1
|
Xie Y, Liu X, Liu L, Zhou Y, Wang Z, Huang C, He H, Zhai Y. Deep eutectic solvents pretreatment enhances methane production from anaerobic digestion of waste activated sludge: Effectiveness evaluation and mechanism elucidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120615. [PMID: 38518499 DOI: 10.1016/j.jenvman.2024.120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic digestion (AD) is a prevalent waste activated sludge (WAS) treatment, and optimizing methane production is a core focus of AD. Two DESs were developed in this study and significantly increased methane production, including choline chloride-urea (ChCl-Urea) 390% and chloride-ethylene glycol (ChCl-EG) 540%. Results showed that ChCl-Urea mainly disrupted extracellular polymeric substances (EPS) structures, aiding in initial sludge solubilization during pretreatment. ChCl-EG, instead, induced sludge self-driven organic solubilization and enhanced hydrolysis and acidification processes during AD process. Based on the extent to which the two DESs promoted AD for methane production, the AD process can be divided into stage Ⅰ and stage Ⅱ. In stage Ⅰ, ChCl-EG promoted methanogenesis more significantly, microbiological analysis showed both DESs enriched aceticlastic methanogens-Methanosarcina. Notably, ChCl-Urea particularly influenced polysaccharide-related metabolism, whereas ChCl-EG targeted protein-related metabolism. In stage Ⅱ, ChCl-Urea was more dominant than ChCl-EG, ChCl-Urea bolstered metabolism and ChCl-EG promoted genetic information processing in this stage. In essence, this study investigated the microbial mechanism of DES-enhanced sludge methanogenesis and provided a reference for future research.
Collapse
Affiliation(s)
- Yu Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Liming Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China; Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, 612-8135, Japan
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hongkui He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
2
|
Zhai H, Yue C, Li Z, Ma L, Wang T, Zhang H, Wang J, Yang S. MXene/Silk Fibroin Strengthened PVA-Based Eutectogel with Excellent Self-Healing Ability and Environmental Adaptability: Design, Synthesis, and Sensing Application. Chem Asian J 2024:e202400055. [PMID: 38545629 DOI: 10.1002/asia.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Indexed: 05/08/2024]
Abstract
A superelastic self-healing eutectogel was designed and prepared using poly (vinyl alcohol) (PVA) as the bulk skeleton material, while silk fibroin (SF) and two-dimensional (2D) MXene (Ti3C2TX) as reinforcing fillers. In brief, the eutectogel possesses a high tensile strength of 7.63 MPa, and its elongation at break reached 1115.2%, higher than most reported polymers (<1000%). In addition, the eutectogel-assembled sensor has a high ionic conductivity of 0.61 S/m and a high strain sensitivity of 5.17 kPa-1. Moreover, eutectogel shows excellent self-healing ability and can achieve self-healing quickly within 10 min, while its tensile strength and elongation at break can be restored to 84.7% and 97.4% of the initial levels. Besides, a stable electrical signal can be transmitted after 200 cycles at 30% strain. Finally, the eutectogel can withstand various environmental conditions, such as atmospheric or even vacuum evaporation and low-temperature freezing, while maintaining good mechanical and sensing performances. The assembled flexible sensors based on the eutectogel demonstrate their significant application prospects in wearable devices, especially human physiological monitoring.
Collapse
Affiliation(s)
- Hanlin Zhai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730070, China
| | - Chen Yue
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730070, China
| | - Zhangpeng Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tingting Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730070, China
| | - Hong Zhang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730070, China
| | - Jinqing Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengrong Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wang S, Han H, Lei X, Ma J, Tao Z, Ren Y. Cellulose nanofibers produced from spaghetti squash peel by deep eutectic solvents and ultrasonication. Int J Biol Macromol 2024; 261:129777. [PMID: 38286364 DOI: 10.1016/j.ijbiomac.2024.129777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
In this study, the cellulose nanofibers (CNFs) derived from spaghetti squash peel (SSP) were prepared using a novel approach involving deep eutectic solvent (DES) pretreatment coupled with ultrasonication. Molecular dynamics (MD) simulations revealed that the number of hydrogen bonds influences the viscosity and density of DES systems, and experimental viscosity (ηexp) confirmed consistency with the computed viscosity (ηMD) trends. After DES pretreatment and ultrasonication, the cellulose content of ChCl/oxalic acid (ChCl/OA) CNF (35.63%) and ChCl/formic acid (ChCl/FA) (32.46%) is higher than ChCl/Urea CNF (28.27%). The widths of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF were 19.83, 11.34, and 18.27 nm, respectively, showing a network-like fiber distribution. Compared with SSP (29.76%) and non-ultrasonic samples, the crystallinity index of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF was improved by ultrasonication. The thermal decomposition residue of ChCl/OA CNF (25.54%), ChCl/FA CNF (18.54%), and ChCl/Urea CNF (23.62%) was lower than that of SSP (29.57%). These results demonstrate that CNFs can be prepared from SSP via DES pretreatment combined with ultrasonication. The lowest viscosity observed in the formic acid DES group (ηexp of 18 mPa·s), the ChCl/FA CNF exhibits excellent stability (Zeta potential of -37.6 mV), which can provide a promising prospect for utilization in biomass by-products and applications in the materials field.
Collapse
Affiliation(s)
- Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianxiang Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ze Tao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
4
|
Radmard J, Mohamadi Sani A, Arianfar A, Mahmoodzadeh Vaziri B. Efficient extraction of oleoresin from Ferula gummosa roots by natural deep eutectic solvent and its structure and chemical characterizations. Sci Rep 2024; 14:148. [PMID: 38167968 PMCID: PMC10762197 DOI: 10.1038/s41598-023-46198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/29/2023] [Indexed: 01/05/2024] Open
Abstract
Deep eutectic solvents in the extraction of plant metabolites have found many advantages, such as low toxicity, biodegradability, low cost and ease of preparation over the conventional methods. This work aims to compare natural deep eutectic solvents in extraction and optimization of oleoresin from Ferula gummosa and determining its chemical and structure properties. Box-Behnken design was applied to optimize the extraction of oleoresin from Ferula gummosa using eutectic solvents. The variables of extraction were extraction time, temperature, and ratio of eutectic solvents. Six mixtures of eutectic solvents including choline chloride/urea, acetic acid, lactic acid, formic acid, formamide and glycerol at ratios of 2:1 and 3:1 were evaluated. The highest yields were obtained for choline chloride/formic acid, choline chloride/formamide. The quadratic regression equation was set up as a predictive model with an R2 value of 0.85. The optimum condition was 6 h, 40 °C, and ratio 12.5% (w/v). No significant difference was found between the predicted and experimental yield. The main components of the oleoresin were β-pinene (40.27%), cylcofenchen (11.93%) and α-pinene (7.53%) as characterized by gas chromatography-mass spectrometry. The chemical structure study by spectroscopy showed that no solvents remained in the oleoresin. Therefore, F. gummosa oleoresin can be explored as a novel promising natural pharmaceutical ingredient extracted with eutectic solvents.
