
Lee JY, Lee HS, Kang NW, Lee SY, Kim DH, Kim S, Yoon IS, Cho HJ, Kim DD. Blood component ridable and CD44 receptor targetable nanoparticles based on a maleimide-functionalized chondroitin sulfate derivative. Carbohydr Polym 2019; 230:115568. [PMID: 31887874 DOI: 10.1016/j.carbpol.2019.115568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Chondroitin sulfate A-deoxycholic acid-polyethylene glycol-maleimide (CSA-DOCA-PEG-MAL; CDPM) nanostructures were designed for the transient binding of MAL with thiol in blood components and cell membranes, in addition to the CD44 receptor targeting, for the therapy of breast cancer. The spontaneous binding of free thiol groups in plasma proteins and blood cells with the MAL group of CDPM was significantly higher than that of CSA-DOCA-PEG (CDP). Enhanced cellular uptake and the in vitro antiproliferation efficacy of docetaxel (D)-loaded CDPM (CDPM/D) nanoparticles (NPs) in MCF-7 cells indicated dual-targeting effects based on MAL-thiol reactions and CSA-CD44 receptor interactions. Following intravenous injection in rats, reduced clearance and an elevated half-life of the drug was observed in the CDPM/D NPs compared to the CDP/D NPs. Taken together, MAL modification of CDP NPs could be a promising approach not only to enhance tumor targeting and penetration but also to extend the blood circulation time of anticancer drugs.
Collapse
Affiliation(s)
- Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Han Sol Lee
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dong Hyun Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sungyun Kim
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Abdifetah O, Na-Bangchang K. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review. Int J Nanomedicine 2019; 14:5659-5677. [PMID: 31632004 PMCID: PMC6781664 DOI: 10.2147/ijn.s213229] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/31/2019] [Indexed: 01/19/2023] Open
Abstract
The poor pharmacokinetic characteristics of most anticancer drugs have limited their clinical effectiveness. The application of nanoparticles as a novel drug delivery system has provided opportunities to tackle the current challenges facing conventional drug delivery systems such as poor pharmacokinetics, lack of specificity to tumor cells, multidrug resistance, and toxicity. This systematic review aims to examine the application of pharmacokinetic studies of nanoparticles loaded in conventional drugs and herb-derived compounds for cancer therapy. The pharmacokinetic parameters of several herbal medicines and chemotherapeutic drugs loaded into nanoparticles were reported. This included area under the curve (AUC) of plasma concentration-time profile, maximum plasma concentration (Cmax), time to maximum plasma concentration (Tmax), volume of distribution (Vd or Vss), elimination half-life (t½), and clearance (CL). The systematic review was conducted using information available in the PubMed and Science Direct databases up to February 2019. The search terms employed were: pharmacokinetics, pharmacokinetic study, nanoparticles, anticancer, traditional medicine, herbal medicine, herb-derived compounds, natural products, and chemotherapy. Overall, nanoparticle carriers not only significantly improved pharmacokinetics but also further enhanced permeability, solubility, stability, specificity, and selectivity of the carried anticancer drugs/herb-derived compounds to target tumor cells. Additionally, they also limited hepatic first-pass metabolism and P-glycoprotein (P-gp) efflux of the carried anticancer drugs/herb-derived compounds. Based on this systematic review, polymeric nanoparticles were the most commonly used nanocarrier to improve the pharmacokinetic parameters. The use of nanoparticles as a novel drug delivery system has the potential to improve both pharmacokinetics and cytotoxicity activity of the loaded drugs/herb-derived compounds for cancer therapy.
