1
|
Abik F, Palasingh C, Bhattarai M, Leivers S, Ström A, Westereng B, Mikkonen KS, Nypelö T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2667-2683. [PMID: 36724217 PMCID: PMC9936590 DOI: 10.1021/acs.jafc.2c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.
Collapse
Affiliation(s)
- Felix Abik
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| | - Chonnipa Palasingh
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Mamata Bhattarai
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo 00076, Finland
| | - Shaun Leivers
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Anna Ström
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Bjørge Westereng
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Kirsi S. Mikkonen
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Helsinki
Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Tiina Nypelö
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, Gothenburg 41296, Sweden
- Department
of Bioproducts and Biosystems, Aalto University, Espoo 00760, Finland
| |
Collapse
|
2
|
Xylan-cellulose thin film platform for assessing xylanase activity. Carbohydr Polym 2022; 294:119737. [DOI: 10.1016/j.carbpol.2022.119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022]
|
3
|
Arumughan V, Nypelö T, Hasani M, Larsson A. Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. Adv Colloid Interface Sci 2021; 298:102529. [PMID: 34773888 DOI: 10.1016/j.cis.2021.102529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The increasing need for new material applications based on cellulose demands increased functional diversity and thus new functionalisation/modification approaches. The non-covalent modification of cellulose fibres via the adsorption of functional polymers has emerged as a promising route for tailoring the properties of material. This review focuses on fundamental aspects of polymer adsorption on cellulose surfaces, where the adsorption of polyelectrolytes and non-polyelectrolytes are treated separately. Adsorption studies on model surfaces as well as cellulose macro-fibres are reviewed. A correlation of the adsorption findings with the Scheutjens-Fleer polymer adsorption theory is provided, allowing the fundamentals behind the polymer adsorption phenomenon and its context in utilization of cellulose fibres to be understood.
Collapse
|
4
|
Chen J, Ren Y, Liu W, Wang T, Chen F, Ling Z, Yong Q. All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure. Int J Biol Macromol 2021; 193:1324-1331. [PMID: 34742850 DOI: 10.1016/j.ijbiomac.2021.10.191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Herein, nanocomposites films were prepared via the facile casting method by incorporating cellulose nanocrystals (CNCs) with arabinogalactan (AG), galactomannan (GM) or konjac glucomannan (KGM) respectively. The introduced polysaccharides maintained the transparency of CNCs films and promoted the UV blocking properties. In addition, mechanical strength of the nanocomposite films was greatly improved after the combination of polysaccharides. The interactions of hydroxyl-abundant macromolecules, smoother and tighter morphological structures, as well as the disturbed crystal structure were proved to be responsible for the improved properties. Hydrophilic lattice planes of cellulose crystallites were determined to interact with polysaccharides resulting in lower crystallite sizes and crystallinity. The cell culture assay revealed that the films had no cytotoxicity and presented a satisfactory cytocompatibility, because of the polysaccharides from plant cell walls introduced into the films. Therefore, the biocompatible nanocomposites films can be tuned by the addition of polysaccharides, which show great potentials for materials modification in optical, packaging and biomedical fields.
Collapse
Affiliation(s)
- Jie Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxuan Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanying Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Feier Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Pulp Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
6
|
Naidu DS, John MJ. Effect of Clay Nanofillers on the Mechanical and Water Vapor Permeability Properties of Xylan-Alginate Films. Polymers (Basel) 2020; 12:polym12102279. [PMID: 33020377 PMCID: PMC7601507 DOI: 10.3390/polym12102279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023] Open
Abstract
In this study, xylan–alginate-based films were reinforced with nanoclays (bentonite or halloysite) by the solvent casting technique. The effect of the nanoclay loadings (1–5 wt %) on various properties—mechanical, optical, thermal, solubility, water sorption, and water vapor permeability (WVP)—of the xylan–alginate films were examined for their application as food packaging materials. A 5 wt % loading of either bentonite or halloysite resulted in a 49% decrease of the WVP due to the impermeable nature of the silicate layers that make up both bentonite and halloysite. Thermal stability and solubility of the nanocomposite films were not significantly influenced by the presence of the nanoclays, whereas the optical properties were significantly improved when compared to neat xylan–alginate blend. In general, films reinforced with bentonite exhibited superior mechanical and optical properties when compared to both halloysite-based nanocomposite and neat films.
