1
|
Wang L, Li Y, Osei PO, Gao F, Wu X, Liao X. Preparation of pectin/carboxymethyl cellulose composite films via high-pressure processing and enhancement of antimicrobial packaging. Int J Biol Macromol 2024; 281:136462. [PMID: 39393742 DOI: 10.1016/j.ijbiomac.2024.136462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
This study investigated the impact of high-pressure processing (HPP) treatment on the structure and physicochemical properties of pectin (PEC)/carboxymethyl cellulose (CMC) composite films, along with the development of new active films incorporating emodin as an antibacterial agent. The results showed that 500 MPa/20 min HPP treatment significantly improved the tensile strength (from 45.91 ± 4.63 MPa to 52.24 ± 4.87 MPa) and elongation at the break (from 5.00 ± 1.44 % to 11.72 ± 2.97 %) of the films. It also improved the film's thermal stability and had no significant effect on its thermal degradability. Moreover, emodin was incorporated into the PEC/CMC film-forming solution and subjected to 500 MPa/20 min HPP treatment to investigate the structure, functional properties, optical properties, and antibacterial activity of the film. The emodin caused the film structural alteration, but significantly improved the water vapor barrier properties. It also reduced the film brightness and light transmission. The antibacterial assessment demonstrated that the film's antibacterial activity was correlated positively with increasing emodin content, and the number of viable cells of Staphylococcus aureus decreased by 1.29 log10 CFU/mL, 1.70 log10 CFU/mL, and 1.80 log10 CFU/mL with different levels of EM antimicrobial films after 12 h.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, 100083, China
| | - Yiming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, 100083, China
| | - Pamela Owusu Osei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, 100083, China
| | - Fuqing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, 100083, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, 100083, China
| |
Collapse
|
2
|
In situ green synthesis of cellulose nanocomposite films incorporated with silver/silver chloride particles: characterization and antibacterial performance. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Liu S, Lu S, Sun S, Hai J, Meng G, Wang B. NIR II Light-Response Au Nanoframes: Amplification of a Pressure- and Temperature-Sensing Strategy for Portable Detection and Photothermal Therapy of Cancer Cells. Anal Chem 2021; 93:14307-14316. [PMID: 34641676 DOI: 10.1021/acs.analchem.1c03486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitative detection of cancer cells using portable devices is promising for the development of simple, fast, and point-of-care cancer diagnostic techniques. However, how to further amplify the detection signal to improve the sensitivity and accuracy of detecting cancer cells by portable devices remains a challenge. To solve the problem, we, for the first time, synthesized folic-acid-conjugated Au nanoframes (FA-Au NFs) with amplification of pressure and temperature signals for highly sensitive and accurate detection of cancer cells by portable pressure meters and thermometers. The resulting Au NFs exhibit excellent near-infrared (NIR) photothermal performance and catalase activity, which can promote the decomposition of NH4HCO3 and H2O2 to generate corresponding gases (CO2, NH3, and O2), thereby synergistically amplifying pressure signals in a closed reaction vessel. At the same time, Au NFs with excellent peroxidase-like activity can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce TMB oxide (oxTMB) with a strong photothermal effect, thereby cooperating with Au NFs to amplify the photothermal signal. In the presence of cancer cells with overexpressing folate receptors (FRs), the molecular recognition signals between FA and FR can be converted into amplified pressure and temperature signals, which can be easily read by portable pressure meters and thermometers, respectively. The detection limits for cancer cells using pressure meters and thermometers are 6 and 5 cells/mL, respectively, which are better than other reported methods. Moreover, such Au NFs can improve tumor hypoxia by catalyzing the decomposition of H2O2 to produce O2 and perform photothermal therapy of cancer. Together, our work provides new insight into the application of Au NFs to develop a dual-signal sensing platform with amplification of pressure and temperature signals for portable and ultrasensitive detection of cancer cells as well as personalized cancer therapy.