1
|
Karyagina AS, Grishin AV, Kudinova AG, Bulygina IN, Koudan EV, Orlova PA, Datsenko VP, Zhulina AV, Grunina TM, Poponova MS, Krivozubov MS, Gromova MS, Strukova NV, Generalova MS, Nikitin KE, Shchetinin IV, Luchnikov LO, Zaitseva SV, Kirsanova MA, Statnik ES, Senatov FS, Lunin VG, Gromov AV. Dual-Functional Implant Based on Gellan-Xanthan Hydrogel with Diopside, BMP-2 and Lysostaphin for Bone Defect Repair and Control of Staphylococcal Infection. Macromol Biosci 2024; 24:e2400205. [PMID: 39140453 DOI: 10.1002/mabi.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Indexed: 08/15/2024]
Abstract
A new dual-functional implant based on gellan-xanthan hydrogel with calcium-magnesium silicate ceramic diopside and recombinant lysostaphin and bone morphogenetic protein 2 (BMP-2)-ray is developed. In this composite, BMP-2 is immobilized on microparticles of diopside while lysostaphin is mixed directly into the hydrogel, providing sustained release of BMP-2 to allow gradual bone formation and rapid release of lysostaphin to eliminate infection immediately after implantation. Introduction of diopside of up to 3% (w/v) has a negligible effect on the mechanical properties of the hydrogel but provides a high sorption capacity for BMP-2. The hydrogels show good biocompatibility and antibacterial activity. Lysostaphin released from the implants over a 3 h period efficiently kills planktonic cells and completely destroys 24 h pre-formed biofilms of Staphylococcus aureus. Furthermore, in vivo experiments in a mouse model of critically-sized cranial defects infected with S. aureus show a complete lack of osteogenesis when implants contain only BMP-2, whereas, in the presence of lysostaphin, complete closure of the defect with newly formed mineralized bone tissue is observed. Thus, the new implantable gellan-xanthan hydrogel with diopside and recombinant lysostaphin and BMP-2 shows both osteogenic and antibacterial properties and represents a promising material for the treatment and/or prevention of osteomyelitis after bone trauma.
Collapse
Affiliation(s)
- Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Alexander V Grishin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alina G Kudinova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Inna N Bulygina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Elizaveta V Koudan
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Vera P Datsenko
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Anna V Zhulina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Tatyana M Grunina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Maria S Poponova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Gromova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Natalia V Strukova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Generalova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Kirill E Nikitin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Igor V Shchetinin
- Material Science Department, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Lev O Luchnikov
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Svetlana V Zaitseva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | | | - Eugene S Statnik
- "LUCh" Laboratory, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Fedor S Senatov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Vladimir G Lunin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
2
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
3
|
Lu HT, Lin C, Wang YJ, Hsu FY, Hsu JT, Tsai ML, Mi FL. Sequential deacetylation/self-gelling chitin hydrogels and scaffolds functionalized with fucoidan for enhanced BMP-2 loading and sustained release. Carbohydr Polym 2023; 315:121002. [PMID: 37230625 DOI: 10.1016/j.carbpol.2023.121002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/22/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive factor that promotes bone formation. A major obstacle to the clinical application of BMP-2 is its inherent instability and complications caused by its rapid release from implants. Chitin based materials have excellent biocompatibility and mechanical properties, making them ideal for bone tissue engineering applications. In this study, a simple and easy method was developed to spontaneously form deacetylated β-chitin (DAC-β-chitin) gels at room temperature through a sequential deacetylation/self-gelation process. The structural transformation of β-chitin to DAC-β-chitin leads to the formation of self-gelling DAC-β-chitin, from which hydrogels and scaffolds were prepared. Gelatin (GLT) accelerated the self-gelation of DAC-β-chitin and increased the pore size and porosity of the DAC-β-chitin scaffold. The DAC-β-chitin scaffolds were then functionalized with a BMP-2-binding sulfate polysaccharide, fucoidan (FD). Compared with β-chitin scaffolds, FD-functionalized DAC-β-chitin scaffolds showed higher BMP-2 loading capacity and more sustainable release of BMP-2, and thus had better osteogenic activity for bone regeneration.
