1
|
Giram PS, Nimma R, Bulbule A, Yadav AS, Gorain M, Venkata Radharani NN, Kundu GC, Garnaik B. Engineered PLGA Core-Lipid Shell Hybrid Nanocarriers Improve the Efficacy and Safety of Irinotecan to Combat Colon Cancer. ACS Biomater Sci Eng 2024; 10:6661-6676. [PMID: 39269431 DOI: 10.1021/acsbiomaterials.4c01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Poly(lactide-co-glycolide) (PLGA) is a biocompatible and biodegradable copolymer that has gained high acceptance in biomedical applications. In the present study, PLGA (Mw = 13,900) was synthesized by ring-opening polymerization in the presence of a biocompatible zinc-proline initiator through a green route. Irinotecan (Ir) loaded with efficient PLGA core-lipid shell hybrid nanocarriers (lipomers, LPs) were formulated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG-2000), using soya lecithin, by a nanoprecipitation method, and the fabricated LPs were designated as P-DSPE-Ir and P-DSPE-PEG-Ir, respectively. The formulated LPs were further validated for their physicochemical properties and biological potential for colon cancer application. The potential delivery of a poorly water-soluble chemotherapeutic drug (Ir) was studied for the treatment of colon cancer. LPs were successfully prepared, providing controlled size (80-120 nm) and surface charge (∼ -35 mV), and the sustained release properties and cytotoxicity against CT-26 colon cancer cells were studied. The in vivo biodistribution and tumor site retention in CT-26 xenograft tumor-bearing Balb/C mice showed promising results for tumor uptake and retention for a prolonged time period. Unlike P-DSPE-Ir, the P-DSPE-PEG-Ir LP exhibited significant tumor growth delay as compared to untreated and blank formulation-treated groups in CT-26 (subcutaneous tumor model) after 4 treatments of 10 mg irinotecan/kg dose. The biocompatibility and safety of the LPs were confirmed by an acute toxicity study of the optimized formulation. Overall, this proof-of-concept study demonstrates that the PLGA-based LPs improve the efficacy and bioavailability and decrease neutropenia of Ir to combat colon cancer.
Collapse
Affiliation(s)
- Prabhanjan S Giram
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research AcSIR Headquarters, CSIR-HRDC Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Ramakrishna Nimma
- Laboratory of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Anuradha Bulbule
- Laboratory of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Amit Singh Yadav
- Laboratory of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Mahadeo Gorain
- Laboratory of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | | | - Gopal C Kundu
- School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar 751 024, India
| | - Baijayantimala Garnaik
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research AcSIR Headquarters, CSIR-HRDC Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
2
|
Einafshar E, Javid H, Amiri H, Akbari-Zadeh H, Hashemy SI. Curcumin loaded β-cyclodextrin-magnetic graphene oxide nanoparticles decorated with folic acid receptors as a new theranostic agent to improve prostate cancer treatment. Carbohydr Polym 2024; 340:122328. [PMID: 38857995 DOI: 10.1016/j.carbpol.2024.122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
This article presents a novel approach to treating prostate cancer using a nanocarrier composed of folic acid (FA), β-cyclodextrin (β-CD), and magnetic graphene oxide (MGO) as a theranostic agent. The carrier is designed to improve the solubility and bioavailability of curcumin, a potential therapeutic substance against prostate cancer. Folic acid receptors overexpressed on the surface of solid tumors, including prostate cancer, may facilitate targeted drug delivery to tumor cells while avoiding nonspecific effects on healthy tissues. The anticancer efficacy of Folic acid-curcumin@β-CD-MGO in vitro was also examined on LNCaP (an androgen-dependent) and PC3 (an androgen-independent) prostate cancer cells. The relaxivity of nanoparticles in MRI images was also investigated as a diagnostic factor. The results showed a concentration-dependent inhibitory effect on cell proliferation, induction of oxidative damage, and apoptotic effects. Also, nanoparticle relaxometry shows that this agent can be used as a negative contrast agent in MRI images. Overall, this study represents a promising theranostic agent to improve the delivery and trace of curcumin and enhance its therapeutic potential in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Elham Einafshar
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Akbari-Zadeh
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tiwari S, Rudani BA, Tiwari P, Bahadur P, Flora SJS. Photodynamic therapy of cancer using graphene nanomaterials. Expert Opin Drug Deliv 2024; 21:1331-1348. [PMID: 39205381 DOI: 10.1080/17425247.2024.2398604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION High incidence and fatality rates of cancer remain a global challenge. The success of conventional treatment modalities is being questioned on account of adverse effects. Photodynamic therapy (PDT) is a potential alternative. It utilizes a combination of photosensitizer (PS), light and oxygen to target the tissues locally, thereby minimizing the damage to neighboring healthy tissues. Conventional PSs suffer from poor selectivity, high hydrophobicity and sub-optimal yield of active radicals. Graphene nanomaterials (GNs) exhibit interesting particulate and photophysical properties in the context of their use in PDT. AREA COVERED We focus on describing the mechanistic aspects of PDT-mediated elimination of cancer cells and the subsequent development of adaptive immunity. After covering up-to-date literature on the significant enhancement of PDT capability with GNs, we have discussed the probability of combining PDT with chemo-, immuno-, and photothermal therapy to make the treatment more effective. EXPERT OPINION GNs can be synthesized in various size ranges, and their biocompatibility can be improved through surface functionalization and doping. These can be used as PS to generate ROS or conjugated with other PS molecules for treating deep-seated tumors. With increasing evidence on biosafety, such materials offer hope as antitumor therapeutics.