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Genping Meng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Liu S, Chai J, Sun S, Zhang L, Yang J, Fu X, Hai J, Jing YH, Wang B. Site-Selective Photosynthesis of Ag-AgCl@Au Nanomushrooms for NIR-II Light-Driven O 2- and O 2•--Evolving Synergistic Photothermal Therapy against Deep Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46451-46463. [PMID: 34570459 DOI: 10.1021/acsami.1c16999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light-driven endogenous water oxidation has been considered as an attractive and desirable way to obtain O2 and reactive oxygen species (ROS) in the hypoxic tumor microenvironment. However, the use of a second near-infrared (NIR-II) light to achieve endogenous H2O oxidation to alleviate tumor hypoxia and realize deep hypoxic tumor phototherapy is still a challenge. Herein, novel plasmonic Ag-AgCl@Au core-shell nanomushrooms (NMs) were synthesized by the selective photodeposition of plasmonic Au at the bulge sites of the Ag-AgCl nanocubes (NCs) under visible light irradiation. Upon NIR-II light irradiation, the resulting Ag-AgCl@Au NMs could oxidize endogenous H2O to produce O2 to alleviate tumor hypoxia. Almost synchronously, O2 could react with electrons on the conduction band of the AgCl core to generate superoxide radicals (O2•-)for photodynamic therapy. Moreover, Ag-AgCl@Au NMs with an excellent photothermal performance could further promote the phototherapy effect. In vitro and in vivo experimental results show that the resulting Ag-AgCl@Au NMs could significantly improve tumor hypoxia and enhance phototherapy against a hypoxic tumor. The present study provides a new strategy to design H2O-activatable, O2- and ROS-evolving NIR II light-response nanoagents for the highly efficient and synergistic treatment of deep O2-deprived tumor tissue.
Collapse
Affiliation(s)
- Sha Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Chai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shihao Sun
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lang Zhang
- Institute of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiayue Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Fu
- Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou 730000, P. R. China
| | - Jun Hai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baodui Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
5
|
Tu H, Zhu M, Duan B, Zhang L. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000682. [PMID: 32686231 DOI: 10.1002/adma.202000682] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Indexed: 05/22/2023]
Abstract
High-strength petroleum-based materials like plastics have been widely used in various fields, but their nonbiodegradability has caused serious pollution problems. Cellulose, as the most abundant sustainable polymer, has a great chance to act as the ideal substitute for plastics due to its low cost, wide availability, biodegradability, etc. Herein, the recent achievements for developing cellulose "green" solvents and regenerated cellulose materials with high strength via the "bottom-up" route are presented. Cellulose can be regenerated to produce films/membranes, hydrogels/aerogels, filaments/fibers, microspheres/beads, bioplastics, etc., which show potential applications in textiles, biomedicine, energy storage, packaging, etc. Importantly, these cellulose-based materials can be biodegraded in soil and oceans, reducing environmental pollution. The cellulose solvents, dissolving mechanism, and strategies for constructing the regenerated cellulose functional materials with high strength and performances, together with the current achievements and urgent challenges are summarized, and some perspectives are also proposed. The near future will be an exciting era for high-strength biodegradable and renewable materials. The hope is that many environmentally friendly materials with good properties and low cost will be produced for commercial use, which will be beneficial for sustainable development in the world.
Collapse
Affiliation(s)
- Hu Tu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxiang Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Yang W, Ding H, Qi G, Guo J, Xu F, Li C, Puglia D, Kenny J, Ma P. Enhancing the Radical Scavenging Activity and UV Resistance of Lignin Nanoparticles via Surface Mannich Amination toward a Biobased Antioxidant. Biomacromolecules 2021; 22:2693-2701. [PMID: 34077181 DOI: 10.1021/acs.biomac.1c00387] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, lignin specific activities, such as antioxidation and antibacterial and anti-ultraviolet performance, have drawn more and more attention. Nevertheless, the insufficient radical scavenging (antioxidation) activity has become one of the main drawbacks that limits its high-value application. In this study, lignin nanoparticles (LNPs) were prepared via a facile acid treatment strategy. Subsequently, surface amination of LNPs (a-LNPs) was carried out through the Mannich reaction. Specifically, the antioxidant behavior of LNPs and modified LNPs was evaluated by DPPH/DMPO radical scavenging and in vitro HeLa cell reactive oxygen species (ROS) scavenging tests, which demonstrated that the antioxidation activity of a-LNPs was more evident than that of both LNPs and butylated hydroxytoluene (BHT) commercial antioxidant. The mechanism of the radical scavenging ability of aminated LNPs was elucidated and proved to be related to the bond dissociation enthalpy of Ar-O···H, determined by the electron-donating effect of the substituted groups in the ortho-position. Meanwhile, the morphologies, solubilities, and UV-absorbing and antibacterial behavior of LNPs and a-LNPs were also studied, and the results showed that a-LNP sample exhibited higher UV resistance performance than LNPs. We expected that the modified LNPs with high antioxidation activity can serve as a safe and lower-cost biobased antioxidant.
