Zhang X, Qi X, Ouyang J, Zuo Y, Ma Q, Tan H, Guo X, Wu Y. Fluorescent cellulose nanofibrils-based hydrogel incorporating MIL-125-NH
2 for effective adsorption and detection of iodide ion.
JOURNAL OF HAZARDOUS MATERIALS 2024;
474:134758. [PMID:
38820756 DOI:
10.1016/j.jhazmat.2024.134758]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
To remove iodine ion (I-) from wastewater, a novel hydrogel, the fluorescent cellulose nanofibrils-based hydrogel (FCNH), was synthesized to enable both detection and adsorption of I-. The FCNH comprised cellulose nanofibrils (CNs), silver nanoclusters (AgNCs), and MIL-125-NH2. It exhibited an excellent adsorption capacity for I-, with a maximum adsorption capacity of 373.7 mg/g, fitting both the Langmuir and pseudo-second-order models. Additionally, FCNH displayed excellent regeneration properties, retaining 88.0 % of its initial adsorption capacity after six adsorption-desorption cycles. Functioning as a fluorescent sensor, the synthesized FCNH enabled the detection of I- through dynamic quenching, with linear ranges of 5 to 200 mg/L and 0.2 to 1.0 μg/L, and a determination limit of 0.11 μg/L. Analysis of the adsorption and detection mechanisms revealed that FCNH's outstanding performance arose from its 3D porous structure comprising CNs, AgNCs, and MIL-125-NH2. Economic analysis indicated that FCNH was inexpensive compared to commercially available activated carbon. Thus, FCNH demonstrated significant potential as an economical and reusable adsorbent for iodine ion removal.
Collapse