Collapse
Affiliation(s)
- Omar Abdifetah
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Drug Discovery Center, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
15
|
Recent Progress in the Development of Poly(lactic- co-glycolic acid)-Based Nanostructures for Cancer Imaging and Therapy. Pharmaceutics 2019; 11:pharmaceutics11060280. [PMID: 31197096 PMCID: PMC6630460 DOI: 10.3390/pharmaceutics11060280] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diverse nanosystems for use in cancer imaging and therapy have been designed and their clinical applications have been assessed. Among a variety of materials available to fabricate nanosystems, poly(lactic-co-glycolic acid) (PLGA) has been widely used due to its biocompatibility and biodegradability. In order to provide tumor-targeting and diagnostic properties, PLGA or PLGA nanoparticles (NPs) can be modified with other functional materials. Hydrophobic or hydrophilic therapeutic cargos can be placed in the internal space or adsorbed onto the surface of PLGA NPs. Protocols for the fabrication of PLGA-based NPs for cancer imaging and therapy are already well established. Moreover, the biocompatibility and biodegradability of PLGA may elevate its feasibility for clinical application in injection formulations. Size-controlled NP’s properties and ligand–receptor interactions may provide passive and active tumor-targeting abilities, respectively, after intravenous administration. Additionally, the introduction of several imaging modalities to PLGA-based NPs can enable drug delivery guided by in vivo imaging. Versatile platform technology of PLGA-based NPs can be applied to the delivery of small chemicals, peptides, proteins, and nucleic acids for use in cancer therapy. This review describes recent findings and insights into the development of tumor-targeted PLGA-based NPs for use of cancer imaging and therapy.
Collapse
|
16
|
Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. Chemical modifications serve to tune the shapes and properties of these materials. In particular, carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue engineering applications. Due to the reversible nature of the assembly, often based on a combination of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable substrates for the creations of responsive systems. Herein, we review the current research on carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss how these systems are formed and how their properties are tuned. Particular emphasis will be placed on the use of carbohydrates for biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
17
|
Pandey G, Mittapelly N, Banala VT, Mishra PR. Multifunctional Glycoconjugate Assisted Nanocrystalline Drug Delivery for Tumor Targeting and Permeabilization of Lysosomal-Mitochondrial Membrane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16964-16976. [PMID: 29726253 DOI: 10.1021/acsami.7b18699] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotechnology has emerged as the most successful strategy for targeting drug payloads to tumors with the potential to overcome the problems of low concentration at the target site, nonspecific distribution, and untoward toxicities. Here, we synthesized a novel polymeric conjugate comprising chondroitin sulfate A and polyethylene glycol using carbodiimide chemistry. We further employed this glycoconjugate possessing the propensity to provide stability, stealth effects, and tumor targeting via CD44 receptors, all in one, to develop a nanocrystalline system of docetaxel (DTX@CSA-NCs) with size < 200 nm, negative zeta potential, and 98% drug content. Taking advantage of the enhanced permeability and retention effect coupled with receptor mediated endocytosis, the DTX@CSA-NCs cross the peripheral tumor barrier and penetrate deeper into the cells of tumor mass. In MDA-MB-231 cells, this enhanced cellular uptake was observed to exhibit a higher degree of cytotoxicity and arrest in the G2 phase in a time dependent fashion. Acting via a mitochondrial-lysosomotropic pathway, DTX@CSA-NCs disrupted the membrane potential and integrity and outperformed the clinically used formulation. Upon intravenous administration, the DTX@CSA-NCs showed better pharmacokinetic profile and excellent 4T1 induced tumor inhibition with significantly less off target toxicity. Thus, this glycoconjugate stabilized nanocrystalline formulation has the potential to take nano-oncology a step forward.
Collapse
Affiliation(s)
- Gitu Pandey
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex CSIR Campus , CSIR Road , Taramani, Chennai - 600 113, India
| | - Naresh Mittapelly
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex CSIR Campus , CSIR Road , Taramani, Chennai - 600 113, India
| | - Venkatesh Teja Banala
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
| | - Prabhat Ranjan Mishra
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex CSIR Campus , CSIR Road , Taramani, Chennai - 600 113, India
| |
Collapse
|
18
|
Pei M, Jia X, Zhao X, Li J, Liu P. Alginate-based cancer-associated, stimuli-driven and turn-on theranostic prodrug nanogel for cancer detection and treatment. Carbohydr Polym 2018; 183:131-139. [PMID: 29352868 DOI: 10.1016/j.carbpol.2017.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022]
|
19
|
Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1016-1030. [PMID: 30184725 DOI: 10.1016/j.msec.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Studies on "smart" polymeric material performing environmental stimuli such as temperature, pH, magnetic field, enzyme and photo-sensation have recently paid much attention to practical applications. Among of them, thermo-responsive grafted copolymers, amphiphilic steroids as well as polyester molecules have been utilized in the fabrication of several multifunctional platforms. Indeed, they performed a strikingly functional improvement comparing to some original materials and exhibited a holistic approach for biomedical applications. In case of drug delivery systems (DDS), there has been some successful proof of thermal-responsive grafted platforms on clinical trials such as ThermoDox®, BIND-014, Cynviloq IG-001, Genexol-PM, etc. This review would detail the recent progress and highlights of some temperature-responsive polymer-grafted nanomaterials or hydrogels in the 'smart' DDS that covered from synthetic polymers to nature-driven biomaterials and novel generations of some amphiphilic functional platforms. These approaches could produce several types of smart biomaterials for human health care in future.
