1
|
Hu WX, Hu XR, Jiang F, Zhu Y, Yang M, Dan Q, Yu X, Du SK. High-efficiency preparation of starch nanocrystals with small size and high crystallinity by ethanol-acid penetration and dry-heating pretreatment. Food Chem 2024; 439:138134. [PMID: 38064837 DOI: 10.1016/j.foodchem.2023.138134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Ethanol-acid penetration and drying-heating treatment was developed to shorten the preparation time and improve the quality of starch nanocrystals (SNCs). After treatment by optimized parameters, including 40 % ethanol solution, 10.6 mM chloric acid, and heating time of 1.5 h or 2.0 h, the starches exhibited weakened internal structure and relatively complete crystalline structure. Compared with the regular preparation of only acid hydrolysis, the regular final yield (8.5 % after 5 days) was reached in 48 h and 12 h of the starch heated at 1.5 h and 2.0 h, respectively. The micromorphology, molecular weight, and crystalline structure evaluation demonstrated that the collected nanoparticles were indeed SNCs with smaller size and higher relative crystallinity than regular SNCs. Further analysis found that the SNCs had better crystalline lamellae, higher thermal stability, and lower proportion of phosphorus and sulfur atoms than regular SNCs. This provided a potential method for the high-efficiency preparation of SNCs.
Collapse
Affiliation(s)
- Wen-Xuan Hu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xin-Rui Hu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Fan Jiang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yulian Zhu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Min Yang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Qin Dan
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, PR China
| | - Shuang-Kui Du
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, PR China.
| |
Collapse
|
2
|
Han L, Huang J, Yu Y, Thakur K, Wei Z, Xiao L, Yang X. The alterations in granule, shell, blocklets, and molecular structure of pea starch induced by ultrasound. Int J Biol Macromol 2023; 240:124319. [PMID: 37019203 DOI: 10.1016/j.ijbiomac.2023.124319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Understanding the alterations to starch multi-scale structure induced by ultrasound treatment can help in determining the effective application of ultrasound in functional-starch preparation. This study aimed to comprehensively characterize and understand the morphological, shell, lamellae, and molecular structures of pea starch granules treated by ultrasound under different temperatures. Scanning electron microscopy and X-ray diffraction analyses showed that UT (ultrasound treatment) did not change C-type of crystalline, but caused a pitted surface and endowed a looser structure and higher enzyme susceptibility as the temperature increased above 35 °C for pea starch granules. Fourier transform infrared spectroscopy and small-angle X-ray scattering analyses revealed that UT reduced the short-range ordering and increased the thickness of semi-crystalline and amorphous lamellae by inducing starch chain depolymerization, which was manifested by molecule weight and chain length distribution analysis. The sample ultrasound-treated at 45 °C had the higher proportion of B2 chains compared with the other ultrasound-treated samples because the higher ultrasonic temperature altered the disruption sites of starch chains.
Collapse
Affiliation(s)
- Lihong Han
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| | - Jipeng Huang
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| | - Yingtao Yu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhaojun Wei
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Liuyang Xiao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| | - Xiaofan Yang
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China.
| |
Collapse
|
3
|
Mao Y, Shi J, Cai L, Hwang W, Shi YC. Microstructures of Starch Granules with Different Amylose Contents and Allomorphs as Revealed by Scattering Techniques. Biomacromolecules 2023; 24:1980-1993. [PMID: 36716424 DOI: 10.1021/acs.biomac.2c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, as-is (ca. 12% moisture by mass) and hydrated (50% water by mass) granules of waxy potato (WP), waxy wheat (WW), waxy maize, normal maize, and high-amylose maize (HAM) starches were investigated by using small-angle neutron and X-ray scattering (SANS and SAXS), wide-angle X-ray scattering, and ultra-small-angle neutron scattering. The SANS and SAXS data were fitted using the two-phase stacking model of alternating crystalline and amorphous layers. The partial crystalline lamellar structures inside the growth rings of granules were analyzed based on the inter-lamellar distances, thicknesses of the crystalline lamellae and amorphous layers, thickness polydispersities, and water content in each type of layer. Despite having a longer average chain length of amylopectin, the WP and HAM starches, which had B-type allomorph, had a shorter inter-lamellar distance than the other three starches with A-type allomorph. The WP starch had the most uniform crystalline lamellar thickness. After hydration, the amorphous layers were expanded, resulting in an increase of inter-layer distance. The low-angle intensity upturn in SANS and SAXS was attributed to scattering from interfaces/surfaces of larger structures, such as growth rings and macroscopic granule surfaces. Data analysis methods based on model fitting and 1D correlation function were compared. The study emphasized─owing to inherent packing disorder inside granules─that a comprehensive analysis of different parameters was essential in correlating the microstructures with starch properties.