Collapse
Affiliation(s)
- Javad Radmard
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Ali Mohamadi Sani
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.
| | - Akram Arianfar
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | | |
Collapse
|
5
|
Liu Y, Gao L, Chen L, Zhou W, Wang C, Ma L. Exploring carbohydrate extraction from biomass using deep eutectic solvents: Factors and mechanisms. iScience 2023; 26:107671. [PMID: 37680471 PMCID: PMC10480316 DOI: 10.1016/j.isci.2023.107671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Deep eutectic solvents (DESs) are increasingly being recognized as sustainable and promising solvents because of their unique properties: low melting point, low cost, and biocompatibility. Some DESs possess high viscosity, remarkable stability, and minimal toxicity, enhancing their appeal for diverse applications. Notably, they hold promise in biomass pretreatment, a crucial step in biomass conversion, although their potential in algal biomass carbohydrates extraction remains largely unexplored. Understanding the correlation between DESs' properties and their behavior in carbohydrate extraction, alongside cellulose degradation mechanisms, remains a gap. This review provides an overview of the use of DESs in extracting carbohydrates from lignocellulosic and algal biomass, explores the factors that influence the behavior of DESs in carbohydrate extraction, and sheds light on the mechanism of cellulose degradation by DESs. Additionally, the review discusses potential future developments and applications of DESs, particularly extracting carbohydrates from algal biomass.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031 P.R. China
| | - Lingling Gao
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031 P.R. China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P.R. China
| | - Wenguang Zhou
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031 P.R. China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
6
|
Yuan JC, Huang R, Jiang LY, Liu GD, Liu PD, Xu WR. Facile production of cellulose nanofibers from raw elephant grass by an aluminum chloride-enhanced acidic deep eutectic solvent. Int J Biol Macromol 2023; 246:125687. [PMID: 37406902 DOI: 10.1016/j.ijbiomac.2023.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/17/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
To develop a greener and more efficient method for producing cellulose nanofibers (CNFs) from raw plants, an AlCl3-enhanced ternary deep eutectic solvent, DES2 (consisting of choline chloride, citric acid, and AlCl3·6H2O in a molar ratio of 1:0.4:0.08), was synthesized. Raw elephant grass (EG) was pretreated with DES2, followed by sodium chlorite (NaClO2) bleaching and ultrasonic disruption to extract high-performance CNFs. The DES2 and NaClO2 treatments effectively removed hemicellulose and lignin, achieving removal rates of 99.23 % and 99.62 %, respectively, while maintaining a cellulose content of 78.3 %. DES2 demonstrated easy recyclability and maintained excellent biomass pretreatment performance even after multiple cycles. Following a brief 30-min intermittent ultrasound treatment, the resulting CNFs demonstrated superior crystallinity, increased carboxyl content, and a narrower width distribution compared to CNFs obtained from AlCl3-free DES1. Optimized conditions at 110 °C yielded CNFs with 85.3 % crystallinity, 0.64 mmol/g carboxyl content, 5.15 nm width distribution, and excellent dispersion in water for at least six months. Additionally, CNFs enhanced the tensile strength of chia seed mucilage (CM) composite films, showing a significant improvement to 26.6 MPa, representing a 231.3 % increase over the control film. This study offers a promising approach for efficiently producing CNFs from raw plants.
Collapse
Affiliation(s)
- Jin-Chao Yuan
- College of Tropical Crops & School of Science, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Rui Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ling-Yan Jiang
- College of Tropical Crops & School of Science, Hainan University, Haikou 570228, China
| | - Guo-Dao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pan-Dao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Wen-Rong Xu
- College of Tropical Crops & School of Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Wang W, Xu Y, Zhu B, Ge H, Wang S, Li B, Xu H. Exploration of the interaction mechanism of lignocellulosic hybrid systems based on deep eutectic solvents. BIORESOURCE TECHNOLOGY 2023:129401. [PMID: 37380035 DOI: 10.1016/j.biortech.2023.129401] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
The interactions of three deep eutectic solvents (DES) choline chloride-glycerol (ChCl-GLY), ChCl-lactic acid (ChCl-LA) and ChCl-urea (ChCl-U) with cellulose-hemicellulose and cellulose-lignin hybrid systems were investigated using the simulated computational approach. Aiming to simulate DES pretreatment of real lignocellulosic biomass in nature. DES pretreatment could disrupt the original hydrogen bonding network structure among the lignocellulosic components and reconstruct the new DES-lignocellulosic hydrogen bonding network structure. ChCl-U had the highest intensity of action on the hybrid systems, removing 78.3% of the hydrogen bonds between cellulose-4-O-methyl Gluconic acid xylan (cellulose-Gxyl) and 68.4% of the hydrogen bonds between cellulose-Veratrylglycerol-b-guaiacyl ether (cellulose-VG), respectively. The increase of urea content facilitated the interaction between DES and lignocellulosic blend system. Finally, the addition of appropriate water (DES:H2O = 1:5) and DES formed the new DES-water hydrogen bonding network structure more favorable for the interaction of DES with lignocellulose.
Collapse
Affiliation(s)
- Weixian Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yang Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Baoping Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hanwen Ge
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shenglin Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Huanfei Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
8
|
Li C, Zheng C, Huang H, Su H, Huang C. Preparation and plasticizing mechanism of deep eutectic solvent/lignin plasticized chitosan films. Int J Biol Macromol 2023; 240:124473. [PMID: 37072057 DOI: 10.1016/j.ijbiomac.2023.124473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Chitosan (CS) is a natural biopolymer from crab shells known for its biocompatibility and biodegradability; however, CS films are extremely rigid, limiting their applications. In this study, CS composite films were prepared based on the selective dissolution of lignin by deep eutectic solvents (DES), and the toughening effect of this DES/lignin on a CS film substrate was examined, along with its corresponding mechanism. The addition of DES/lignin effectively increased the plasticity of the CS film, giving a maximum elongation at break of 62.6 % for the plasticized film, which is 12.5 times that of the CS film. Fourier transform infrared spectroscopy and nuclear magnetic resonance analyses showed that molecules in the DES/lignin complex interacted with CS to break the hydrogen bonds between the CS molecules; simultaneously, each molecule recombined with the CS molecules via hydrogen bonding. Thus, the rigidity of the CS molecular chain was weakened to achieve a plasticized CS film, thereby demonstrating the ability of DES/regenerated lignin to improve the toughness of CS films, which provides a reference for modifying plasticity and could lead to the broader utilization of CS films.