Collapse
Affiliation(s)
- Phung Ngan Le
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam
| | - Chan Khon Huynh
- Biomedical Engineering Department, International University, National Universities in HCMC, HCMC 70000, Viet Nam
| | - Ngoc Quyen Tran
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam; Graduate School of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam.
| |
Collapse
|
20
|
Lee JY, Termsarasab U, Lee MY, Kim DH, Lee SY, Kim JS, Cho HJ, Kim DD. Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery. Acta Biomater 2017; 57:262-273. [PMID: 28483700 DOI: 10.1016/j.actbio.2017.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 01/31/2023]
Abstract
A chitosan oligosaccharide (CSO)-indomethacin (IDM) conjugate (CI) was synthesized to fabricate chemosensitizing nanoparticles (NPs) for tumor-targeted drug delivery. IDM was conjugated to a CSO backbone via amide bond formation, of which successful synthesis was confirmed by proton-nuclear magnetic resonance analyses. Doxorubicin (DOX)-loaded CI (CI10/DOX; CI:DOX=10:1 [w/w]) NPs with <75nm of mean diameter, polydispersity index of ∼0.2, and positive zeta potential were prepared. The release of DOX from the NPs was enhanced at acidic pH (pH 5.5 and 6.8) compared to physiological pH (pH 7.4). The release of IDM increased in the presence of A549 cell lysates. In A549 cells (human lung carcinoma cells), more efficient cellular uptake of CI10/DOX NPs than that of free DOX was observed by using confocal laser scanning microscopy and flow cytometry. The in vitro cytotoxicity of CI10/DOX NPs in A549 cells was higher than those of free DOX and CI NPs with free DOX groups. In vivo pharmacokinetic studies after intravenous administration in rats showed significantly lower clearance of DOX from NPs compared with the free DOX group. Tumor targetability of the developed CI NPs was also verified by a real-time optical imaging study. In summary, the chemosensitizing CI/DOX NP with enhanced anticancer activity, prolonged blood circulation, and passive tumor targeting can be a promising anticancer drug delivery system for tumor-targeted therapy. STATEMENT OF SIGNIFICANCE Chemosensitizing nanoparticles (NPs) based on amphiphilic chitosan oligosaccharide-indomethacin (CSO-IDM; CI) conjugate were developed for tumor-targeted delivery of doxorubicin (DOX). IDM was introduced to the CSO backbone as a hydrophobic residue to synthesize an amphiphilic conjugate and a chemosenstizer of DOX for improving antitumor efficacies. IDM, conjugated to CSO, may inhibit the efflux of cellular uptaken DOX via multidrug resistance-associated protein (MRP) and subsequently augment the anti-proliferation potentials of DOX in A549 cells (MRP-expressed human lung cancer cells). Chemosensitizing properties of developed CI NPs were assessed in cell culture models and the tumor targetability of CI/DOX NPs was demonstrated in A549 tumor-xenografted mouse model by a real-time optical imaging. Developed CI NPs can be used as a multifunctional nanosystem for the therapy of MRP-expressed cancers.
