1
|
Zhang X, Yi X, Gao X, Li Y, Shen X. Liver-Targeted Nanoparticles Loaded with Cannabidiol Based on Redox Response for Effective Alleviation of Acute Liver Injury. Foods 2024; 13:2464. [PMID: 39123655 PMCID: PMC11311329 DOI: 10.3390/foods13152464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The purpose of this work was to construct liver-targeted nanoparticles based on the redox response to effectively deliver cannabidiol (CBD) for the prevention of acute liver injury (ALI). CBD-loaded nanoparticles (CBD NPs) with a particle size of 126.5 ± 1.56 nm were prepared using the polymer DA-PP-LA obtained by grafting pullulan polysaccharide with deoxycholic acid (DA) and α-lipoic acid (α-LA). CBD NPs showed typical redox-response release behavior. Interestingly, CBD NPs exhibited admirable liver targeting ability, significantly accumulated in the liver, and effectively promoted the internalization of CBD in liver cells, thus effectively reducing the H2O2-induced oxidative damage of HepG2 cells and avoiding apoptosis. More importantly, CBD NPs effectively prevented CCl4-induced ALI by protecting liver function, ameliorating oxidative stress levels, inhibiting the production of inflammatory factors, and protecting the liver from histological damage. This study provides a promising strategy for achieving targeted delivery of CBD NPs in the liver, thereby effectively preventing ALI.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yongcheng Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
2
|
Sun H, Nai J, Deng B, Zheng Z, Chen X, Zhang C, Sheng H, Zhu L. Angelica Sinensis Polysaccharide-Based Nanoparticles for Liver-Targeted Delivery of Oridonin. Molecules 2024; 29:731. [PMID: 38338476 PMCID: PMC10856552 DOI: 10.3390/molecules29030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The present work aimed to study the feasibility of Angelica sinensis polysaccharide (ASP) as an instinctive liver targeting drug delivery carrier for oridonin (ORI) in the treatment of hepatocellular carcinoma (HCC). ASP was reacted with deoxycholic acid (DOCA) via an esterification reaction to form an ASP-DOCA conjugate. ORI-loaded ASP-DOCA nanoparticles (ORI/ASP-DOCA NPs) were prepared by the thin-film water method, and their size was about 195 nm in aqueous solution. ORI/ASP-DOCA NPs had a drug loading capacity of up to 9.2%. The release of ORI in ORI/ASP-DOCA NPs was pH-dependent, resulting in rapid decomposition and accelerated drug release at acidic pH. ORI/ASP-DOCA NPs significantly enhanced the accumulation of ORI in liver tumors through ASGPR-mediated endocytosis. In vitro results showed that ORI/ASP-DOCA NPs increased cell uptake and apoptosis in HepG2 cells, and in vivo results showed that ORI/ASP-DOCA NPs caused effective tumor suppression in H22 tumor-bearing mice compared with free ORI. In short, ORI/ASP-DOCA NPs might be a simple, feasible, safe and effective ORI nano-drug delivery system that could be used for the targeted delivery and treatment of liver tumors.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jijuan Nai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Biqi Deng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhen Zheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuemei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
3
|
Chen Y, Su W, Tie S, Cui W, Yu X, Zhang L, Hua Z, Tan M. Orally deliverable sequence-targeted astaxanthin nanoparticles for colitis alleviation. Biomaterials 2023; 293:121976. [PMID: 36566552 DOI: 10.1016/j.biomaterials.2022.121976] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Orally targeted strategy of anti-inflammatory agents has attracted tremendous attention for reducing highly health-care costs and enhancing the intervention efficiency of ulcerative colitis (UC). Herein, we developed a new kind of sequence-targeted astaxanthin nanoparticles for UC treatment. Astaxanthin nanoparticles were firstly designed by self-assembly method using (3-carboxypentyl) (triphenyl) phosphonium bromide (TPP)-modified whey protein isolate (WPI)-dextran (DX) conjugates. Subsequently, lipoic acid (LA) modified hyaluronic acid (HA) was coated on the surface of the nanoparticles by double emulsion evaporation method. Exhilaratingly, the constructed sequence-targeted astaxanthin nanoparticle exhibited excellent macrophages and mitochondria targeting ability, with a Pearson's correlation coefficient of 0.84 adstnd 0.92, respectively. In vivo imaging elucidated an obvious accumulation of the sequence-targeted nanoparticles in colon tissues in UC mice. Meanwhile, the reduction stimulus release features of astaxanthin were observed in the presence of 10 mM of glutathione (GSH) at pH 7.4. Most importantly, in vivo experiments indicated that sequence-targeted astaxanthin nanoparticles could markedly alleviate inflammation by moderating the TLR4/MyD88/NF-κB signaling pathway. What's more, the composition of gut microbiota and the production of short chain fatty acid were also improved upon the uptake of sequence-targeted astaxanthin nanoparticles. Our results suggested this novel astaxanthin nanoparticles, which showed sequence-targeted ability and reduction response feature, could be exploited as a promising strategy for effective UC treatment.