Collapse
Affiliation(s)
- Cuicui Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chaojian Zheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Haohe Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hongxia Su
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| |
Collapse
|
9
|
Enhanced Enzymatic Hydrolysis of Wheat Straw to Improve Reducing Sugar Yield by Novel Method under Mild Conditions. Processes (Basel) 2023. [DOI: 10.3390/pr11030898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Wheat straw is a suitable source material for bioethanol production. Removing lignin and hemicellulose in wheat straw to improve enzymatic hydrolysis efficiency is essential because of its complex structure. Deep eutectic solvents (DESs) have become substitutes for ionic liquids (ILs), with the characteristics of good biocompatibility, simple synthesis procedure and low cost. However, the process of removing lignin and hemicellulose using present DESs requires a high operation temperature or long operation time. Therefore, we studied a novel method under mild conditions for screening a series of novel DESs based on an inorganic base to remove lignin and hemicellulose in wheat straw. In this work, the effect of DES type, the pH of the DESs, the operation temperature and operation time for enhancing enzymatic hydrolysis, and the crystal structure and the chemical structure and surface morphology of wheat straw were investigated. In particular, Na:EG exhibited the most excellent solubility for wheat straw under mild conditions, removing 80.6% lignin and 78.5% hemicellulose, while reserving 87.4% cellulose at 90 °C for 5 h, resulting in 81.6% reducing sugar produced during hydrolysis for 72 h. Furthermore, XRD, FT-IR and SEM analysis verified the lignin and hemicellulose removal. Hence, DESs based on an inorganic base used for removing lignin and hemicellulose will enhance enzymatic hydrolysis, and thus promote the industrial application of wheat straw to produce bioethanol.
Collapse
|
10
|
Potential of hydrochar/pyrochar derived from sawdust of oriental plane tree for stimulating methanization by mitigating propionic acid inhibition in mesophilic anaerobic digestion of swine manure. Heliyon 2023; 9:e13984. [PMID: 36925554 PMCID: PMC10011200 DOI: 10.1016/j.heliyon.2023.e13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
VFAs accumulation in anaerobic digestion systems can lead to disturbance of the acid base balance, which has brought major challenges for methane production. Meanwhile, less research explored the potential of biochar derived from wood wastes of oriental plane tree (Platanus orientalis L.) for stimulating methanization in mesophilic anaerobic digestion. In this study, the effects of pyrochar and hydrochar derived from sawdust of oriental plane tree on mesophilic anaerobic digestion of swine manure were compared for the first time. Fourier infrared transform analysis indicated that more functional groups existed on the surface of hydrochar, whereas higher ash content and BET specific surface area were found in pyrochar. The maximum methane production rate during anaerobic digestion was observed in the pyrochar treatment, which increased by 59.5% compared with the control without biochar. Although stimulative effects on dissolved organic carbon and volatile fatty acids production were both observed in the pyrochar and hydrochar treatments, the pyrochar treatment was much easier to trigger multipath methanogenesis and direct interspecific electron transport and subdue propionic acid accumulation compared to the hydrochar treatment. Moreover, redundancy analysis indicated that the variations in acetic acid and dissolved organic carbon were mostly associated with microbial succession. These results suggest that pyrochar has better promoting effects than HC in terms of methane generation and propionic acid inhibition alleviation owing to its special porous structures, functional groups (e.g., C=O, C-O and O-H), and physicochemical properties. These excellent properties play a greater role in recruiting functional archaea and bacteria to regulate the levels of volatile fatty acids and dissolved organic carbon to enhance the methane yield of anaerobic digestion. This study provides novel and valuable information for further engineering applications of pyrochar and hydrochar derived from sawdust of oriental plane tree in energy production and environmental waste treatment.
Collapse
|
11
|
Sulaiman M, Rabbani FA, Iqbal T, Kazmi MA, Yasin S, Mujtaba M, Kalam M, Almomani F. Impact of eco-friendly chemical pretreatment on physicochemical and surface mechanical properties of sustainable lignocellulosic agricultural waste. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
12
|
Del Mar Contreras-Gámez M, Galán-Martín Á, Seixas N, da Costa Lopes AM, Silvestre A, Castro E. Deep eutectic solvents for improved biomass pretreatment: Current status and future prospective towards sustainable processes. BIORESOURCE TECHNOLOGY 2023; 369:128396. [PMID: 36503832 DOI: 10.1016/j.biortech.2022.128396] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Pretreatment processes - recognized as critical steps for efficient biomass refining - have received much attention over the last two decades. In this context, deep eutectic solvents (DES) have emerged as a novel alternative to conventional solvents representing a step forward in achieving more sustainable processes with both environmental and economic benefits. This paper presents an updated review of the state-of-the-art of DES-based applications in biorefinery schemes. Besides describing the fundamentals of DES composition, synthesis, and recycling, this study presents a comprehensive review of existing techno-economic and life cycle assessment studies. Challenges, barriers, and perspectives for the scale-up of DES-based processes are also discussed.
Collapse
Affiliation(s)
- María Del Mar Contreras-Gámez
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Ángel Galán-Martín
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Nalin Seixas
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal
| | - André M da Costa Lopes
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal; CECOLAB - Collaborative Laboratory Towards Circular Economy, R. Nossa Senhora da Conceição, Oliveira do Hospital, 3405-155, Portugal
| | - Armando Silvestre
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain.
| |
Collapse
|
13
|
A A, Kumar Sampath M. Optimization of alkali, acid and organic solvent pretreatment on rice husk and its techno economic analysis for efficient sugar production. Prep Biochem Biotechnol 2023; 53:279-287. [PMID: 35635302 DOI: 10.1080/10826068.2022.2078982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Excessive use of fossil fuels has accelerated climate change and global warming necessitates the need for renewable energy sources that have a lower environmental impact. In the recent decade, lignocellulosic biomass has become a prominent alternative to renewable energy resources for the production of bioenergy. The pretreatment procedure is considered a pivotal step for transforming biomass into value-added products such as sugars, biofuels, etc. Therefore, the present work aims to study the effect of different pretreatment approaches on rice husk with acids (H2SO4 and HCl), alkalis (NaOH and KOH), and organic solvents (ethanol and methanol) utilizing different concentrations like (2, 4 and 6% in case of acids), (2,4 and 6% for alkalis) and (50% and 70% for organic solvents) with different residence time (1, 3, 6, and 24 h). The most effective results obtained from the aforementioned steps were further adopted for enzymatic hydrolysis. Further, the changes in structural properties of biomass were assessed in relation to the pretreatment process employing scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform Infrared (FTIR) analyses. This paper also highlights the techno-economic analysis of alkali pretreatment. Additionally, the operational targets for the process were identified by using a modeling software-SuperPro Designer. Results obtained from the study showed a maximum yield of reducing sugar i.e., 1.906 ± 0.2 mg/ml (4% NaOH with 6 h of incubation). This study demonstrates that 4% NaOH pretreatment effectively disintegrates the biomass and yields high sugar recovery which can be used further for the production of biofuels and value-added products.