Collapse
Affiliation(s)
- Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Jialiang Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| | - Liming Cai
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| | - Wonseok Hwang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| |
Collapse
|
4
|
Chi C, He Y, Xiao X, Chen B, Zhou Y, Tan X, Ji Z, Zhang Y, Liu P. A novel very small granular starch from Chlorella sp. MBFJNU-17. Int J Biol Macromol 2023; 225:557-564. [PMID: 36395943 DOI: 10.1016/j.ijbiomac.2022.11.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Novel resources of very small granular starch are of great interests to food scientists. We previously found Chlorella sp. MBFJNU-17 contained small granular starch but whether the MBFJNU-17 was a novel resource of very small granular starch remained unresolved. This study isolated and characterized the starch from MBFJNU-17 in comparison with quinoa starch (a typical very small granular starch), and discussed whether the MBFJNU-17 could be a resource of very small granular starch. Results showed that chlorella starch displayed a smaller size (1024 nm) than quinoa starch did (1107 nm), suggesting MBFJNU-17 was a good resource of very small granular starch. Additionally, chlorella starch had less amylose, higher proportion of long amylopectin branches, more ordered structures, thinner amorphous lamellae, better paste thermostability, and slower enzymatic digestion than quinoa starch did. These findings indicated that Chlorella sp. MBFJNU-17 was a novel resource of very small granular starch with desirable thermostability and nutritional attributes.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Xuehua Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Xiaoyan Tan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhili Ji
- Cereal Engineering, School of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiping Zhang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Pingying Liu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
5
|
Long TH, Hieu DTT, Hao LH, Cuong NT, Loan TTH, Van Man T, Tap TD. Positron annihilation lifetime spectroscopic analysis of Nafion and graft‐type polymer electrolyte membranes for fuel cell application. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tran Hoang Long
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Dinh Tran Trong Hieu
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Lam Hoang Hao
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | | | - Truong Thi Hong Loan
- Vietnam National University Ho Chi Minh City Vietnam
- Faculty of Physics and Engineering Physics University of Science Ho Chi Minh City Vietnam
| | - Tran Van Man
- Vietnam National University Ho Chi Minh City Vietnam
- Applied Physical Chemistry Laboratory University of Science Ho Chi Minh City Vietnam
| | - Tran Duy Tap
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
6
|
Wu D, Ma H, Fu M, Tang X. Insight into multi-scale structural evolution during gelatinization process of normal and waxy maize starch. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4405-4414. [PMID: 36193489 PMCID: PMC9525508 DOI: 10.1007/s13197-022-05520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
By using a mimicked heating with ex-situ liquid nitrogen flash freezing method, multi-scale structural evolution behaviors of normal maize starch (NMS) and waxy maize starch (WMS) during gelatinization process were studied. The results from SEM, X-ray diffraction (XRD), FTIR/solid state NMR spectroscopy and small angle X-ray scattering (SAXS) showed that NMS and WMS exhibited differently structural evolution behavior during gelatinization process. As the temperature increase, the proportion of the NMS granules with cavity gradually increased, while after heating beyond (peak gelatinization temperature (Tp) + conclusion gelatinization temperature (Tc))/2 the disappearance of starch granule integrity occurred for WMS. The relative crystallinity of NMS declined from 32.8 to 15.26% gradually, as that of WMS declined from 42.43 to 13.09% with a sharply descent when heated beyond (Tp + Tc)/2. The loss of short-range order structure of NMS and WMS showed same trends according to FTIR and NMR. Semicrystalline lamellae of NMS became thinner gradually while that of WMS showed an apparently narrowing after heating beyond (Tp + Tc)/2. These results suggest that the destruction of double helix in amylopectin structure had greatly influence on the larger scale structure of starch samples. This strategy is important for thorough understanding and profiting starch-based food processing. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05520-2.