Collapse
Affiliation(s)
- Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Shanshan Tie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Weina Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Lijuan Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Zheng Hua
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
4
|
Chirayil TJ, Kumar GSV. Sorafenib-Entrapped, Self-Assembled Pullulan–Stearic Acid Biopolymer-Derived Drug Delivery System to PLC/PRF/5 Hepatocellular Carcinoma Model. Int J Nanomedicine 2022; 17:5099-5116. [PMID: 36340185 PMCID: PMC9635392 DOI: 10.2147/ijn.s377354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose This study aimed to design a prototypic drug delivery system (DDS) made of an amphiphilic, pullulan (Pull)-derived biodegradable polymer for targeting the asialoglycoprotein receptor (ASGPR) overexpressed in HCC. Stearic acid (SA) was conjugated to increase the hydrophobicity of pullulan (Pull-SA). Methods Pullulan (Pull) was linked to stearic acid (SA) after functional group modifications via EDC/NHS chemistry and characterized. Sorafenib tosylate (SRFT) was entrapped in pullulan–stearic acid nanoparticles (Pull-SA-SRFT) and its particle size, zeta potential, entrapment efficiency (EE), loading capacity (LC), and release efficiency was measured. The competence of Pull-SA-SRFT over SRFT in vitro was assessed using the ASGPR over-expressing PLC/PRF/5 hepatocellular carcinoma (HCC) cell line. This was done by studying cytotoxicity by MTT assay and chromosome condensation assay, early apoptosis by annexin-Pi staining, and late apoptosis by live–dead assay. The cellular uptake study was performed by incorporating coumarin-6 (C6) fluorophore in place of SRFT in Pull-SA conjugates. A biodistribution study was conducted in Swiss-albino mice to assess the biocompatibility and targeting properties of SRFT and Pull-SA-SRFT to the liver and other organs at 1, 6, 24, and 48 h. Results The characterization studies of the copolymer confirmed the successful conjugation of Pull-SA. The self-assembled amphiphilic nanocarrier could proficiently entrap the hydrophobic drug SRFT to obtain an entrapment efficiency of 95.6% (Pull-SA-SRFT). Characterization of the synthesized nanoparticles exhibited highly desirable nanoparticle characteristics. In vitro, apoptotic studies urged that Pull-SA-SRFT nanoparticle was delivered more efficiently to HCC than SRFT. The cellular uptake study performed, gave propitious results in 4 hrs. The biodistribution study conducted in immunocompetent mice suggested that Pull-SA-SRFT was delivered more than SRFT to the liver when compared to other organs, and that the system was biocompatible. Conclusion Pull-SA-SRFT is a promisingly safe, biodegradable, cell-specific nanocarrier and a potential candidate to target hydrophobic drugs to HCC.