Collapse
Affiliation(s)
- Anuradha A
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Muthu Kumar Sampath
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
14
|
Physicochemical transformation and enzymatic hydrolysis promotion of reed straw after pretreatment with a new deep eutectic solvent. Carbohydr Polym 2022; 290:119472. [DOI: 10.1016/j.carbpol.2022.119472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/18/2023]
|
15
|
Ma Y, Chen X, Khan MZ, Xiao J, Alugongo GM, Liu S, Wang J, Cao Z. Effect of the Combining Corn Steep Liquor and Urea Pre-treatment on Biodegradation and Hydrolysis of Rice Straw. Front Microbiol 2022; 13:916195. [PMID: 35910632 PMCID: PMC9326473 DOI: 10.3389/fmicb.2022.916195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
A novel pre-treatment using corn steep liquor (CSL) and urea was developed to enhance the enzymatic saccharification and degradability of rice straw (RS). We used RS (1) without (Con) or with additives of (2) 5% urea (U), (3) 9% CSL and 2.5% urea (CU), and (4) 9% CSL and 5% urea (C5U). The result showed that the water-soluble carbohydrate (WSC) conversion of RS reached 69.32% after C5U pre-treatment. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction analysis (XRD) confirmed that the surface of pre-treated RS exposed more cellulose and hemicellulose due to the disruption of the resistant structure of lignocellulose. Pre-treated RS significantly decreased neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents and increased crude protein (CP) content, microbial colonization, and induction of Carnobacterium and Staphylococcus attachment. Altogether, we concluded that pre-treatment of a combination of CSL and urea has the potential to improve the nutritive value of RS.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhijun Cao
| |
Collapse
|
16
|
Verma N, Taggar MS, Kalia A, Kaur J, Javed M. Comparison of various delignification/desilication pre-treatments and indigenous fungal cellulase for improved hydrolysis of paddy straw. 3 Biotech 2022; 12:150. [PMID: 35747505 DOI: 10.1007/s13205-022-03211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/22/2022] [Indexed: 11/28/2022] Open
Abstract
The efficient removal of lignin and silica from paddy straw is essential for its volarization into biofuels and other value-added products. In this work, different chemical pre-treatments viz. acid/alkali, organosolv and deep eutectic solvents were carried out to assess the extent of delignification and desilication of paddy straw. Maximum lignin and silica removal of 96.08 and 95.51% was observed with two step acid (0.5% sulphuric acid) followed by alkali (4% sodium hydroxide) pre-treatment with significantly low total lignin (2.30%) and silica content (0.80%) of the treated straw residue. The treated straw residue contained significantly high holocellulose (91.65%), cellulose (75.01%) and hemicellulose content (16.64%). Among the four indigenous fungal isolates, Penicillium mallochii (JS17) cellulase showed better accessibility for the treated straw residue with maximum release of 504.18 mg g-1 of reducing sugars and saccharification efficiency of 56.90%. The two-step acid/alkali pre-treatment of paddy straw was highly effective for removing lignin and silica from paddy straw, thereby, resulting in enhanced enzymatic accessibility of the substrate and more efficient hydrolysis of cellulose into fermentable sugars.
Collapse
Affiliation(s)
- Nisha Verma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Jaspreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Mohammed Javed
- Department of Mathematics, Statistics and Physics, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| |
Collapse
|
17
|
Jing Y, Li F, Li Y, Jiang D, Lu C, Zhang Z, Zhang Q. Biohydrogen production by deep eutectic solvent delignification-driven enzymatic hydrolysis and photo-fermentation: Effect of liquid-solid ratio. BIORESOURCE TECHNOLOGY 2022; 349:126867. [PMID: 35183719 DOI: 10.1016/j.biortech.2022.126867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Deep eutectic solvent (DES), a new green solvent, was used to pretreat corncob to enhance biohydrogen production. As a result of the pretreatment, lignin was effectively removed, and the maximum delignification efficiency of 83.12% was achieved. Moreover, the contents of cellulose in the pretreated corncob significantly increased. DES pretreatment effect improved with increasing liquid-solid ratio. The pretreated corncob's enzymatic saccharification activity and hydrogen production were promoted due to the lower content of lignin. The best result was observed at a ratio of 25:1 (DES:corncob, g/g), in which the reducing sugar concentration (53.91 g/L) and the hydrogen yield (151 mL/g) was 6.8 and 3.1 times than that of untreated corncob, respectively. In addition, the lag time of hydrogen production was obviously shortened to 16.53 h due to the utilization of abundant available fermentable sugars, which accelerated hydrogen production.
Collapse
Affiliation(s)
- Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Fang Li
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
18
|
Saito K, Hashizume T, Kitayama K, Watanabe T. Characterization of Novel Deep Eutectic Solvent, Choline Chloride/Glutamic Acid, as Efficient Solvent for Lignin Dissolution. CHEM LETT 2022. [DOI: 10.1246/cl.210723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kaori Saito
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 610-0011, Japan
| | - Tomohiro Hashizume
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 610-0011, Japan
- Daicel Corporation, Ofuka-cho, Kita-ku, Osaka, 530-0011, Japan
| | - Kenji Kitayama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 610-0011, Japan
- Daicel Corporation, Ofuka-cho, Kita-ku, Osaka, 530-0011, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 610-0011, Japan
| |
Collapse
|
19
|
Hassan ESRE, Mutelet F. Evaluation of miscanthus pretreatment effect by Choline chloride based Deep Eutectic solvents on bioethanol production. BIORESOURCE TECHNOLOGY 2022; 345:126460. [PMID: 34863844 DOI: 10.1016/j.biortech.2021.126460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
This work evaluates the efficiency of three deep eutectic solvents constituted of choline chloride and urea or glycerol or ethylene glycol in the pretreatment of the miscanthus in view of extracting cellulose. Analysis of experiments shows that basicity and polarity of the hydrogen bond donor of these DESs are directly related to the miscanthus solubility. The best efficient process was found using {Choline chloride/glycerol} mixture for the pretreatment at a temperature of 373 K and a duration of about 6 h. This may be explained by the fact that {Choline chloride/glycerol} pretreatment allows to obtain an amorphous cellulose. {Choline chloride/glycerol} was as efficiently as IL pretreatments with an ethanol production of about 72%. This study shows that Choline chloride based DESs pretreatment for biomass could be a key point to enhance the efficiency of biorefinery.