Collapse
Affiliation(s)
- Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Orthopedics, Taipei Medical University Hospital, Taipei City 11031, Taiwan, ROC
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Yi-Ju Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Fang-Yu Hsu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Ju-Ting Hsu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Min-Lang Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan, ROC.
| |
Collapse
|
4
|
Dehghan-Niri M, Vasheghani-Farahani E, Eslaminejad MB, Tavakol M, Bagheri F. Preparation of gum tragacanth/poly (vinyl alcohol)/halloysite hydrogel using electron beam irradiation with potential for bone tissue engineering. Carbohydr Polym 2023; 305:120548. [PMID: 36737197 DOI: 10.1016/j.carbpol.2023.120548] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Nanocomposite hydrogels based on tyramine conjugated gum tragacanth, poly (vinyl alcohol) (PVA), and halloysite nanotubes (HNTs) were prepared by electron beam irradiation and characterized. The FTIR, 1H NMR, and TGA results confirmed the chemical incorporation of HNTs into gum tragacanth. Gel content and swelling of hydrogels decreased with HNTs loading up to 20 % wt. The mechanical strength of hydrogels increased by increasing HNTs content up to 10 % with 371 kPa fracture stress at 0.95 fracture strain, compared to 312 kPa stress at 0.79 strain for gum tragacanth/PVA hydrogel. Hydrogel's biocompatibility and osteogenic activity were tested by seeding rabbit bone marrow mesenchymal stem cells. The cell viability was >85 % after 7 days of culture. In vitro secretion of ALP and calcium deposition on hydrogels in alizarin red assay after 21 days of culture indicated hydrogel potential for bone tissue engineering.
Collapse
Affiliation(s)
- Maryam Dehghan-Niri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Moslem Tavakol
- Department of Chemical and Polymer Engineering, Yazd University, Yazd, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Vigani B, Valentino C, Sandri G, Caramella CM, Ferrari F, Rossi S. Spermidine Crosslinked Gellan Gum-Based “Hydrogel Nanofibers” as Potential Tool for the Treatment of Nervous Tissue Injuries: A Formulation Study. Int J Nanomedicine 2022; 17:3421-3439. [PMID: 35942070 PMCID: PMC9356740 DOI: 10.2147/ijn.s368960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Aim of the work was to develop a potential neural scaffold, endowed with neuroprotective and neuroregenerative potential, to be applied at the site of nervous tissue injuries: nanofibers, consisting of gellan gum (GG), spermidine (SP) and gelatin (GL), were prepared via electrospinning. SP was selected for its neuroprotective activity and cationic nature that makes it an ideal GG cross-linking agent. GL was added to improve the scaffold bioactivity. Methods Mixtures, containing 1.5% w/w GG and increasing SP concentrations (0–0.125% w/w), were prepared to investigate GG/SP interaction and, thus, to find the best mixture to be electrospun. Mixture rheological and mechanical properties were assessed. The addition of 0.1% w/w GL was also investigated. The most promising GG/SP/GL mixtures were added with poly(ethylene oxide) (PEO) and poloxamer (P407) and, then, electrospun. The resulting fibers were characterized in terms of size and mechanical properties and fiber morphology was observed after soaking in water for 24 hours. Nanofiber biocompatibility was assessed on Schwann cells. Results More and more structured GG/SP mixtures were obtained by increasing SP concentration, proving its cross-linking potential. After blending with PEO and P407, the mixture consisting of 1.5% w/w GG, 0.05% w/w SP and 0.1% w/w GL was electrospun. The resulting nanofibers appeared homogenous and characterized by a plastic behavior, suggesting a good mechanical resistance when applied at the injury site. Nanofibers were insoluble in aqueous media and able to form a thin gel layer after hydration. GG/SP/GL nanofibers showed a higher compatibility with Schwann cells than GG/SP ones. Conclusion SP and GL allowed the production of homogenous GG-based nanofibers, which preserved their structure after contact with aqueous media and showed a good compatibility with a neural cell line. After local application at the injury site, nanofibers should support and guide axonal outgrowth, releasing SP in a controlled manner.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | | | | | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
- Correspondence: Silvia Rossi, Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy, Tel +39 0382987357, Fax +39 0382422975, Email
| |
Collapse
|
6
|
Compound hydrogels derived from gelatin and gellan gum regulates the release of anthocyanins in simulated digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders. Molecules 2021; 26:molecules26061510. [PMID: 33802011 PMCID: PMC8000171 DOI: 10.3390/molecules26061510] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/18/2023] Open
Abstract
The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.
Collapse
|
8
|
Lee S, Choi JH, Park A, Rim M, Youn J, Lee W, Song JE, Khang G. Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial. Int J Biol Macromol 2020; 158:452-460. [PMID: 32335106 DOI: 10.1016/j.ijbiomac.2020.04.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 01/01/2023]
Abstract
Gellan gum (GG), a nature-derived polysaccharide, is one of the materials widely used in cartilage tissue engineering (TE). Glycol chitosan (GC), a derivative of chitosan, is a water-soluble natural polymer that has excellent biocompatibility and biodegradability as well as cell adhesion. Herein, GG was physically blended with GC to enhance the mechanical properties and microenvironment of the GG to apply in cartilage TE. The study was conducted with a hydrogel model which is similar to the extracellular matrix (ECM) of cartilage tissue. The physicochemical studies were carried out with morphological study, swelling ratio, weight loss, and sol fraction. The mechanical characterization was conducted with compression test and rheological study to confirm availability in cartilage TE material. Furthermore, in vitro studies such as morphology investigation, viability assay, GAG content, qRT-PCR, and histological study were performed to verify biocompatibility and chondrogenesis of the material. The mechanical and biological properties improved with a proper amount of GC. Overall results verify the potential of the material and can be further used for the cartilage TE.