Collapse
Affiliation(s)
- Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Binny A Rudani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Priyanka Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Swaran J S Flora
- Era College of Pharmacy, Era Lucknow Medical University, Lucknow, India
| |
Collapse
|
4
|
Einafshar E, Ghorbani A. Advances in Black Phosphorus Quantum Dots for Cancer Research: Synthesis, Characterization, and Applications. Top Curr Chem (Cham) 2024; 382:25. [PMID: 39009867 DOI: 10.1007/s41061-024-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
In the past few years, there has been notable advancement in nanotechnology, leading to the development of new materials with potential uses in the medical field, especially in cancer diagnosis, imaging, and therapy. Black phosphorus quantum dots (BPQDs) are one of the emerging nanomaterials that have generated interest due to their unique properties and potential in biomedical applications. This review aims to give a detailed overview of how BPQDs are synthesized, characterized, and utilized. The synthesis methods of BPQDs are discussed, with a focus on obtaining size-controlled and high-quality BPQDs. Two main approaches, top-down exfoliation and bottom-up techniques, are described. Despite advancements in synthesis, there are challenges hindering the practical application of BPQDs, such as poor dispersion and short durability. To address these issues, techniques to enhance biocompatibility and reduce potential toxicity, such as surface modifications, are discussed. BPQDs have potential in bioimaging as they offer higher resolution and sensitivity compared with traditional imaging agents. Their small size and expansive surface area make them suitable for drug delivery systems, enabling the effective incorporation of therapeutic substances. By functionalizing BPQDs with targeting ligands, they can selectively bind to cancer cells or tissue, making them ideal for targeted therapies. Moreover, BPQDs can serve as biosensors to detect biomarkers in bodily fluids, further expanding their biomedical applications. However, before they can be successfully translated into clinical settings, further research is needed to optimize the synthesis methods of BPQDs and evaluate their long-term safety profiles. Nonetheless, with ongoing research and development, the medical uses of BPQDs are expected to expand.
Collapse
Affiliation(s)
- Elham Einafshar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Sarabia-Vallejo Á, Caja MDM, Olives AI, Martín MA, Menéndez JC. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023; 15:2345. [PMID: 37765313 PMCID: PMC10534465 DOI: 10.3390/pharmaceutics15092345] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - María del Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Einafshar E, Einafshar N, Khazaei M. Recent Advances in MXene Quantum Dots: A Platform with Unique Properties for General-Purpose Functional Materials with Novel Biomedical Applications. Top Curr Chem (Cham) 2023; 381:27. [PMID: 37670112 DOI: 10.1007/s41061-023-00439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Developing new, high-performance materials is a prerequisite for technological advancement. In comparison to bulk materials, quantum dots have a number of good advantages due to their small size, high surface area, and quantum dimensions. Quantum dots, two-dimensional materials with lateral dimensions less than 100 nm, can be generated by the quantum confinement effect. Mxene quantum dots (MQDs) retain some of their two-dimensional characteristics. They also exhibit novel physicochemical properties, including enhanced dispersibility in aqueous and nonaqueous phases, modification or doping capabilities, and photoluminescence. MQDs, due to their unique and diverse properties, have been receiving a great deal of attention as new members of the Mxene group and wide use for biotechnology, bioimaging, optoelectronics, catalysis, cancer therapy, etc. This review aims to provide an overview of the synthesis of MQDs, their optical properties, and their cancer therapy applications. MQDs exhibit remarkable photothermal and photodynamic features and can be suitable for bioimaging. In addition to obtaining bioimaging, photothermal therapy (PTT) and photodynamic therapy (PDT) effects simultaneously, MQDs have high biocompatibility in vitro and in vivo, providing evidence of their potential clinical utility. Herein, recent developments and future prospects concerning MQDs biomedical applications are discussed.