Collapse
Affiliation(s)
- Di Wu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Hong Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Meixia Fu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| |
Collapse
|
7
|
Tap TD, Long TH, Hieu DTT, Hao LH, Phuong HT, Luan LQ, Van Man T. Positron annihilation lifetime study of subnano level free volume features of grafted polymer electrolyte membranes for hydrogen fuel cell applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tran Duy Tap
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Tran Hoang Long
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Dinh Tran Trong Hieu
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
- Physics Laboratory Le Thanh Ton High School Ho Chi Minh City Vietnam
| | - Lam Hoang Hao
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Huynh Truc Phuong
- Vietnam National University Ho Chi Minh City Vietnam
- Faculty of Physics and Engineering Physics University of Science Ho Chi Minh City Vietnam
| | - Le Quang Luan
- Deparment of Bio‐material and Nano Technology Biotechnology Center of Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Tran Van Man
- Vietnam National University Ho Chi Minh City Vietnam
- Department of Physical Chemistry, Applied Physical Chemistry Laboratory University of Science Ho Chi Minh City Vietnam
| |
Collapse
|
8
|
Song P, Zhang J, Li Y, Liu G, Li N. Solution Small-Angle Scattering in Soft Matter: Application and Prospective ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Wang H, Zhang J, Wang R, Liu X, Zhang Y, Sun J, Su L, Zhang H. Improving quality attributes of sweet dumplings by germination: Effect of glutinous rice flour microstructure and physicochemical properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Li C, Hu Y. Align resistant starch structures from plant-based foods with human gut microbiome for personalized health promotion. Crit Rev Food Sci Nutr 2021; 63:2509-2520. [PMID: 34515592 DOI: 10.1080/10408398.2021.1976722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resistant starch (RS) is beneficial for human health through its interactions with gut microbiota. However, the alignment between RS structures with gut microbiota profile and consequentially health benefits remain elusive. This review summarizes current understanding of RS complex structures and their interactions with the gut microbiota, aiming to highlight the possibility of manipulating RS structures for a targeted and predictable gut microbiota shift for human health in a personalized way. Current definition of RS types is strongly associated with starch digestion behaviors in small intestine, which does not precisely reflect their interactions with human gut microbiota. Distinct alterations of gut microbiota could be associated with the same RS type. The principles to describe the specificity of different RS structural characteristics in terms of aligning with human gut microbiota shift was proposed in this review, which could result in new definitions of RS types from the microbial perspectives. To consider the highly variable personal features, a machine-learning algorithm to integrate different personalized factors and better understand the complex interaction between RS and gut microbiota and its effects on individual health was explained. This review contains important information to bring interactions between RS and gut microbiota to translational practice.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Li G, Hemar Y, Zhu F. Relationships between supramolecular organization and amylopectin fine structure of quinoa starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Liu T, Zhang B, Wang L, Zhao S, Qiao D, Zhang L, Xie F. Microwave reheating increases the resistant starch content in cooked rice with high water contents. Int J Biol Macromol 2021; 184:804-811. [PMID: 34175338 DOI: 10.1016/j.ijbiomac.2021.06.136] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/15/2022]
Abstract
This study explored how microwave reheating (to about 73 °C at different power levels) affects the microstructure and digestion characteristics of cooked rice with different water contents (1.1 and 1.5 times that of rice in weight). Irrespective of water content, mainly the V-type crystallites remained after microwaving reheating, with slight changes in other multi-scale structural features. Only at a relatively high water content (1.5) and with a power level high enough could short-range order be reduced. Such microwave reheating increased the digestion resistance of cooked rice. At a water content of 1.1 times, increasing the microwave power led to a decreased rapid digestible starch (RDS) content and an increased resistant starch (RS) content. With a higher water content (1.5), the enhancement of digestion resistance with higher microwave power was less significant but still, a reduced slowly digestible starch (SDS) content and a higher RS content were observed.