Collapse
Affiliation(s)
- El-Sayed R E Hassan
- Laboratoire Réactions et Génie des Procédés (UMR CNRS 7274), Université de Lorraine, Nancy 54000, France; Minerals Beneficiation and Agglomeration Department, Minerals Technology Division, Central Metallurgical Research & Development Institute, P.O. Box 87 Helwan, 11722 Cairo, Egypt
| | - Fabrice Mutelet
- Laboratoire Réactions et Génie des Procédés (UMR CNRS 7274), Université de Lorraine, Nancy 54000, France.
| |
Collapse
|
20
|
Zhong L, Wang C, Yang G, Chen J, Xu F, Geun Yoo C, Lyu G. Rapid and efficient microwave-assisted guanidine hydrochloride deep eutectic solvent pretreatment for biological conversion of castor stalk. BIORESOURCE TECHNOLOGY 2022; 343:126022. [PMID: 34600092 DOI: 10.1016/j.biortech.2021.126022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microwave-assisted guanidine hydrochloride deep eutectic solvents (DESs) was developed for rapid and efficient pretreatment of castor stalk. The DES synthesized with guanidine hydrochloride and lactic acid showed a better delignification (92.02%) and enzymatic saccharification yield (96.3%) than choline chloride and lactic acid DES resulted. In addition, high-purity (up to 98%) lignin was recovered from the pretreatment liquor. The good recyclability of the guanidine hydrochloride-based DES was also proven with up to 90% cellulose hydrolysis with third-time recycled DES without post purification. The proposed microwave-assisted guanidine hydrochloride/lactic acid DES showed its great potentials as a highly effective and recyclable pretreatment solvent for future biorefinery strategies.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Feng Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
21
|
Strengthening Cellulose Nanopaper via Deep Eutectic Solvent and Ultrasound-Induced Surface Disordering of Nanofibers. Polymers (Basel) 2021; 14:polym14010078. [PMID: 35012101 PMCID: PMC8747671 DOI: 10.3390/polym14010078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
The route for the preparation of cellulose nanofiber dispersions from bacterial cellulose using ethylene glycol- or glycerol-based deep eutectic solvents (DES) is demonstrated. Choline chloride was used as a hydrogen bond acceptor and the effect of the combined influence of DES treatment and ultrasound on the thermal and mechanical properties of bacterial cellulose nanofibers (BC-NFs) is demonstrated. It was found that the maximal Young’s modulus (9.2 GPa) is achieved for samples prepared using a combination of ethylene glycol-based DES and ultrasound treatment. Samples prepared with glycerol-based DES combined with ultrasound exhibit the maximal strength (132 MPa). Results on the mechanical properties are discussed based on the structural investigations that were performed using FTIR, Raman, WAXD, SEM and AFM measurements, as well as the determination of the degree of polymerization and the density of BC-NF packing during drying with the formation of paper. We propose that the disordering of the BC-NF surface structure along with the preservation of high crystallinity bulk are the key factors leading to the improved mechanical and thermal characteristics of prepared BC-NF-based papers.
Collapse
|
22
|
Alizadeh V, Kirchner B. Molecular level insight into the solvation of cellulose in deep eutectic solvents. J Chem Phys 2021; 155:084501. [PMID: 34470350 DOI: 10.1063/5.0058333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Deep eutectic solvents as sustainable and new-generation solvents show potential in the field of cellulose dissolution. Although these novel materials are tested for numerous industrial, environmental, and medical applications, little is known about the structural features of cellulose interacting with deep eutectic solvents. In this work, the interplay of cellulose is studied in two deep eutectic solvents: choline acetate mixed with urea and choline chloride mixed with urea using classical molecular dynamics simulations. Dissolution of cellulose in the studied liquids was not observed to be in agreement with experimental work from the literature. However, a slight swelling in the chloride, as compared to the acetate-based solvent, is apparent. A possible rationale might be found in the stronger hydrogen bonding of the chloride anion compared to the acetate anion with the hydrogen atoms of the cellulose. Moreover, chloride approaches the outer glucose units comparatively more, which could be interpreted as the onset of entering and thus dissolving the cellulose as was previously observed. Specific hydrogen bonds between all units are analyzed and discussed in detail.
Collapse
Affiliation(s)
- Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| |
Collapse
|
23
|
Yiin CL, Yap KL, Ku AZE, Chin BLF, Lock SSM, Cheah KW, Loy ACM, Chan YH. Recent advances in green solvents for lignocellulosic biomass pretreatment: Potential of choline chloride (ChCl) based solvents. BIORESOURCE TECHNOLOGY 2021; 333:125195. [PMID: 33932810 DOI: 10.1016/j.biortech.2021.125195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Biomass wastes exhibit a great potential to be used as a source of non-depleting renewable energy and synthesis of value-added products. The key to the valorization of excess lignocellulosic biomass wastes in the world lies on the pretreatment process to recalcitrant barrier of the lignocellulosic material for the access to useful substrates. A wide range of pretreatment techniques are available and advances in this field is continuously happening, in search for cheap, effective, and environmentally friendly methods. This review starts with an introduction to conventional approaches and green solvents for pretreatment of lignocellulosic biomass. Subsequently, the mechanism of actions along with the advantages and disadvantages of pretreatment techniques were reviewed. The roles of choline chloride (ChCl) in green solvents and their potential applications were also comprehensively reviewed. The collection of ideas in this review serve as an insight for future works or interest on biomass-to-energy conversion using green solvents.
Collapse
Affiliation(s)
- Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia.
| | - Kok Liang Yap
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia.
| | - Andrian Zi En Ku
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia.
| | - Bridgid Lai Fui Chin
- Department of Chemical Engineering, Faculty of Engineering and Science, Sarawak Campus, Curtin University Malaysia, Miri 98009, Sarawak, Malaysia.
