1
|
Gómez-Rodríguez GH, González-García G, Álvarez-Bajo O, García-Sifuentes CO, Argüelles-Monal WM, Lizardi-Mendoza J, López-Franco YL. Enzyme-catalyzed transesterification of galactomannan extracted from mesquite seed ( Prosopis velutina) with vinyl carboxylate esters. Heliyon 2024; 10:e31421. [PMID: 38813187 PMCID: PMC11133937 DOI: 10.1016/j.heliyon.2024.e31421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Galactomannans (GM) are hemicellulosic polysaccharides composed of D-mannopyranose chains linked by β (1 → 4) glycosidic linkages with branches of D-galactopyranose linked by α (1 → 6) linkages. This polysaccharide is recognized for its hydrophilic character, as it is rich in hydroxyl groups (-OH). This chemical characteristic, combined with the absence of ionic charges, enables structural modifications such as transesterification of the fatty acid chains (FA), which provides a strategy for obtaining amphiphilic structures. The enzyme-catalyzed syntheses were carried out in DMSO with GM decanoate (GMD) and GM palmitate (GMP) at different molar ratios (0.5 and 1.0) and the resulting structures were evaluated with infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (CP/MAS 13C NMR) and differential scanning calorimetry (DSC). The FTIR spectrum confirmed the transesterification of GM with the appearance of a C[bond, double bond]O band (1730-1750 cm-1). These results were confirmed by the signals observed at 177 and 30 ppm in the CP/MAS 13C NMR spectrum, which corresponded to the C[bond, double bond]O groups of the esters and the terminal -CH3 groups of the FA chains, respectively. Finally, DSC showed glass transition temperatures (Tg) in the range 43-51 °C, while the melting temperatures (Tm) of the GM esters (59 °C) were not affected by different degrees of esterification (DE) for GMD (0.37 and 0.71) and GMP (0.47 and 0.57).
Collapse
Affiliation(s)
- Gabriel H. Gómez-Rodríguez
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, 83304, Sonora, Mexico
| | - Gerardo González-García
- Natural and Exact Sciences Division, Departament of Chemistry, University of Guanajuato, Col. Noria Alta S/N, C.P. 36050, Guanajuato, GTO, Mexico
| | - Osiris Álvarez-Bajo
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo, 83000, Sonora, Mexico
| | - Celia O. García-Sifuentes
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, 83304, Sonora, Mexico
| | - Waldo M. Argüelles-Monal
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, 83304, Sonora, Mexico
| | - Jaime Lizardi-Mendoza
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, 83304, Sonora, Mexico
| | - Yolanda L. López-Franco
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, 83304, Sonora, Mexico
| |
Collapse
|
2
|
Contato AG, Borelli TC, Buckeridge MS, Rogers J, Hartson S, Prade RA, Polizeli MDLTDM. Secretome Analysis of Thermothelomyces thermophilus LMBC 162 Cultivated with Tamarindus indica Seeds Reveals CAZymes for Degradation of Lignocellulosic Biomass. J Fungi (Basel) 2024; 10:121. [PMID: 38392793 PMCID: PMC10890306 DOI: 10.3390/jof10020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
The analysis of the secretome allows us to identify the proteins, especially carbohydrate-active enzymes (CAZymes), secreted by different microorganisms cultivated under different conditions. The CAZymes are divided into five classes containing different protein families. Thermothelomyces thermophilus is a thermophilic ascomycete, a source of many glycoside hydrolases and oxidative enzymes that aid in the breakdown of lignocellulosic materials. The secretome analysis of T. thermophilus LMBC 162 cultivated with submerged fermentation using tamarind seeds as a carbon source revealed 79 proteins distributed between the five diverse classes of CAZymes: 5.55% auxiliary activity (AAs); 2.58% carbohydrate esterases (CEs); 20.58% polysaccharide lyases (PLs); and 71.29% glycoside hydrolases (GHs). In the identified GH families, 54.97% are cellulolytic, 16.27% are hemicellulolytic, and 0.05 are classified as other. Furthermore, 48.74% of CAZymes have carbohydrate-binding modules (CBMs). Observing the relative abundance, it is possible to state that only thirteen proteins comprise 92.19% of the identified proteins secreted and are probably the main proteins responsible for the efficient degradation of the bulk of the biomass: cellulose, hemicellulose, and pectin.
Collapse
Affiliation(s)
- Alex Graça Contato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tiago Cabral Borelli
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-901, SP, Brazil
| | - Marcos Silveira Buckeridge
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Steven Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Rolf Alexander Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| |
Collapse
|
3
|
Vincent S, Kandasubramanian B. Cellulose nanocrystals from agricultural resources: Extraction and functionalisation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|