Collapse
Affiliation(s)
- Elham Einafshar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nafiseh Einafshar
- Faculty of Civil Engineering, Quchan University of Technology, Quchan, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Einafshar N, Amiri Farmad H, Moshirian Farahi SM, Einafshar E. Nanocomposite with high adsorption activity developed using stabilized silver modified alumina and TiO 2-NPs incorporated into β-cyclodextrin-graphene oxide. Heliyon 2023; 9:e18162. [PMID: 37496914 PMCID: PMC10366481 DOI: 10.1016/j.heliyon.2023.e18162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Multifunctional nanocomposites Ag/Al2O3/TiO2@β-cyclodextrin-graphene oxide (AATG) incorporating graphene oxide sheets, TiO2, and Ag/Al2O3 nanoparticles were prepared in two steps. We benefited from the inherent properties of β-cyclodextrin to create a stable aqueous graphene solution capable of self-assembling in situ grown TiO2 nanoparticles on graphene nanosheets. Ag/Al2O3 catalysts with a high surface-to-volume ratio were prepared by a combustion technique in solution with urea as a new fuel. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analysis, and BJH pore analysis. FE-SEM was used to evaluate the morphology of β-cyclodextrin-graphene oxide, Ag/Al2O3 and AATG nanoplatforms. This research examined the use of AATG as a novel nanocomposite for removing methylene blue from water and compared its effectiveness with that of TiO2@β-cyclodextrin-graphene oxide (TG) as an intermediate material to assess the impact of the final composite and its components on absorption. The effect of pH, temperature, time, and dye concentration on the reaction rate was investigated. The results showed that at pH above 4, the adsorption rate of MB by AATG gradually increased to about 98%. The results also show that methylene blue is more effectively removed at higher temperatures, implying that the adsorption is temperature dependent and the elimination process is endothermic. The adsorption kinetics, isothermal studies, and thermodynamic analysis were also evaluated. The adsorption data showed excellent agreement with pseudo-second order models (R2 > 0.99) and the Langmuir isotherm. The AATG nanocomposites showed excellent adsorption activity, making them potential candidates for water treatment.
Collapse
Affiliation(s)
- Nafiseh Einafshar
- Faculty of Civil Engineering, Quchan University of Technology, Quchan, Iran
| | - Hamed Amiri Farmad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elham Einafshar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Freitas SC, Sanderson D, Caspani S, Magalhães R, Cortés-Llanos B, Granja A, Reis S, Belo JH, Azevedo J, Gómez-Gaviro MV, de Sousa CT. New Frontiers in Colorectal Cancer Treatment Combining Nanotechnology with Photo- and Radiotherapy. Cancers (Basel) 2023; 15:383. [PMID: 36672333 PMCID: PMC9856291 DOI: 10.3390/cancers15020383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Despite recent advances in the treatment of this pathology, which include a personalized approach using radio- and chemotherapies in combination with advanced surgical techniques, it is imperative to enhance the performance of these treatments and decrease their detrimental side effects on patients' health. Nanomedicine is likely the pathway towards solving this challenge by enhancing both the therapeutic and diagnostic capabilities. In particular, plasmonic nanoparticles show remarkable potential due to their dual therapeutic functionalities as photothermal therapy agents and as radiosensitizers in radiotherapy. Their dual functionality, high biocompatibility, easy functionalization, and targeting capabilities make them potential agents for inducing efficient cancer cell death with minimal side effects. This review aims to identify the main challenges in the diagnosis and treatment of colorectal cancer. The heterogeneous nature of this cancer is also discussed from a single-cell point of view. The most relevant works in photo- and radiotherapy using nanotechnology-based therapies for colorectal cancer are addressed, ranging from in vitro studies (2D and 3D cell cultures) to in vivo studies and clinical trials. Although the results using nanoparticles as a photo- and radiosensitizers in photo- and radiotherapy are promising, preliminary studies showed that the possibility of combining both therapies must be explored to improve the treatment efficiency.