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia.
| | - Kin Wai Cheah
- Energy and Environment Institute, University of Hull, Cottingham Road, Kingston upon Hull HU6 7RX, United Kingdom.
| | | | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
24
|
Rodrigues JS, Lima V, Araújo LCP, Botaro VR. Lignin Fractionation Methods: Can Lignin Fractions Be Separated in a True Industrial Process? Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jéssica S. Rodrigues
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Vitor Lima
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Luísa C. P. Araújo
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Vagner R. Botaro
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| |
Collapse
|
25
|
Hartati I, Sulistyo H, Sediawan WB, Azis MM, Fahrurrozi M. Microwave-Assisted Urea-Based-Hydrotropic Pretreatment of Rice Straw: Experimental Data and Mechanistic Kinetic Models. ACS OMEGA 2021; 6:13225-13239. [PMID: 34056472 PMCID: PMC8158827 DOI: 10.1021/acsomega.1c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The three major lignocellulose components can be transformed into various biomass-derived platform fuels, chemicals, and materials upon pretreatment and chemical upgrading. Lignocellulose pretreatment is an important step to obtain an eco-friendly, economical, and effective biomass utilization process. The combination of microwave heating and hydrotropic pretreatment is considered as a green method of lignocellulose pretreatment. Experimental data and two mechanistic kinetic models of microwave-assisted pretreatment of rice straw are presented. Here, the use of urea solution as the hydrotropic agent was examined to facilitate the degradation of three major lignocellulose components. The first kinetic model assumes that the soluble lignin does not undergo condensation, while the second one assumes that part of the soluble lignin condenses to a solid product. The mechanistic models were validated with a series of experimental data obtained from microwave-assisted hydrotropic pretreatment of rice straw. The results show that both models could generally describe the experimental data well. However, based on the evaluation of the results of the kinetic models, it turned out that the rate of lignin condensation was relatively slow compared to the rate of lignin degradation to soluble lignin (the value of k c is relatively small compared to the value of k l1). Hence, the kinetic model with exclusion of lignin condensation is suggested more since it is mathematically simpler. The proposed mechanistic model can also predict the cellulose and hemicellulose dissolution and thereby can be used as a process optimization tool. The microwave-assisted urea-based hydrotropic pretreatment conducted at a solid-liquid ratio of 1:35, a urea concentration of 36.8%, a reaction temperature of 90 °C, and a pretreatment duration of 73.6 min is predicted to give a solid residue with low lignin content and high cellulose content which resulted in a cellulose to lignin ratio of 5.53. Cellulosic biomass characterization revealed that microwave-assisted hydrotropic pretreatment was able to produce higher crystallinity and thermally stable cellulosic biomass.
Collapse
Affiliation(s)
- Indah Hartati
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Chemical Engineering, Faculty
of Engineering, Universitas Wahid Hasyim, Semarang 50236, Indonesia
| | - Hary Sulistyo
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyudi Budi Sediawan
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Muhammad Mufti Azis
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mohammad Fahrurrozi
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
26
|
Wang R, Wang K, Zhou M, Xu J, Jiang J. Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. BIORESOURCE TECHNOLOGY 2021; 328:124873. [PMID: 33639413 DOI: 10.1016/j.biortech.2021.124873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 05/24/2023]
Abstract
As an attractive renewable carbon resource, lignocellulose could be exploited to produce high-value-added products. Notably, comprehensive utilization of lignocelluloses and lignin first exploitation is still a challenge during bio-refinery process. In this study, an environmentally benign extraction method via hydrothermal-deep eutectic solvents pretreatment was proposed to separate hemicelluloses and high purity of lignin simultaneously from moso bamboo with most of cellulose retaining in the residues. Hemicelluloses were firstly removed by hydrothermal pretreatment, following with lignin extraction by DESs which was prepared from choline chloride and lactic acid, betaine and lactic acid, respectively. Notably, 98.2 wt% of hemicelluloses were degraded and mainly converted into pentose. Meanwhile, 80.1 wt% of delignification was achieved under the optimum condition (CC/LA, 140℃, 6 h), following with up to 99.49% of lignin purity. The mass balance evaluation demonstrated that the combined hydrothermal-deep eutectic solvents pretreatment is a potential method for efficient fractionation of lignocellulose.
Collapse
Affiliation(s)
- Ruizhen Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Minghao Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China
| | - Junming Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China
| |
Collapse
|
27
|
Chen X, Zhang Q, Yu Q, Chen L, Sun Y, Wang Z, Yuan Z. Depolymerization of holocellulose from Chinese herb residues by the mixture of lignin-derived deep eutectic solvent with water. Carbohydr Polym 2020; 248:116793. [DOI: 10.1016/j.carbpol.2020.116793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
|
28
|
Utilization of waste straw and husks from rice production: A review. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.07.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Choline chloride-based deep eutectic solvents for efficient delignification of Bambusa bambos in bio-refinery applications. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01259-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Fractionation and characterization of lignin from waste rice straw: Biomass surface chemical composition analysis. Int J Biol Macromol 2020; 145:795-803. [DOI: 10.1016/j.ijbiomac.2019.10.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 11/20/2022]
|
31
|
Tan YT, Chua ASM, Ngoh GC. Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products - A review. BIORESOURCE TECHNOLOGY 2020; 297:122522. [PMID: 31818720 DOI: 10.1016/j.biortech.2019.122522] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Since the introduction of deep eutectic solvent (DES) in biomass processing field, the efficiency of DES in lignocellulosic biopolymer model compounds' (cellulose, hemicellulose and lignin) solubilisation and conversion was widely recognized. Nevertheless, DES's potential for biorefinery application can be reflected more accurately through their performance in raw lignocellulosic biomass processing rather than model compound conversion. Therefore, this review examines the studies on raw lignocellulosic biomass fractionation using DES and the subsequent conversion of DES-fractionated products into bio-based products. The review stresses on three key parts: performance of varying types of DESs and pretreatment schemes for biopolymer fractionation, properties and conversion of fractionated saccharides as well as DES-extracted lignin. The prospects and challenges of DES implementation in biomass processing will also be discussed. This review provides a front-to-end view on the DES's performance, starting from pretreatment to DES-fractionated products conversion, which would be helpful in devising a comprehensive biomass utilization process.