Collapse
Affiliation(s)
- Teena Jacob Chirayil
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Correspondence: G S Vinod Kumar, Tel +91 471 2781217, Email
| |
Collapse
|
5
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
6
|
Chen Q, Zhou S, Ding Y, Chen D, Dahiru NS, Tang H, Xu H, Ji M, Wang X, Li Z, Chen Q, Li Y, Tu J, Sun C. A bio-responsive, cargo-catchable gel for postsurgical tumor treatment via ICD-based immunotherapy. J Control Release 2022; 346:212-225. [DOI: 10.1016/j.jconrel.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/18/2023]
|
7
|
Singh RS, Kaur N, Singh D, Bajaj BK, Kennedy JF. Downstream processing and structural confirmation of pullulan - A comprehensive review. Int J Biol Macromol 2022; 208:553-564. [PMID: 35354070 DOI: 10.1016/j.ijbiomac.2022.03.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Pullulan is a microbial polymer, commercially produced from Aureobasidium pullulans. Downstream processing of pullulan involves a multi-stage process which should be efficient, safe and reproducible. In liquid-liquid separations, firstly cell free extract is separated. Cell biomass can be separated after fermentation either by centrifugation or filtration. Due to practically insolubility of pullulan in organic solvents, ethanol and isopropanol are the most commonly used organic solvents for its recovery. Pullulan can also be purified by chromatographic techniques, but these are not cost effective for the purification of pullulan. Efficient aqueous two-phase system can be used for the purification of pullulan. The current review describes the methods and perspectives used for solid-liquid separation, liquid-liquid separations and finishing steps for the recovery of pullulan. Techniques used to determine the structural attributes of pullulan have also been highlighted.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences, Punjabi University, Patiala 147 002, Punjab, India
| | - Bijender K Bajaj
- School of Biotechnology, University of Jammu, Jammu 180 006, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8SG Tenbury Wells, United Kingdom
| |
Collapse
|
8
|
Ganie SA, Rather LJ, Li Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
The Potential of a Site-Specific Delivery of Thiamine Hydrochloride as a Novel Insect Repellent Exerting Long-Term Protection on Human Skin: In-vitro, Ex-vivo Study and Clinical Assessment. J Pharm Sci 2021; 110:3659-3669. [PMID: 34358530 DOI: 10.1016/j.xphs.2021.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 11/20/2022]
Abstract
Thiamine hydrochloride (TH) was thought to exert a good insect repellent activity. The purpose of this work was to develop a formulation that releases TH in sustained regimen on human skin. Long lasting protection against mosquito bites was achieved. Pullulan acetate (PA) was used to prepare TH nanospheres. Optimal system was incorporated in Pluronic® hydrogel. Formulae were tested for in-vitro release and ex-vivo permeation. Complete protection time (CPT) was done adopting Kaplan-Meier survival function for the synthetic repellent (DEET), TH solution and nanospheres in hydrogel. Release profile of TH solution, nanospheres and nanosphere-loaded hydrogel (DG) demonstrated an added effect of DG, where t 1/2 was 11.2 ± 1.4 h. SEM for DG showed homogenous dispersion of nanospheres inside the matrix of the gel. Ex-vivo permeation showed only 0.761 ± 0.04% of TH in hydrogel permeated the skin after 12 h, while 44.98 ± 3.2% permeated when TH solution was applied. Clinical study revealed a significant difference in CPT between TH solution with either DEET or (DG) (p<0.05), and no significant difference between DEET and DG with CPT 400 ± 31 and 360 ± 18 min, respectively (P > 0.05). The high efficacy of TH-loaded hydrogel rendered it a successful alternative for DEET, offering long protection against mosquito bites.