Collapse
Affiliation(s)
- Ting Liu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lili Wang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Fengwei Xie
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
13
|
New insights into how starch structure synergistically affects the starch digestibility, texture, and flavor quality of rice noodles. Int J Biol Macromol 2021; 184:731-738. [PMID: 34175339 DOI: 10.1016/j.ijbiomac.2021.06.151] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022]
Abstract
The functionalities of gluten-free rice noodles are significantly affected by starch hierarchical structures. Identifying the structures that synergistically determine noodle integrated functionalities is vital to designing health-promoting starchy foods with desirable consumer sensory and nutritional qualities. This study reports on the changes in starch structures and functionalities (starch digestibility, texture, and flavor) of rice noodles during household cooking processes (steaming, boiling, and stir-frying), and describes an underlying structure-functionality relationship. Results show that all the cooking processes examined increased starch reassembled ordered structures, especially short-range ordered structures, helical and crystalline structures, and ordered aggregate structures. Steaming and boiling led to a decrease in rapidly digestible starch (RDS) and an increase in slowly digestible starch, while stir-frying yielded a reduction in RDS content and an increase in resistant starch in rice noodles. Steaming and boiling decreased while stir-frying increased the flavor variety of noodles. All cooking processes examined altered noodle textures, with a significant increase in hardness, gumminess, and chewiness. Structure-functionality relationships suggested short-range ordered structures, crystalline structures, and the ordered molecular and aggregate structures of noodles synergistically determined starch digestion, texture, and flavor. By structuring such key structures, the digestion, texture, and flavor of rice noodles can thus be reasonably controlled.
Collapse
|
14
|
Xu K, She Z, Wang H, Liu X, Zhang Y, Chi C, Zhang H. Textural quality of sweet dumpling: effect of germination of waxy rice. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ke Xu
- College of Food and Biological Engineering Zhengzhou University of Light Industry 5 Dongfeng Road Zhengzhou Henan450002China
- Collaborative Innovation Center for Food Production and Safety 5 Dongfeng Road Zhengzhou Henan450002China
- Henan Key Laboratory of Cold Chain Food Quality and Safety 5 Dongfeng Road Zhengzhou Henan450002China
| | - Zhenyun She
- College of Food and Biological Engineering Zhengzhou University of Light Industry 5 Dongfeng Road Zhengzhou Henan450002China
- Collaborative Innovation Center for Food Production and Safety 5 Dongfeng Road Zhengzhou Henan450002China
- Henan Key Laboratory of Cold Chain Food Quality and Safety 5 Dongfeng Road Zhengzhou Henan450002China
| | - Hongwei Wang
- College of Food and Biological Engineering Zhengzhou University of Light Industry 5 Dongfeng Road Zhengzhou Henan450002China
- Collaborative Innovation Center for Food Production and Safety 5 Dongfeng Road Zhengzhou Henan450002China
- Henan Key Laboratory of Cold Chain Food Quality and Safety 5 Dongfeng Road Zhengzhou Henan450002China
| | - Xingli Liu
- College of Food and Biological Engineering Zhengzhou University of Light Industry 5 Dongfeng Road Zhengzhou Henan450002China
- Collaborative Innovation Center for Food Production and Safety 5 Dongfeng Road Zhengzhou Henan450002China
- Henan Key Laboratory of Cold Chain Food Quality and Safety 5 Dongfeng Road Zhengzhou Henan450002China
| | - Yanyan Zhang
- College of Food and Biological Engineering Zhengzhou University of Light Industry 5 Dongfeng Road Zhengzhou Henan450002China
- Collaborative Innovation Center for Food Production and Safety 5 Dongfeng Road Zhengzhou Henan450002China
- Henan Key Laboratory of Cold Chain Food Quality and Safety 5 Dongfeng Road Zhengzhou Henan450002China
| | - Chengdeng Chi
- School of Food Science and Engineering South China University of Technology Guangzhou510640China
| | - Hua Zhang
- College of Food and Biological Engineering Zhengzhou University of Light Industry 5 Dongfeng Road Zhengzhou Henan450002China
- Collaborative Innovation Center for Food Production and Safety 5 Dongfeng Road Zhengzhou Henan450002China
- Henan Key Laboratory of Cold Chain Food Quality and Safety 5 Dongfeng Road Zhengzhou Henan450002China
| |
Collapse
|
15
|
Plasticized Starch/Agar Composite Films: Processing, Morphology, Structure, Mechanical Properties and Surface Hydrophilicity. COATINGS 2021. [DOI: 10.3390/coatings11030311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural biopolymers, which are renewable, widely available, biodegradable, and biocompatible, have attracted huge interest in the development of biocomposite materials. Herein, formulation–property relationships for starch/agar composite films were investigated. First, rapid visco analysis was used to confirm the conditions needed for their gelation and to prepare filmogenic solutions. All the original crystalline and/or lamellar structures of starch and agar were destroyed, and films with cohesive and compact structures were formed, as shown by SEM, XRD, and SAXS. All the plasticized films were predominantly amorphous, and the polymorphs of the composite films were closer to that of the agar-only film. FTIR results suggest that the incorporation of agar restricted starch chain interaction and rearrangement. The addition of agar to starch increased both tensile strength and elongation at break, but the improvements were insignificant after the agar content was over 50 wt.%. Contact angle results indicate that compared with the other samples, the 4:6 (wt./wt.) starch/agar film was less hydrophilic. Thus, this work shows that agar dominates the structure and properties of starch/agar composites, and the best properties can be obtained with a certain starch/agar ratio. Such composite polysaccharide films with tailored mechanical properties and surface hydrophilicity could be useful in biodegradable packaging and biomedical applications (wound dressing and tissue scaffolding).