Collapse
Affiliation(s)
- Yee Tong Tan
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Adeline Seak May Chua
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
32
|
Kalhor P, Ghandi K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules 2019; 24:E4012. [PMID: 31698717 PMCID: PMC6891572 DOI: 10.3390/molecules24224012] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Valorization of lignocellulosic biomass and food residues to obtain valuable chemicals is essential to the establishment of a sustainable and biobased economy in the modern world. The latest and greenest generation of ionic liquids (ILs) are deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs); these have shown great promise for various applications and have attracted considerable attention from researchers who seek versatile solvents with pretreatment, extraction, and catalysis capabilities in biomass- and biowaste-to-bioenergy conversion processes. The present work aimed to review the use of DESs and NADESs in the valorization of biomass and biowaste as pretreatment or extraction solvents or catalysis agents.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
33
|
Wachemo AC, Tong H, Yuan H, Zuo X, Korai RM, Li X. Continuous dynamics in anaerobic reactor during bioconversion of rice straw: Rate of substance utilization, biomethane production and changes in microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1274-1284. [PMID: 31412461 DOI: 10.1016/j.scitotenv.2019.05.411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) technology is one of the best eco-friendly waste-to-energy processes. Hence the trend of biogas production shows considerable ranges of fluctuations in entire digestion period. This study analyzes the daily substance conversion dynamics, biomethane production and changes in microbial community structure. The results show that in the first peak of biogas production during 1st up to 4th days of the digestion period, CO2 was the dominant component. However, the daily methane production (DMP) reveal accelerated increment starting from day 8 up to the peak point on day 13 (462.11 mL/d). The concentration of acetic acid covered 21.80% up to 62.00% of the total VFAs in the first 10 days of digestion period. On the other hand, the accumulation of propionic acid is in the range of 1735.70 mg/L- 2893.12 mg/L in between day 5-15, which is beyond the inhibition level (1000 mg/L) but the system didn't stop biogas production. The distribution of bacterial family such as Clostridiaceae_1, Prevotellaceae, Enterobacteriaceae and Peptostreptococcaceae are the dominant group at early stage as compared to composition in remaining stages except Enterobacteriaceae which have marginally high abundance in lowest biogas production point. The archaeal genus Methanosaeta is dominant among the samples collected at early stages (65.66%-77.22%). However, the Methanobacterium is predominant (34.88%-59.40%) in samples obtained at late stages of AD period. On the other hand, the distribution of Methanosarcina is comparable in the first three samples (S1(16.60%), S2(22.21%) and S3(20.38%)) than the stable stage (S4 (6.7%)). This study demonstrates the detailed conditions at fluctuating and constant biogas production periods, which would benefit future researchers working in similar area.
Collapse
Affiliation(s)
- Akiber Chufo Wachemo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China; Faculty of Water Supply and Environmental Engineering, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia
| | - Huan Tong
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Hairong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Xiaoyu Zuo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Rashid Mustafa Korai
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China; Department of Petroleum & Gas Engineering, Dawood University of Engineering & Technology, New MA Jinnah Road, Karachi 74800, Sindh, IR, Pakistan
| | - Xiujin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
34
|
Gao J, Chen C, Wang L, Lei Y, Ji H, Liu S. Utilization of inorganic salts as adjuvants for ionic liquid-water pretreatment of lignocellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. 3 Biotech 2019; 9:264. [PMID: 31192089 PMCID: PMC6560112 DOI: 10.1007/s13205-019-1788-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
Pretreatment of lignocellulosic biomass with ionic liquids (ILs) for the large-scale biorefinery remains challenging due to its high price. This study focused on the utilization of inorganic salts as adjuvants for ionic liquid-water pretreatment to improve the tolerance to water and the reusability of the ILs. After the pretreatment of rice straw by the mixture of 40% 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl) + 53% water + 7% K2CO3 at 110 °C for 1 h, the residues became highly susceptible to enzymatic hydrolysis; 93.70% of lignin was removed, and 92.07% sugar yield was achieved. [C2mim]Cl-K2CO3 aqueous biphasic system was formed at room temperature when K2CO3 concentration increased to more than 30%, and the [C2mim]Cl recovery of 94.32% was achieved. The results indicate that the addition of inorganic salts to IL aqueous solutions can significantly reduce the cost of IL pretreatment, while maintaining an efficient enzymatic hydrolysis of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Cuili Chen
- College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Liyuan Wang
- College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Youfeng Lei
- College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Hongwu Ji
- College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Shucheng Liu
- College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, 524088 China
| |
Collapse
|
35
|
Tan YT, Ngoh GC, Chua ASM. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. BIORESOURCE TECHNOLOGY 2019; 281:359-366. [PMID: 30831515 DOI: 10.1016/j.biortech.2019.02.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 05/05/2023]
Abstract
In this study, acidic deep eutectic solvents (DES) synthesized from various organic carboxylic acid hydrogen bond donors were applied to lignocellulosic oil palm empty fruit bunch (EFB) pretreatment. The influence of functional group types on acid and their molar ratios with hydrogen bond acceptor on lignin extraction were evaluated. The result showed presence of hydroxyl group and short alkyl chain enhanced biomass fractionation and lignin extraction. Choline chloride:lactic acid (CC-LA) with the ratio of 1:15 and choline chloride:formic acid (CC-FA) with 1:2 ratio extracted more than 60 wt% of lignin. CC-LA DES-extracted lignin (DEEL) exhibited comparable reactivity with technical and commercial lignin based on its phenolic hydroxyl content (3.33-3.72 mmol/glignin). Also, the DES-pretreated EFB comprised of enriched glucan content after biopolymer fractionation. Both DES-pretreated EFB and DEEL can be potential feedstock for subsequent conversion processes. This study presented DES as an effective and facile pretreatment method for reactive lignin extraction.
Collapse
Affiliation(s)
- Yee Tong Tan
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Adeline Seak May Chua
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
Ma C, Laaksonen A, Liu C, Lu X, Ji X. The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev 2018; 47:8685-8720. [PMID: 30298877 DOI: 10.1039/c8cs00325d] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have been suggested as eco-friendly alternatives to organic solvents. A trace amount of water is often unavoidable as impurity, and water is also added on purpose to reduce their problematically high viscosity and lower their high price. Understanding the distinct effects of water on the properties of ILs/DESs is highly important. In this review, we collect published experimental and theoretical results for IL/DES-H2O systems at varied water concentrations and analyze them. Results from mechanistic studies, thermodynamic modelling and advanced experiments are collected and critically discussed. Six commonly studied IL/DES-H2O systems were selected to map experimental observations onto microscopic results obtained in mechanistic studies. A great variety of distinct contours of the excess properties can be observed over the entire compositional range, indicating that the properties of IL/DES-H2O systems are highly unpredictable. Mechanistic studies clearly demonstrate that the added H2O rapidly changes the heterogeneous 3D structures of pure ILs/DESs, leading to very different properties and behaviour. There are similarities between aqueous electrolytes and IL/DES solutions but the bulky and asymmetric organic cations in ILs/DESs do not conform to the standard salt dissolution and hydration concepts. Thermodynamic modelling previously assumes ILs/DESs to be either a neutral ion-pair or completely dissociated ions, neglecting specific ion hydration effects. A new conceptual framework is suggested for thermodynamic modelling of IL/DES-H2O binary systems to enable new technologies for their practical applications.