Collapse
|
10
|
Zhang Y, Khan AR, Yang X, Shi Y, Zhao X, Zhai G. A sonosensitiser-based polymeric nanoplatform for chemo-sonodynamic combination therapy of lung cancer. J Nanobiotechnology 2021; 19:57. [PMID: 33632266 PMCID: PMC7905889 DOI: 10.1186/s12951-021-00804-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lung cancer is the most common type of tumour worldwide. Its relative lethality is considerably high. However, since the tumour tissues are located deep within the human body, traditional technologies, such as photodynamic therapy, do not have the desired effect. Sonosensitisers can penetrate deeply into tissues, and sonodynamic therapy (SDT) effectively inhibits tumours by generating reactive oxygen species. Ultrasound can also penetrate deeply, with a favourable tumour inhibition effect. RESULTS A redox/ultrasound-responsive Rhein-chondroitin sulphate-based nano-preparation encapsulating docetaxel was fabricated. The nanoparticles displayed increased cellular uptake with quick drug release, good stability, and a monodispersed form in the physiological environment. Rhein induced apoptosis and altered mitochondrial membrane potential, which enhanced the expression of apoptosis-related proteins. SDT inhibited the metastasis and angiogenesis of cancer cells and activated anti-tumour capacity by reducing the expression of M2 macrophages. CONCLUSIONS The potential of Rhein for SDT was demonstrated. Production of reaction oxygen species was markedly enhanced after ultrasound treatment. The nanoplatform enhanced the synergistic anti-tumour effects of SDT and chemotherapeutic efficacy. The approach was biocompatibility. The findings could inform investigations of chemo-SDT for different cancers.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Yikang Shi
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
11
|
Singh RS, Kaur N, Hassan M, Kennedy JF. Pullulan in biomedical research and development - A review. Int J Biol Macromol 2020; 166:694-706. [PMID: 33137388 DOI: 10.1016/j.ijbiomac.2020.10.227] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Pullulan is an imperative microbial exo-polymer commercially produced by yeast like fungus Aureobasidium pullulans. Its structure contains maltosyl repeating units which comprises two α-(1 → 4) linked glucopyranose rings attached to one glucopyranose ring through α-(1 → 6) glycosidic bond. The co-existence of α-(1 → 6) and α-(1 → 4) glycosidic linkages endows distinctive physico-chemical properties to pullulan. It is highly biocompatible, non-toxic and non-carcinogenic in nature. It is extremely resistant to any mutagenicity or immunogenicity. The unique properties of pullulan make it a potent candidate for biomedical applications viz. drug delivery, gene delivery, tissue engineering, molecular chaperon, plasma expander, vaccination, etc. This review highlights the potential of pullulan in biomedical research and development.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Muhammad Hassan
- US-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
12
|
Raychaudhuri R, Naik S, Shreya AB, Kandpal N, Pandey A, Kalthur G, Mutalik S. Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: Synthesis, nanoformulations and toxicological perspective. Int J Biol Macromol 2020; 161:1189-1205. [PMID: 32504712 DOI: 10.1016/j.ijbiomac.2020.05.262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 01/27/2023]
Abstract
With growing interest in polymers of natural origin, innumerable polysaccharides have gained attention for their biomedical application. Pullulan, one of the FDA approved nutraceuticals, possesses multiple unique properties which make them highly advantageous for biomedical applications. This present review encompasses the sources, production, properties and applications of pullulan. It highlights various pullulan based stimuli-responsive systems (temperature, pH, ultrasound, magnetic), subcellular targeted systems (mitochondria, Golgi apparatus/endoplasmic reticulum, lysosome, endosome), lipid-vesicular systems (solid-lipid nanoparticles, liposomes), polymeric nanofibres, micelles, inorganic (SPIONs, gold and silver nanoparticles), carbon-based nanoplatforms (carbon nanotubes, fullerenes, nanodiamonds) and quantum dots. This article also gives insight into different biomedical, therapeutic and diagnostic applications of pullulan viz., imaging, tumor targeting, stem cell therapy, gene therapy, vaccine delivery, cosmetic applications, protein delivery, tissue engineering, photodynamic therapy and chaperone-like activities. The review also includes the toxicological profile of pullulan which is helpful for the development of suitable delivery systems for clinical applications.