Collapse
Affiliation(s)
- Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ubonvan Termsarasab
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mee Yeon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hwan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jung Sun Kim
- Division of Health Sciences, Dongseo University, Busan 47011, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
21
|
Jeong JY, Hong EH, Lee SY, Lee JY, Song JH, Ko SH, Shim JS, Choe S, Kim DD, Ko HJ, Cho HJ. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater 2017; 53:414-426. [PMID: 28216300 DOI: 10.1016/j.actbio.2017.02.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/26/2017] [Accepted: 02/14/2017] [Indexed: 12/13/2022]
Abstract
(3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface of HACE-AMPB/MB NPs (in the aqueous milieu) may react with the sialic acid over-expressed in cancer cells and intramolecular B‒O bond can be formed. This phenylboronic acid-sialic acid interaction may provide additional tumor targeting and penetration potentials together with an enhanced permeability and retention (EPR) effect (passive tumor targeting) and HA-CD44 receptor interaction (active tumor targeting). Developed HACE-AMPB NP may be one of promising nanocarriers for the imaging and therapy of CD44 receptor-expressed cancers.
Collapse
Affiliation(s)
- Jae Young Jeong
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Eun-Hye Hong
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Hyoung Song
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seung-Hak Ko
- Biogenics Inc., Daejeon 34027, Republic of Korea
| | - Jae-Seong Shim
- Biogenics Inc., Daejeon 34027, Republic of Korea; Skin & Tech Inc., Seongnam, Gyeonggi 13135, Republic of Korea
| | - Sunghwa Choe
- Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology, Suwon, Gyeonggi 16229, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology, Suwon, Gyeonggi 16229, Republic of Korea.
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
22
|
Iwanaga M, Kodama Y, Muro T, Nakagawa H, Kurosaki T, Sato K, Nakamura T, Kitahara T, Sasaki H. Biocompatible complex coated with glycosaminoglycan for gene delivery. J Drug Target 2017; 25:370-378. [PMID: 28043182 DOI: 10.1080/1061186x.2016.1274996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to develop a ternary complex of plasmid DNA (pDNA) electrostatically assembled with dendrigraft poly-l-lysine (DGL) and biodegradable glycosaminoglycan for effective and secure gene delivery. High gene expression of pDNA/DGL complex was confirmed with slight cytotoxicity and erythrocyte agglutination. Anionic ternary complexes of 55.4-223.8 nm were formed by the addition of a glycosaminoglycan such as chondroitin sulfate A (CS-A), chondroitin sulfate B (CS-B), chondroitin sulfate C (CS-C) or hyaluronic acid (HA). Using the cell line B16-F10, most of the ternary complexes showed only weak gene expression and little cytotoxicity, although the pDNA/DGL/CS-A complexes maintained a certain level of gene expression. In particular, the pDNA/DGL/CS-A8 complexes showed significantly higher gene expression than pDNA/DGL complexes in the presence of fetal bovine serum. Gene expression from the pDNA/DGL/CS-A8 complex was inhibited by a high concentration of CS-A and endocytosis inhibitors. After intravenous administration of the pDNA/DGL/CS-A8 complex and the pDNA/DGL complex into ddY mice, high gene expression was observed in the reticuloendothelial systems, the pDNA/DGL/CS-A complex is expected to be useful for gene therapy.
Collapse
Affiliation(s)
- Marie Iwanaga
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan.,b Department of Clinical Pharmacokinetics, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Yukinobu Kodama
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takahiro Muro
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hiroo Nakagawa
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tomoaki Kurosaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Kayoko Sato
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tadahiro Nakamura
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takashi Kitahara
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hitoshi Sasaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan.,b Department of Clinical Pharmacokinetics, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| |
Collapse
|
23
|
Zhang J, Li Y, Wang J, Qi S, Song X, Tao C, Le Y, Wen N, Chen J. Dual redox-responsive PEG–PPS–cRGD self-crosslinked nanocapsules for targeted chemotherapy of squamous cell carcinoma. RSC Adv 2017. [DOI: 10.1039/c7ra10499e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A multifunctional branched copolymer, PEG–PPS–cRGD, was designed for developing dual redox-responsive self-crosslinked nanocapsules for targeted chemotherapy of squamous cell carcinoma.
Collapse
Affiliation(s)
- Jianjun Zhang
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yunxia Li
- Department of the Prosthodontics
- The General Hospital of Chinese PLA
- Beijing 100853
- P. R. China
| | - Jiexin Wang
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Shengpei Qi
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoqing Song
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Cheng Tao
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yuan Le
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ning Wen
- Department of the Prosthodontics
- The General Hospital of Chinese PLA
- Beijing 100853
- P. R. China
| | - Jianfeng Chen
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|