Collapse
Affiliation(s)
- Chunyan Ma
- Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, 971 87, Sweden.
| | | | | | | | | |
Collapse
|
37
|
Kandanelli R, Thulluri C, Mangala R, Rao PVC, Gandham S, Velankar HR. A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass. BIORESOURCE TECHNOLOGY 2018; 265:573-576. [PMID: 29914787 DOI: 10.1016/j.biortech.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
A novel ternary system consisting of deep eutectic solvent-alcohol (DES-OL) mixture was developed for the effective delignification of lignocellulosic biomass. Optimization studies included selecting suitable co-solvent (among n-BuOH, n-PrOH & EtOAc) for treating biomass (rice husk, rice straw and wheat straw), altering the DES-to-alcohol ratio (2:1, 1:1 and 1:2) as well as the reaction temperature (50, 80 and 120 °C). The highest delignification (∼50%) was observed using n-butanol assisted DES (ChCl: OA) at a ratio of 2:1, with high solid loading of 15% (w/v) at 120 °C (∼1.2 bar) in a 60 min reaction. Post pretreatment, high purity lignin was recovered after distilling off butanol for recycling. Microscopy and CPMAS/NMR studies confirmed the effectiveness of DES-OL pretreatment on biomass delignification.
Collapse
Affiliation(s)
- Ramesh Kandanelli
- Bioprocess Group, Hindustan Petroleum Green R & D Center, KIADB Industrial Area, Devanagonthi, Bengaluru 560067, India
| | - Chiranjeevi Thulluri
- Bioprocess Group, Hindustan Petroleum Green R & D Center, KIADB Industrial Area, Devanagonthi, Bengaluru 560067, India
| | - Ramkumar Mangala
- Bioprocess Group, Hindustan Petroleum Green R & D Center, KIADB Industrial Area, Devanagonthi, Bengaluru 560067, India
| | - Peddy V C Rao
- Bioprocess Group, Hindustan Petroleum Green R & D Center, KIADB Industrial Area, Devanagonthi, Bengaluru 560067, India
| | - Sriganesh Gandham
- Bioprocess Group, Hindustan Petroleum Green R & D Center, KIADB Industrial Area, Devanagonthi, Bengaluru 560067, India
| | - Harshad R Velankar
- Bioprocess Group, Hindustan Petroleum Green R & D Center, KIADB Industrial Area, Devanagonthi, Bengaluru 560067, India.
| |
Collapse
|
38
|
Zhao Z, Chen X, Ali MF, Abdeltawab AA, Yakout SM, Yu G. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2018; 263:325-333. [PMID: 29758482 DOI: 10.1016/j.biortech.2018.05.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
A series of ethanolamine based deep eutectic solvents (DESs), which have strong basicity, were firstly applied in wheat straw pretreatment. Typically, choline chloride: monoethanolamine (C:M) as the best solvent among these DESs can remove 71.4% lignin and reserve 93.7% cellulose (70 °C, L/S mass ratio of 20:1, 9 h), and improve the enzymatic hydrolysis of residue, i.e., 89.8% cellulose and 62.0% xylan conversion. The pretreatment capacity of C:M is comparable to other solvents while C:M has several advantages, e.g., lower cost with cheap materials and simpler preparation process, mild conditions and lower polysaccharide loss. The XRD, SEM and FT-IR results verified that the polysaccharide conversion and sugars yield were enhanced by the removal of lignin in the pretreatment process. The basic ethanolamine based DESs are promising solvents for industrial application of wheat straw pretreatment.
Collapse
Affiliation(s)
- Zheng Zhao
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaochun Chen
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Furqan Ali
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ahmed A Abdeltawab
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sobhy M Yakout
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Guangren Yu
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
39
|
Zdanowicz M, Wilpiszewska K, Spychaj T. Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym 2018; 200:361-380. [PMID: 30177177 DOI: 10.1016/j.carbpol.2018.07.078] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
In the review a new class of green solvents - Deep Eutectic Solvents (DES) as media for polysaccharides treatment has been presented. They are an alternative for ionic liquids, non- or low toxic, biodegradable multipurpose agents obtained via simple and convenient way. Moreover, a large number of composition possibilities allow to tailor their properties. Because of selective solubilization of polysaccharides DES can be used for lignocellulosic biomass delignification, cellulose extraction as well as cellulose nanofibrillation or nanocrystalization. DES have been applied in extraction, separation or purification of some specific biopolymers like chitin, carrageenans and xylans, but also as components of polysaccharide based materials, e.g. plasticizers (mainly for starch, but also for cellulose derivatives, chitosan, agar and agarose), compatibilizers or modifiers. An interest in applying DES as green solvents increased rapidly within last years and it may be expected that their applications in polysaccharides treatment would be developed also on industrial scale.
Collapse
Affiliation(s)
- Magdalena Zdanowicz
- West Pomeranian University of Technology, Szczecin, Poland; Faculty of Chemical Technology and Engineering, Polymer Institute, ul. Pulaskiego 10, 70-322 Szczecin, Poland.
| | - Katarzyna Wilpiszewska
- West Pomeranian University of Technology, Szczecin, Poland; Faculty of Chemical Technology and Engineering, Polymer Institute, ul. Pulaskiego 10, 70-322 Szczecin, Poland
| | - Tadeusz Spychaj
- West Pomeranian University of Technology, Szczecin, Poland; Faculty of Chemical Technology and Engineering, Polymer Institute, ul. Pulaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
40
|
Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes (Basel) 2018. [DOI: 10.3390/pr6080098] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A complete bibliometric analysis of the Scopus database was performed to identify the research trends related to lignin valorization from 2000 to 2016. The results from this analysis revealed an exponentially increasing number of publications and a high relevance of interdisciplinary collaboration. The simultaneous valorization of the three main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has been revealed as a key aspect and optimal pretreatment is required for the subsequent lignin valorization. Research covers the determination of the lignin structure, isolation, and characterization; depolymerization by thermal and thermochemical methods; chemical, biochemical and biological conversion of depolymerized lignin; and lignin applications. Most methods for lignin depolymerization are focused on the selective cleavage of the β-O-4 linkage. Although many depolymerization methods have been developed, depolymerization with sodium hydroxide is the dominant process at industrial scale. Oxidative conversion of lignin is the most used method for the chemical lignin upgrading. Lignin uses can be classified according to its structure into lignin-derived aromatic compounds, lignin-derived carbon materials and lignin-derived polymeric materials. There are many advances in all approaches, but lignin-derived polymeric materials appear as a promising option.
Collapse
|
41
|
Calcio Gaudino E, Tabasso S, Grillo G, Cravotto G, Dreyer T, Schories G, Altenberg S, Jashina L, Telysheva G. Wheat straw lignin extraction with bio-based solvents using enabling technologies. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|