Collapse
Affiliation(s)
- Sumi Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Ain Park
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Mina Rim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jina Youn
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Wonchan Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
9
|
|
10
|
Palumbo FS, Federico S, Pitarresi G, Fiorica C, Giammona G. Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydr Polym 2020; 229:115430. [DOI: 10.1016/j.carbpol.2019.115430] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/16/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023]
|
11
|
Chitosan/gellan gum ratio content into blends modulates the scaffolding capacity of hydrogels on bone mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110258. [DOI: 10.1016/j.msec.2019.110258] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
|
12
|
Thakar H, Sebastian SM, Mandal S, Pople A, Agarwal G, Srivastava A. Biomolecule-Conjugated Macroporous Hydrogels for Biomedical Applications. ACS Biomater Sci Eng 2019; 5:6320-6341. [DOI: 10.1021/acsbiomaterials.9b00778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int J Biol Macromol 2019; 136:870-890. [DOI: 10.1016/j.ijbiomac.2019.06.113] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 02/03/2023]
|
14
|
Cidonio G, Cooke M, Glinka M, Dawson J, Grover L, Oreffo R. Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds. Mater Today Bio 2019; 4:100028. [PMID: 31853520 PMCID: PMC6894340 DOI: 10.1016/j.mtbio.2019.100028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Free-form printing offers a novel biofabrication approach to generate complex shapes by depositing hydrogel materials within a temporary supportive environment. However, printed hydrogels typically lack the requisite mechanical properties and functionality of the desired tissue, limiting application and, more importantly, safety and efficacy of the implant. The study authors have developed an innovative nanoclay-based bioink to print high shape fidelity functional constructs for potential skeletal application. Laponite® (LAP) nanoclay was combined with gellan gum (GG) to generate a printable hydrogel that was highly stable in vitro, displayed limited swelling ability compared with the silicate-free control and remained stable over time. An agarose fluid gel was found to provide the requisite support for the deposition of the material ink and preservation of the printed structure before crosslinking. Printed C2C12 myoblasts remained viable and displayed extensive proliferation over 21 days in culture. Cell-laden scaffolds demonstrated functionality within 1 day of culture in vitro and that was preserved over 3 weeks. Analysis of absorption and release mechanisms from LAP-GG using model proteins (lysozyme and bovine serum albumin) demonstrated the retention capability of the clay-based materials for compound localisation and absence of burst release. Vascular endothelial growth factor was loaded within the agarose fluid gel and absorbed by the material ink via absorption during deposition. The 3D-printed constructs were implanted on the chorioallantoic membrane of a 10-day-old developing chick. Extensive and preferential vasculature infiltration was observed in LAP-GG-loaded vascular endothelial growth factor constructs compared with controls (p<0.01 and p<0.0001) after only 7 days of incubation. The current studies demonstrate, for the first time, the application of innovative LAP-GG 3D constructs in the generation of growth factor-loaded 3D constructs for potential application in skeletal tissue repair.
Collapse
Affiliation(s)
- G. Cidonio
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - M. Cooke
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
- Institute of Inflammation and Ageing, MRC Musculoskeletal Ageing Centre, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB, UK
| | - M. Glinka
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - J.I. Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - L. Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
| | - R.O.C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
15
|
Ning H, Wu X, Wu Q, Yu W, Wang H, Zheng S, Chen Y, Li Y, Su J. Microfiber-Reinforced Composite Hydrogels Loaded with Rat Adipose-Derived Stem Cells and BMP-2 for the Treatment of Medication-Related Osteonecrosis of the Jaw in a Rat Model. ACS Biomater Sci Eng 2019; 5:2430-2443. [PMID: 33405751 DOI: 10.1021/acsbiomaterials.8b01468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Severe adverse reactions of bisphosphonates and anti-resorptive or anti-angiogenic medications, termed medication-related osteonecrosis of the jaw (MRONJ), have been reported. MRONJ are difficult to completely cure and could cause great pain to patients. Recent studies have shown that mesenchymal stem cell (MSC) therapies are effective for treating MRONJ, but the method of intravenous injection is unstable and increases the risk of producing tumors. In the present study, low-acyl gellan gum (LAGG) hydrogels were modified with hemicellulose polysaccharide microfibers (PMs) to improve the performance of supporting three-dimensional (3D) cell growth. LAGG-PM composite hydrogels were found to be nontoxic to rat adipose-derived stem cells (rADSCs) in vitro. The hydrogels also promoted the secretion of angiogenic factors, induced osteoclastogenesis by conditioned medium, and supported osteogenic marker expression after the addition of human bone morphogenetic protein-2 (BMP-2). Due to its injectability, the LAGG-PM composite hydrogel incorporated with rADSCs and BMP-2 could be applied into the MRONJ lesion site, which promoted mucosal recovery, bone tissue reconstruction, and osteoclastogenesis. This study confirms the potential applications of LAGG-PM composite hydrogels as 3D cell culture platforms and delivery vehicles for the treatment of MRONJ in a rat model.