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla B Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Neha Kandpal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
13
|
Xu Y, Li X, Gong W, Huang HB, Zhu BW, Hu JN. Construction of Ginsenoside Nanoparticles with pH/Reduction Dual Response for Enhancement of Their Cytotoxicity Toward HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8545-8556. [PMID: 32686932 DOI: 10.1021/acs.jafc.0c03698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study is to construct a pH- and reduction-responsive nanodrug delivery system to effectively deliver a ginsenoside (Rh2) and enhance its cytotoxicity against human hepatocarcinoma cells (HepG2). Here, pullulan polysaccharide was grafted by urocanic acid and α-lipoic acid (α-LA) to obtain a copolymer, α-LA-conjugated N-urocanyl pullulan (LA-URPA), which was expected to have pH and redox dual response. Then, the copolymer LA-URPA was used to encapsulate ginsenoside Rh2 to form Rh2 nanoparticles (Rh2 NPs). The results showed that Rh2 NPs exhibited an average size of 119.87 nm with a uniform spherical morphology. Of note, Rh2 NPs showed a high encapsulation efficiency of 86.00%. Moreover, Rh2 NPs possessed excellent pH/reduction dual-responsive drug release under acidic conditions (pH 5.5) and glutathione (GSH) stimulation with a low drug leakage of 14.8% within 96 h. Furthermore, Rh2 NPs with pH/reduction dual response had higher cytotoxicity than Rh2 after incubation with HepG2 cells for 72 h, indicating that Rh2 NPs had a longer circulation time. After the treatment with Rh2 NPs, the excessive increase of reactive oxygen species and the decrease of superoxide dismutase, glutathione (GSH), and mitochondrial membrane potential suggested that the mitochondrial pathway mediated by oxidative stress played a role in this Rh2 NP-induced apoptosis. In conclusion, this study provides a new strategy for improving the application of ginsenoside Rh2 in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Yu Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Wei Gong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Hai-Bo Huang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Bei-Wei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiang-Ning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
14
|
ASGR1 and Its Enigmatic Relative, CLEC10A. Int J Mol Sci 2020; 21:ijms21144818. [PMID: 32650396 PMCID: PMC7404283 DOI: 10.3390/ijms21144818] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
The large family of C-type lectin (CLEC) receptors comprises carbohydrate-binding proteins that require Ca2+ to bind a ligand. The prototypic receptor is the asialoglycoprotein receptor-1 (ASGR1, CLEC4H1) that is expressed primarily by hepatocytes. The early work on ASGR1, which is highly specific for N-acetylgalactosamine (GalNAc), established the foundation for understanding the overall function of CLEC receptors. Cells of the immune system generally express more than one CLEC receptor that serve diverse functions such as pathogen-recognition, initiation of cellular signaling, cellular adhesion, glycoprotein turnover, inflammation and immune responses. The receptor CLEC10A (C-type lectin domain family 10 member A, CD301; also called the macrophage galactose-type lectin, MGL) contains a carbohydrate-recognition domain (CRD) that is homologous to the CRD of ASGR1, and thus, is also specific for GalNAc. CLEC10A is most highly expressed on immature DCs, monocyte-derived DCs, and alternatively activated macrophages (subtype M2a) as well as oocytes and progenitor cells at several stages of embryonic development. This receptor is involved in initiation of TH1, TH2, and TH17 immune responses and induction of tolerance in naïve T cells. Ligand-mediated endocytosis of CLEC receptors initiates a Ca2+ signal that interestingly has different outcomes depending on ligand properties, concentration, and frequency of administration. This review summarizes studies that have been carried out on these receptors.
Collapse
|
15
|
|
16
|
Huang L, Li Y, Du Y, Zhang Y, Wang X, Ding Y, Yang X, Meng F, Tu J, Luo L, Sun C. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat Commun 2019; 10:4871. [PMID: 31653838 PMCID: PMC6814770 DOI: 10.1038/s41467-019-12771-9] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
One of the main challenges for immune checkpoint blockade antibodies lies in malignancies with limited T-cell responses or immunologically “cold” tumors. Inspired by the capability of fever-like heat in inducing an immune-favorable tumor microenvironment, mild photothermal therapy (PTT) is proposed to sensitize tumors to immune checkpoint inhibition and turn “cold” tumors “hot.” Here we present a combined all-in-one and all-in-control strategy to realize a local symbiotic mild photothermal-assisted immunotherapy (SMPAI). We load both a near-infrared (NIR) photothermal agent IR820 and a programmed death-ligand 1 antibody (aPD-L1) into a lipid gel depot with a favorable property of thermally reversible gel-to-sol phase transition. Manually controlled NIR irradiation regulates the release of aPD-L1 and, more importantly, increases the recruitment of tumor-infiltrating lymphocytes and boosts T-cell activity against tumors. In vivo antitumor studies on 4T1 and B16F10 models demonstrate that SMPAI is an effective and promising strategy for treating “cold” tumors.