Collapse
|
16
|
Li C, Gong B. Relations between rice starch fine molecular and lamellar/crystalline structures. Food Chem 2021; 353:129467. [PMID: 33740510 DOI: 10.1016/j.foodchem.2021.129467] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023]
Abstract
Starch lamellar and crystalline structures are important controller of its physicochemical and digestion properties. Here, starch lamellar/crystalline structures of 16 different rice starches were investigated and correlated with their chain-length distributions (CLDs) and molecular size distributions. Results showed that the thickness of amorphous lamellae was mainly correlated with the amount of amylose short and medium chains. Thickness of both amorphous and crystalline lamellae was negatively correlated with the amount of amylopectin medium chains and relative length of amylopectin short chains. The degree of crystallinity was negatively correlated with the amount of amylose short and long chains. The lamellar ordering, fractal nature and thickness polydispersity were also related to the starch CLDs. Whereas, starch molecular size distributions were shown to be lack of correlations with the starch lamellar/crystalline structures. This study helps a better understanding of the molecular nature of starch semi-crystalline lamellae.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development of Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Bo Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Chi C, Li X, Huang S, Chen L, Zhang Y, Li L, Miao S. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Starch-protein interplay varies the multi-scale structures of starch undergoing thermal processing. Int J Biol Macromol 2021; 175:179-187. [PMID: 33549661 DOI: 10.1016/j.ijbiomac.2021.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
This work concerns how starch-protein interplay affects the multi-scale structures (e.g., short- and long-range orders, nanoscale structure and morphology) of starch undergoing thermal processing (pasting) involving heating and cooling at high water content. An indica rice starch (IRS) and three proteins (whey protein isolate, WPI; soy protein isolate, SPI; casein, CS) were used. By inspecting rheological profiles of mixed systems before and after adding chemicals, IRS-WPI and IRS-CS showed mainly hydrophobic molecular interaction; and IRS-SPI exhibited hydrophobic, hydrogen bonding and electrostatic interactions. The RVA results revealed that, with starch and proteins as controls, starch-globular protein (WPI or SPI) interplay accelerated the swelling of starch granules (faster viscosity increase at initial pasting stage), and reduced the paste stability during heating (higher breakdown) and during cooling (higher setback); however, the starch-casein interactions resulted in opposed effects. Moreover, starch-protein interactions varied the multi-scale chain reassembly of starch into different structures during cooling. Observed could be fewer short- and long-range starch orders, and larger nonperiod structure (or colloidal clusters) on the nanoscale. On even larger scale to micron, IRS-globular protein molecules generated larger grids (with reduced number) in the gel network, and IRS-casein formed a more continuous gel network with less prominent tunnel-like features.