Collapse
Affiliation(s)
- Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hui Ding
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guochuang Qi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Xu
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Debora Puglia
- Perugia University, Civil and Environmental Engineering Department, Materials Engineering Center, UdR INSTM, Terni 05100, Italy
| | - Jose Kenny
- Perugia University, Civil and Environmental Engineering Department, Materials Engineering Center, UdR INSTM, Terni 05100, Italy
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.084] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Zhang X, Zhang Q, Xue Y, Wang Y, Zhou X, Li Z, Li Q. Simple and green synthesis of calcium alginate/AgCl nanocomposites with low-smoke flame-retardant and antimicrobial properties. CELLULOSE (LONDON, ENGLAND) 2021; 28:5151-5167. [PMID: 33776253 PMCID: PMC7982765 DOI: 10.1007/s10570-021-03825-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/09/2021] [Indexed: 05/23/2023]
Abstract
Fire hazards and infectious diseases result in great threats to public safety and human health, thus developing multi-functional materials to deal with these issues is critical and yet has remained challenging to date. In this work, we report a facile and eco-friendly synthetic approach for the preparation of calcium alginate/silver chloride (CA/AgCl) nanocomposites with dual functions of excellent flame-retardant and antibacterial activity. Multi characterization techniques and antibacterial assays were performed to investigate the flame-retardant and antibacterial properties of the CA/AgCl nanocomposites. The obtained results show that the CA/AgCl nanocomposites exhibited much higher limiting oxygen index value (> 60%) than that of CA (48%) with a UL-94 rating of V-0. Moreover, CA/AgCl particularly displayed an efficiently smoke-suppressive feature by achieving a total smoke release value of 2.7 m2/m2, which was reduced by 91%, compared to CA. The antibacterial rates of the CA/AgCl nanocomposites against E. coli and S. aureus were measured to be 99.67% and 99.77%, respectively, while CA showed quite weak antibacterial rates. In addition, the flame-retardant and antibacterial mechanisms were analyzed and proposed based on the experimental data. This study provides a novel nanocomposite material with both flame-retardant and antibacterial properties which show promising application prospects in the fields of decorative materials and textile industry.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Qing Zhang
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Yun Xue
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Yanwei Wang
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Xiaodong Zhou
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| | - Zichao Li
- Institute of Biomedical Engineering, College of Life Sciences, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
| | - Qun Li
- College of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
9
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
10
|
Zhang D, Ren B, Zhang Y, Liu Y, Chen H, Xiao S, Chang Y, Yang J, Zheng J. Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property. J Colloid Interface Sci 2020; 578:242-253. [DOI: 10.1016/j.jcis.2020.05.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/31/2020] [Indexed: 12/25/2022]
|
11
|
Menazea A, Ahmed M. Silver and copper oxide nanoparticles-decorated graphene oxide via pulsed laser ablation technique: Preparation, characterization, and photoactivated antibacterial activity. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100464] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Ji ST, Wang QQ, Zhou J, Xu G, Shi WY. Synthesis of a Ag/AgCl/PLA membrane under electron beam irradiation for the photocatalytic degradation of methylene blue and chloramphenicol. NUCLEAR SCIENCE AND TECHNIQUES 2020; 31:22. [DOI: 10.1007/s41365-020-0726-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 06/21/2023]
|
13
|
Du MQ, Peng YZ, Ma YC, Yang L, Zhou YL, Zeng FK, Wang XK, Song ML, Chang GJ. Selective Carbon Dioxide Capture in Antifouling Indole-based Microporous Organic Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2326-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Yu N, Peng H, Qiu L, Wang R, Jiang C, Cai T, Sun Y, Li Y, Xiong H. New pectin-induced green fabrication of Ag@AgCl/ZnO nanocomposites for visible-light triggered antibacterial activity. Int J Biol Macromol 2019; 141:207-217. [PMID: 31479673 DOI: 10.1016/j.ijbiomac.2019.08.257] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