Collapse
|
17
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
18
|
Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2019; 60:1475-1495. [PMID: 30740985 DOI: 10.1080/10408398.2019.1575791] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial exopolysaccharides (EPS) are an abundant and important group of compounds that can be secreted by bacteria, fungi and algae. The biotechnological production of these substances represents a faster alternative when compared to chemical and plant-derived production with the possibility of using industrial wastes as substrates, a feasible strategy after a comprehensive study of factors that may affect the synthesis by the chosen microorganism and desirable final product. Another possible difficulty could be the extraction and purification methods, a crucial part of the production of microbial polysaccharides, since different methods should be adopted. In this sense, this review aims to present the biotechnological production of microbial exopolysaccharides, exploring the production steps, optimization processes and current applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Mayara C S Barcelos
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Kele A C Vespermann
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Franciele M Pelissari
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| |
Collapse
|
19
|
Drug Delivery Systems Based on Pullulan Polysaccharides and Their Derivatives. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [DOI: 10.1007/978-3-030-01881-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Yang Y, Zhu H, Wang J, Fang Q, Peng Z. Enzymatically Disulfide-Crosslinked Chitosan/Hyaluronic Acid Layer-by-Layer Self-Assembled Microcapsules for Redox-Responsive Controlled Release of Protein. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33493-33506. [PMID: 30203959 DOI: 10.1021/acsami.8b07120] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Disulfide-crosslinked hollow polyelectrolyte microcapsules composed of thiolated chitosan (CS-SH) and hyaluronic acid (HA-SH) were prepared by combining the layer-by-layer (LBL) technique and horseradish peroxidase (HRP)-mediated oxidative cross-linking reaction in mild conditions. FITC-dextran-doped CaCO3 microspheres were used as template core and removed after LBL depositing CS-SH and HA-SH on the surface. The disulfide-crosslinked (CS/HA) microcapsules were readily fabricated by HRP-mediated oxidative coupling of the thiol groups in CS/HA shell layer in the presence of HRP (10 units/mL) and Tyramine hydrochloride (Tyr, 35 mmol/L). The kinetics of enzymatic disulfide-crosslinking reaction was investigated through the real-time monitoring of the consumption of thiol groups by UV absorption spectra. It found that the formation of disulfide linkages by the enzymatic thiol oxidation reaction showed a gradual acceleration. The disulfide-crosslinked CS/HA hydrogel were rapidly formed in gelation time between approximately 17 and 30 min, which were dependent on the concentrations of HRP and Tyr. The disulfide linkages endowed the microcapsule-enhanced physical stability and low permeability under physiological conditions and redox-responsive degradability in reducing environments. The structural stability of disulfide-crosslinked (CS/HA) microcapsules was visualized by confocal laser scanning microscopy in phosphate-buffered saline containing 5.0 mmol/L dithiothreitol (DTT) to evaluate the redox-responsive disassembly process. Redox-responsive controlled release of encapsulated FITC-dextran from the disulfide-crosslinked (CS/HA) microcapsules were obtained. The release profiles of FITC-dextran could be manipulated by controlling the shell thickness and the concentration of DTT. The conformational stability analyses and more than 94% esterase activity of released bovine serum albumin (BSA) from (CS/HA) microcapsules conformed that the structural integrity and bioactivity were well preserved during the encapsulation and release process. The microcapsules exhibited excellent cytocompatibility for HEK 293 cells up to a concentration of 1.0 mg/mL. The microcapsules efficiently delivered loaded FITC-BSA into HeLa cells and released the protein in the reducing cytosol. This study proposed a novel approach for producing disulfide-crosslinked microcarriers for intracellular delivery and redox-responsive controlled release of protein.