Collapse
Affiliation(s)
- Sara C. Freitas
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sofia Caspani
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Magalhães
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Horta Belo
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Azevedo
- Colorectal Surgery—Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisboa, Portugal
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Célia Tavares de Sousa
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
9
|
Ezati N, Abdouss M, Rouhani M, Kerr PG, Kowsari E. Novel serotonin decorated molecularly imprinted polymer nanoparticles based on biodegradable materials; A potential self-targeted delivery system for Irinotecan. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Naeimi R, Najafi R, Molaei P, Amini R, Pecic S. Nanoparticles: The future of effective diagnosis and treatment of colorectal cancer? Eur J Pharmacol 2022; 936:175350. [DOI: 10.1016/j.ejphar.2022.175350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
|
11
|
Wang X, Zhu L, Gu Z, Dai L. Carbon nanomaterials for phototherapy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4955-4976. [PMID: 39634304 PMCID: PMC11501915 DOI: 10.1515/nanoph-2022-0574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 12/07/2024]
Abstract
Phototherapy attracts increasing interest for broad bio-applications due to its noninvasive and highly selective nature. Owing to their good biocompatibility, unique optoelectronic properties and size/surface effects, carbon nanomaterials show great promise for phototherapy. Various carbon nanomaterials have been demonstrated as efficient phototherapy agents for a large variety of phototherapeutic applications, including cancer treatment, anti-bacteria, and Alzheimer's disease. This review summarizes the recent progress of carbon nanomaterials for phototherapy. Current challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Xichu Wang
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Lin Zhu
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Zi Gu
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| |
Collapse
|
12
|
Feng W, Zhang S, Wan Y, Chen Z, Qu Y, Li J, James TD, Pei Z, Pei Y. Nanococktail Based on Supramolecular Glyco-Assembly for Eradicating Tumors In Vivo. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20749-20761. [PMID: 35481368 DOI: 10.1021/acsami.2c03463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of robust phototherapeutic strategies for eradicating tumors remains a significant challenge in the transfer of cancer phototherapy to clinical practice. Here, a phototherapeutic nanococktail atovaquone/17-dimethylaminoethylamino-17-demethoxygeldanamycin/glyco-BODIPY (ADB) was developed to enhance photodynamic therapy (PDT) and photothermal therapy (PTT) via alleviation of hypoxia and thermal resistance that was constructed using supramolecular self-assembly of glyco-BODIPY (BODIPY-SS-LAC, BSL-1), hypoxia reliever atovaquone (ATO), and heat shock protein inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). Benefiting from a glyco-targeting and glutathione (GSH) responsive units BSL-1, ADB can be rapidly taken up by hepatoma cells, furthermore the loaded ATO and 17-DMAG can be released in original form into the cytoplasm. Using in vitro and in vivo results, it was confirmed that ADB enhanced the synergetic PDT and PTT upon irradiation using 685 nm near-infrared light (NIR) under a hypoxic tumor microenvironment where ATO can reduce O2 consumption and 17-DMAG can down-regulate HSP90. Moreover, ADB exhibited good biosafety, and tumor eradication in vivo. Hence, this as-developed phototherapeutic nanococktail overcomes the substantial obstacles encountered by phototherapy in tumor treatment and offers a promising approach for the eradication of tumors.