Abstract
The pectin (CEP) was used as matrix material to prepare Ag@AgCl/ZnO nanocomposites with a green method for photocatalytic antibacterial activity in visible-light. Briefly, Ag@AgCl plasmonic hybrids were prepared in the CEP macromolecule matrix with size control, which was attributed to the stability of carboxyl and hydroxyl groups on the CEP. Subsequently, an effective and green two-steps approach was explored for the fabrication of CEP-Ag@AgCl/ZnO nanocomposites with resource saving and environment friendly. Interestingly, more Ag+ was converted into metallic Ag in the CEP-Ag@AgCl/ZnO than that in the CEP-Ag@AgCl. This phenomenon was attributed that the reducibility of free hemiacetal hydroxyl groups on CEP was realized with the help of NaOH in the preparation of CEP-ZnO. In addition, the CEP chains were not obviously destroyed except for the change in the crystallinity after the preparation of the CEP-Ag@AgCl/ZnO nanocomposites, indicating that the method was non-destructive. Moreover, the pH triggered release of Zn2+ and low release of Ag+ in CEP-Ag@AgCl/ZnO nanocomposites with excellent photocatalytic antibacterial activity were confirmed in this work. The proposed green process provides a new idea for the large-scale production of antibacterial pectin-based nanocomposites in industry with a low-cost.
Collapse
Affiliation(s)
- Ningxiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China
| | - Hailong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China; School of Resources, Environmental, and Chemical Engineering, Nanchang University, No.999 Xuefu Avenue, Nanchang 330031, China
| | - Liang Qiu
- Centre for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Chengjia Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China
| | - Taimei Cai
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, No.999 Xuefu Avenue, Nanchang 330031, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
15
|
Xu Q, Zheng W, Duan P, Chen J, Zhang Y, Fu F, Diao H, Liu X. One-pot fabrication of durable antibacterial cotton fabric coated with silver nanoparticles via carboxymethyl chitosan as a binder and stabilizer. Carbohydr Polym 2018; 204:42-49. [PMID: 30366541 DOI: 10.1016/j.carbpol.2018.09.089] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 01/30/2023]
Abstract
In this article, durable antimicrobial cotton fabric was prepared by a one-pot modification process using a colloidal solution of silver nanoparticles (Ag NPs) stabilized by carboxymethyl chitosan (CMC). Due to coordination bonds between the amine groups of CMC and the Ag NPs and the ester bonds present between the carboxyl groups of CMC and the hydroxyl groups of cellulose, the Ag NPs were tightly immobilized onto the cotton fiber surface. As a result, the Ag NPs that were adhered on the cotton fabrics have uniform dispersion and small size, ranging from 10 nm to 80 nm. This provides the cotton fabric with remarkable and durable antibacterial activity against both S. aureus and E. coli. After 50 laundering cycles, the bacterial reduction rate (BR) for the modified cotton fabric remained over 94%. This method is simple, and it is particularly suitable for the industrial finishing process.
Collapse
Affiliation(s)
- QingBo Xu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, China
| | - WeiShi Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, China
| | - PanPan Duan
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, China
| | - JiaNing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - YanYan Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, China
| | - FeiYa Fu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, China
| | - HongYan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - XiangDong Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, China.
| |
Collapse
|
16
|
Indira Devi M, Nallamuthu N, Rajini N, Varada Rajulu A, Hari Ram N, Siengchin S. Cellulose hybrid nanocomposites using Napier grass fibers with in situ generated silver nanoparticles as fillers for antibacterial applications. Int J Biol Macromol 2018; 118:99-106. [DOI: 10.1016/j.ijbiomac.2018.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 11/27/2022]
|