Collapse
|
19
|
Effect of wet-media milling on the physicochemical properties of tapioca starch and their relationship with the texture of myofibrillar protein gel. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Li C, Gong B, Hu Y, Liu X, Guan X, Zhang B. Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105823] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Hu T, Hua WQ, Zhong GJ, Wang YD, Gao YT, Hong CX, Li ZM, Bian FG, Xiao TQ. Nondestructive and Quantitative Characterization of Bulk Injection-Molded Polylactide Using SAXS Microtomography. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- University of Chinese Academy of Sciences, Beijing 10084, China
| | - Wen-Qiang Hua
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Yu-Dan Wang
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yan-Tao Gao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chun-Xia Hong
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Feng-Gang Bian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 10084, China
| | - Ti-Qiao Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 10084, China
| |
Collapse
|
22
|
Zhang L, Li X, Janaswamy S, Chen L, Chi C. Further insights into the evolution of starch assembly during retrogradation using SAXS. Int J Biol Macromol 2020; 154:521-527. [DOI: 10.1016/j.ijbiomac.2020.03.135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
|
23
|
Xu S, Dong R, Liu Y, Wang X, Ren T, Ma Z, Liu L, Li X, Hu X. Effect of thermal packaging temperature on Chinese steamed bread quality during room temperature storage. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Lin L, Chi C, Wu C. How to calculate starch lamellar features with improved accuracy by small angle X-ray scattering. Int J Biol Macromol 2019; 141:622-625. [DOI: 10.1016/j.ijbiomac.2019.09.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023]
|
25
|
Li N, Cai Z, Guo Y, Xu T, Qiao D, Zhang B, Zhao S, Huang Q, Niu M, Jia C, Lin L, Lin Q. Hierarchical structure and slowly digestible features of rice starch following microwave cooking with storage. Food Chem 2019; 295:475-483. [DOI: 10.1016/j.foodchem.2019.05.151] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/11/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022]
|
26
|
Guo Y, Xu T, Li N, Cheng Q, Qiao D, Zhang B, Zhao S, Huang Q, Lin Q. Supramolecular structure and pasting/digestion behaviors of rice starches following concurrent microwave and heat moisture treatment. Int J Biol Macromol 2019; 135:437-444. [DOI: 10.1016/j.ijbiomac.2019.05.189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/19/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
|
27
|
Zhang B, Zhou W, Qiao D, Zhang P, Zhao S, Zhang L, Xie F. Changes in Nanoscale Chain Assembly in Sweet Potato Starch Lamellae by Downregulation of Biosynthesis Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6302-6312. [PMID: 30925057 DOI: 10.1021/acs.jafc.8b06523] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Granule-bound starch synthase I (GBSSI) and starch-branching enzymes I and II (SBEI and SBEII) are crucial enzymes that biosynthesize starches with varied apparent amylose contents and amylopectin branching structure. With a sweet potato ( Ipomoea batatas [L.] Lam. cv. Xushu22), this work shows that downregulating GBSSI (for waxy starch) or SBE (for high-amylose starch) activity allowed the formation of new semicrystalline lamellae (named Type II) in sweet potato starch in addition to the widely reported Type I lamellae. Small-angle X-ray scattering (SAXS) results show that, compared with Type I lamellae, Type II lamellae displayed increased average thickness and thickness-distribution width, with thickened amorphous and crystalline components. The size-exclusion-chromatography (SEC) data revealed mainly two enzyme sets, (i) and (ii), synthesizing amylopectin chains. Reducing the GBSSI or SBE activity increased the amounts of amylopectin long chains (degree of polymerization (DP) ≥ 33). Combined SAXS and SEC analyses indicate that parts of these long chains from enzyme set (i) could be confined to Type II lamellae, followed by DP ≤ 32 short chains in Type I lamellae and the rest of the long chains from enzyme sets (i) and (ii) spanning more than a single lamella.
Collapse
Affiliation(s)
- Binjia Zhang
- Group for Cereals and Oils Processing, Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Wenzhi Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT , Hubei University of Technology , Wuhan 430068 , China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Siming Zhao
- Group for Cereals and Oils Processing, Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Liang Zhang
- School of Food Science and Engineering , Yangzhou University , Yangzhou 225127 , China
| | - Fengwei Xie
- Institute of Advanced Study , University of Warwick , Coventry CV4 7HS , United Kingdom
- International Institute for Nanocomposites Manufacturing (IINM), WMG , University of Warwick , Coventry CV4 7AL , United Kingdom
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
28
|
Qiao D, Tu W, Zhang B, Wang R, Li N, Nishinari K, Riffat S, Jiang F. Understanding the multi-scale structure and digestion rate of water chestnut starch. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Multi-scale structure and pasting/digestion features of yam bean tuber starches. Carbohydr Polym 2019; 213:199-207. [DOI: 10.1016/j.carbpol.2019.02.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/26/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
|
30
|
Li N, Zhang B, Zhao S, Niu M, Jia C, Huang Q, Liu Y, Lin Q. Influence of Lactobacillus/Candida fermentation on the starch structure of rice and the related noodle features. Int J Biol Macromol 2019; 121:882-888. [DOI: 10.1016/j.ijbiomac.2018.10.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 12/15/2022]
|
31
|
Miao L, Zhao S, Zhang B, Tan M, Niu M, Jia C, Huang Q. Understanding the supramolecular structures and pasting features of adlay seed starches. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Li J, Jiao A, Chen S, Wu Z, Xu E, Jin Z. RETRACTED: Application of the small-angle X-ray scattering technique for structural analysis studies: A review. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|