Collapse
Affiliation(s)
- Haoran Ning
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| | - Xiaowei Wu
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China.,Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 10081, China
| | - Qing Wu
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| | - Wanlu Yu
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| | - Huaiji Wang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Shang Zheng
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| | - Yunong Chen
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Jiansheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| |
Collapse
|
16
|
Nazarzadeh Zare E, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr Polym 2019; 212:450-467. [PMID: 30832879 DOI: 10.1016/j.carbpol.2019.02.076] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Natural polymers have distinct advantages over synthetic polymers because of their abundance, biocompatibility, and biodegradability. Tragacanth gum, an anionic polysaccharide, is a natural polymer which is derived from renewable sources. As a biomaterial, tragacanth gum has been used in industrial settings such as food packaging and water treatment, as well as in the biomedical field as drug carriers and for wound healing purposes. The present review provides an overview on the state-of-the-art in the field of tragacanth gum applications. The structure, properties, cytotoxicity, and degradability as well as the recent advances in industrial and biomedical applications of tragacanth gum are reviewed to offer a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
17
|
Chen H, Zhang Y, Ding P, Zhang T, Zan Y, Ni T, Lin R, Liu M, Pei R. Bone Marrow-Derived Mesenchymal Stem Cells Encapsulated in Functionalized Gellan Gum/Collagen Hydrogel for Effective Vascularization. ACS APPLIED BIO MATERIALS 2018; 1:1408-1415. [DOI: 10.1021/acsabm.8b00361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong Chen
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Tingting Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yue Zan
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Tianyu Ni
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Rong Lin
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Ritz U, Eberhardt M, Klein A, Frank P, Götz H, Hofmann A, Rommens PM, Jonas U. Photocrosslinked Dextran-Based Hydrogels as Carrier System for the Cells and Cytokines Induce Bone Regeneration in Critical Size Defects in Mice. Gels 2018; 4:E63. [PMID: 30674839 PMCID: PMC6209263 DOI: 10.3390/gels4030063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 01/07/2023] Open
Abstract
Modified biomaterials have for years been the focus of research into establishing new bone substitutes. In our preceding in vitro study employing different cell cultures, we developed chemically and mechanically characterized hydrogels based on photocrosslinkable dextran derivatives and demonstrated their cytocompatibility and their beneficial effects on the proliferation of osteoblasts and endothelial cells. In the present in vivo study, we investigate photocrosslinked dextran-based hydrogels in critical size defects in mice to evaluate their potential as carrier systems for cells or for a specific angiogenesis enhancing cytokine to induce bone formation. We could demonstrate that, with optimized laboratory practice, the endotoxin content of hydrogels could be reduced below the Food and Drug Administration (FDA)-limit. Dextran-based hydrogels were either loaded with a monoculture of endothelial cells or a co-culture of human osteoblasts with endothelial cells, or with stromal-derived-growth factor (SDF-1). Scaffolds were implanted into a calvarial defect of critical size in mice and their impact on bone formation was assessed by µCt-analyses, histology and immunohistology. Our study demonstrates that promotion of angiogenesis either by SDF-1 or a monoculture of endothelial cells induces bone regeneration at a physiological level. These in vivo results indicate the potential of dextran-based hydrogel composites in bone regeneration to deliver cells and cytokines to the defect site.
Collapse
Affiliation(s)
- Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Marc Eberhardt
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Anja Klein
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Petra Frank
- Macromolecular Chemistry, Department Chemistry Biology, University of Siegen, 57076 Siegen, Germany.
| | - Hermann Götz
- Biomatics Group, Platform Biomaterials, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Alexander Hofmann
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Ulrich Jonas
- Macromolecular Chemistry, Department Chemistry Biology, University of Siegen, 57076 Siegen, Germany.
| |
Collapse
|