Collapse
Affiliation(s)
- Yue Yang
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| | - Hekang Zhu
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| | - Ji Wang
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| | - Qian Fang
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| | - Zhiping Peng
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| |
Collapse
|
21
|
Tang B, Zaro JL, Shen Y, Chen Q, Yu Y, Sun P, Wang Y, Shen WC, Tu J, Sun C. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J Control Release 2018; 279:147-156. [DOI: 10.1016/j.jconrel.2018.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
|
22
|
Chaurasiya B, Huang L, Du Y, Tang B, Qiu Z, Zhou L, Tu J, Sun C. Size-based anti-tumoral effect of paclitaxel loaded albumin microparticle dry powders for inhalation to treat metastatic lung cancer in a mouse model. Int J Pharm 2018; 542:90-99. [DOI: 10.1016/j.ijpharm.2018.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 11/24/2022]
|
23
|
Zhang Y, Yuan Y, Wu H, Xie Z, Wu Y, Song X, Wang J, Shu W, Xu J, Liu B, Wan L, Yan Y, Ding X, Shi X, Pan Y, Li X, Yang J, Zhao X, Wang L. Effect of verbascoside on apoptosis and metastasis in human oral squamous cell carcinoma. Int J Cancer 2018. [DOI: 10.1002/ijc.31378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yaqin Zhang
- Department of Biochemical Molecular, School of Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - Yi Yuan
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing China
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Heming Wu
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing China
| | - Yunong Wu
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xiaomeng Song
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Jingjing Wang
- Department of Biochemical Molecular, School of Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - Wei Shu
- Stomatology Department; Jiangsu Provincial Hospital of Traditional Chinese Medicine
| | - Junyong Xu
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Bin Liu
- Department of Biomedical Engineering, School of Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - Linzhong Wan
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Yanan Yan
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xu Ding
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xinghui Shi
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Yongchu Pan
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xiaokang Li
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing China
- Reproductive Medicine Center; The University of Hong Kong-Shenzhen Hospital; China
| | - Jianrong Yang
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xiaohui Zhao
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources; Northwest Institute of Plateau Biology, Chinese Academy of Sciences; Xining China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing China
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| |
Collapse
|
24
|
Versatile redox-sensitive pullulan nanoparticles for enhanced liver targeting and efficient cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1005-1017. [DOI: 10.1016/j.nano.2018.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
|
25
|
Hong SJ, Ahn MH, Sangshetti J, Choung PH, Arote RB. Sugar-based gene delivery systems: Current knowledge and new perspectives. Carbohydr Polym 2018; 181:1180-1193. [DOI: 10.1016/j.carbpol.2017.11.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
|
26
|
Xia J, Du Y, Huang L, Chaurasiya B, Tu J, Webster TJ, Sun C. Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:713-723. [PMID: 29317344 DOI: 10.1016/j.nano.2017.12.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023]
Abstract
Nanotechnology-based chemotherapy is efficient in cancer treatment due to the targeted delivery of small molecules via nano-carriers, which are usually regarded as "inert". However, nano-materials are more preferred as carriers since many cause synergistic anti-tumor effects along with the drug cargo. In this study, a "bioactive" tocopherol succinate (TOS) was grafted to hyaluronic acid (HA) via of disulfide bonds to obtain HA-ss-TOS conjugates which can assemble into nano-micelles but dissociate when exposed to reducing environments in vitro and in vivo. Moreover, paclitaxel-loaded HA-ss-TOS micelles (HA-ss-TOS-PTX) can be efficiently taken up by B16F10 cells overexpressing CD 44, thereafter exhibiting enhanced cytotoxicity. The in vivo imaging study here revealed much greater tumor accumulation of Dir-labeled HA-ss-TOS compared to the free Dir group. In vivo antitumor activities further ensured that the PTX-loaded HA-ss-TOS micelles provided superior antineoplastic responses versus PTX-loaded HA-TOS micelles and Taxol. Moreover, the subcellular dissociated TOS from HA-ss-TOS showed synergistic effects with PTX. These experimental results revealed that reduction-responsive PTX-loaded polymeric nano-micelles with multi-functional properties hold great potential for anti-tumor treatment and, thus, should be further studied.
Collapse
Affiliation(s)
- Junping Xia
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China; China Food and Drug Administration, Beijing, China
| | - Yunai Du
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Liping Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Birendra Chaurasiya
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China.
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA; Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
| | - Chunmeng Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
27
|
Amirmahani N, Mahmoodi NO, Mohammadi Galangash M, Ghavidast A. Advances in nanomicelles for sustained drug delivery. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
He J, Han Y, Xu G, Yin L, Ngandeu Neubi M, Zhou J, Ding Y. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Adv 2017. [DOI: 10.1039/c6ra28676c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We prepare celecoxib nanosuspensions using TPGS as stabilizer via high speed shear as a pre-treatment step, followed by HPH method; and the solidification of fresh nanosuspension was carried out by freeze-drying.
Collapse
Affiliation(s)
- Jiali He
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yue Han
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Gujun Xu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - M. Ngandeu Neubi
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yang Ding
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|