Collapse
Affiliation(s)
- Darrel S. Naidu
- CSIR, Centre for Nanostructures and Advanced Materials, Pretoria 0184, South Africa;
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
- Correspondence:
| | - Maya J. John
- CSIR, Centre for Nanostructures and Advanced Materials, Pretoria 0184, South Africa;
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| |
Collapse
|
7
|
Zhang X, Xiao N, Chen M, Wei Y, Liu C. Functional packaging films originating from hemicelluloses laurate by direct transesterification in ionic liquid. Carbohydr Polym 2020; 229:115336. [DOI: 10.1016/j.carbpol.2019.115336] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 01/15/2023]
|
8
|
Colson J, Pettersson T, Asaadi S, Sixta H, Nypelö T, Mautner A, Konnerth J. Adhesion properties of regenerated lignocellulosic fibres towards poly(lactic acid) microspheres assessed by colloidal probe technique. J Colloid Interface Sci 2018; 532:819-829. [PMID: 30145523 DOI: 10.1016/j.jcis.2018.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
In the field of polymer reinforcement, it is important to understand the interactions involved between the polymer matrix and the reinforcing component. This paper is a contribution to the fundamental understanding of the adhesion mechanisms involved in natural fibre reinforced composites. We report on the use of the colloidal probe technique for the assessment of the adhesion behaviour between poly(lactic acid) microspheres and embedded cross-sections of regenerated lignocellulosic fibres. These fibres consisted of tailored mixtures of cellulose, lignin and xylan, the amount of which was determined beforehand. The influence of the chemical composition of the fibres on the adhesion behaviour was studied in ambient air and in dry atmosphere. In ambient air, capillary forces resulted in larger adhesion between the sphere and the fibres. Changing the ambient medium to a dry nitrogen atmosphere allowed reducing the capillary forces, leading to a drop in the adhesion forces. Differences between fibres of distinct chemical compositions could be measured only on freshly cut surfaces. Moreover, the surface energy of the fibres was assessed by inverse gas chromatography. Compared to fibres containing solely cellulose, the presence of lignin and/or hemicellulose led to higher adhesion and lower surface energy, suggesting that these chemicals could serve as natural coupling agents between hydrophobic and hydrophilic components.
Collapse
Affiliation(s)
- Jérôme Colson
- University of Natural Resources and Life Sciences Vienna, Department of Materials Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - Torbjörn Pettersson
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Division of Fibre Technology, Teknikringen 58, 100 44 Stockholm, Sweden.
| | - Shirin Asaadi
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Vuorimiehentie 1, 02150 Espoo, Finland.
| | - Herbert Sixta
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Vuorimiehentie 1, 02150 Espoo, Finland.
| | - Tiina Nypelö
- Chalmers University of Technology, Department of Chemistry and Chemical Technology, Kemigården 4, 412 96 Göteborg, Sweden.
| | - Andreas Mautner
- University of Vienna, Faculty of Chemistry, Institute of Materials Chemistry & Research, Währinger Straße 42, 1090 Vienna, Austria.
| | - Johannes Konnerth
- University of Natural Resources and Life Sciences Vienna, Department of Materials Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| |
Collapse
|
9
|
Nypelö T, Asaadi S, Kneidinger G, Sixta H, Konnerth J. Conversion of wood-biopolymers into macrofibers with tunable surface energy via dry-jet wet-spinning. CELLULOSE (LONDON, ENGLAND) 2018; 25:5297-5307. [PMID: 30174375 PMCID: PMC6105199 DOI: 10.1007/s10570-018-1902-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
ABSTRACT Surface chemistry of regenerated all-wood-biopolymer fibers that are fine-tuned by composition of cellulose, lignin and xylan is elucidated via revealing their surface energy and adhesion. Xylan additive resulted in thin fibers and decreased surface energy of the fiber outer surfaces compared to the cellulose fibers, or when lignin was used as an additive. Lignin increased the water contact angle on the fiber surface and decreased adhesion force between the fiber cross section and a hydrophilic probe, confirming that lignin reduced fiber surface affinity to water. Lignin and xylan enabled fiber decoration with charged groups that could tune the adhesion force between the fiber and an AFM probe. The fibers swelled in water: the neat cellulose fiber cross section area increased 9.2%, the fibers with lignin as the main additive 9.1%, with xylan 6.8%, and the 3-component fibers 5.5%. This indicates that dimensional stability in elevated humidity is improved in the case of 3-component fiber compared to 2-component fibers. Xylan or lignin as an additive neither improved strength nor elongation at break. However, improved deformability was achieved when all the three components were incorporated into the fibers.
Collapse
Affiliation(s)
- Tiina Nypelö
- Division of Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Shirin Asaadi
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Günther Kneidinger
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Herbert Sixta
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Johannes Konnerth
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|