Collapse
Affiliation(s)
- Weiwei Feng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shangqian Zhang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yichen Wan
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zelong Chen
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yun Qu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jiahui Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
13
|
Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. CHEM REC 2022; 22:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Supramolecules-based drug delivery has attracted significant recent research attention as it could enhance drug solubility, retention time, targeting, and stimuli responsiveness. Among the different supramolecules and assemblies, the macrocycles and the supramolecular hydrogels are the two important categories investigated to a greater extent. Here, we provide the most recent advancements in these categories. Under macrocycles, reports on drug delivery by cyclodextrins, cucurbiturils, calixarenes/pillararenes, crown ethers and porphyrins are detailed. The second category discusses the supramolecular hydrogels of macrocycles/polymers and low molecular weight gelators. The updated information provided could be helpful to advance R & D in this vital area.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
14
|
Mikhnavets L, Abashkin V, Khamitsevich H, Shcharbin D, Burko A, Krekoten N, Radziuk D. Ultrasonic Formation of Fe 3O 4-Reduced Graphene Oxide-Salicylic Acid Nanoparticles with Switchable Antioxidant Function. ACS Biomater Sci Eng 2022; 8:1181-1192. [PMID: 35226462 DOI: 10.1021/acsbiomaterials.1c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We demonstrate a single-step ultrasonic in situ complexation of salicylic acid during the growth of Fe3O4-reduced graphene oxide nanoparticles (∼10 nm) to improve the antioxidant and antiproliferative effects of pristine drug molecules. These nanoparticles have a precisely defined electronic molecular structure with salicylic acid ligands specifically complexed to Fe(III)/Fe(II) sites, four orders of magnitude larger electric surface potential, and enzymatic activity modulated by ascorbic acid molecules. The diminishing efficiency of hydroxyl radicals by Fe3O4-rGO-SA nanoparticles is tenfold higher than that by pristine salicylic acid in the electro-Fenton process. The H+ production of these nanoparticles can be switched by the interaction with ascorbic acid ligands and cause the redox deactivation of iron or enhanced antioxidation, where rGO plays an important role in enhanced charge transfer catalysis. Fe3O4-rGO-SA nanoparticles are nontoxic to erythrocytes, i.e., human peripheral blood mononuclear cells, but surpassingly inhibit the growth of three cancer cell lines, HeLa, HepG2, and HT29, with respect to pristine salicylic acid molecules.
Collapse
Affiliation(s)
- Lubov Mikhnavets
- Laboratory of Integrated Micro- and Nanosystems, Belarusian State University of Informatics and Radioelectronics, P. Brovki str. 6, 220013 Minsk, Republic of Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Academicheskaya str. 27, 220072 Minsk, Republic of Belarus
| | - Hanna Khamitsevich
- Department of Microbiology, Belarusian State University, Kurchatava str. 10, 220030 Minsk, Republic of Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Academicheskaya str. 27, 220072 Minsk, Republic of Belarus
| | - Aliaksandr Burko
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, P. Brovki str. 6, 220013 Minsk, Republic of Belarus
| | - Nina Krekoten
- Scientific-Technical Center "Belmicrosystems", Kazintsa str. 121 A, 220108 Minsk, Republic of Belarus
| | - Darya Radziuk
- Laboratory of Integrated Micro- and Nanosystems, Belarusian State University of Informatics and Radioelectronics, P. Brovki str. 6, 220013 Minsk, Republic of Belarus
| |
Collapse
|
15
|
He X, Cao Z, Li N, Chu L, Wang J, Zhang C, He X, Lu X, Sun K, Meng Q. Preparation and evaluation of SN-38-loaded MMP-2-responsive polymer micelles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
He W, Du Y, Wang T, Wang J, Cheng L, Li X. Dimeric Artesunate-Phosphatidylcholine-Based Liposomes for Irinotecan Delivery as a Combination Therapy Approach. Mol Pharm 2021; 18:3862-3870. [PMID: 34470216 DOI: 10.1021/acs.molpharmaceut.1c00500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, dimeric artesunate-phosphatidylcholine conjugate (dARTPC)-based liposomes encapsulated with irinotecan (Ir) were developed for anticancer combination therapy. First, dARTPC featured with unique amphipathic properties formed liposomes by classical thin-film methods. After that, Ir was encapsulated into dARTPC-based liposomes (Ir/dARTPC-LP) by the triethylammonium sucrose octasulfate gradient method. Physicochemical characterization indicated that Ir/dARTPC-LP had a mean size of around 140 nm and a negative ζ potential of approximately -30 mV. Most noticeably, liposomes displayed an encapsulation efficiency of greater than 98% with a controllable drug loading of 4-22%. The in vitro release of dihydroartemisinin (DHA) and Ir from Ir/dARTPC-LP was investigated by dialysis in different media. It was found that effective release of both DHA (65.42%) and Ir (77.28%) in a weakly acidic medium (pH 5.0) after 48 h was achieved in comparison to very slow release under a neutral environment (DHA 9.90% and Ir 8.72%), indicating the controllable release of both drugs. Confocal laser scanning microscopy confirmed the improved cellular internalization of Ir/dARTPC-LP. The cytotoxicity of Ir/dARTPC-LP was evaluated in the MCF-7, A549, and HepG2 cell lines. The results showed that Ir/dARTPC-LP had significant synergistic efficacy in the loss of cell growth. In vivo anticancer evaluation was performed using a 4T1 xenograft tumor model. Ir/dARTPC-LP had a high tumor inhibition rate of 62.7% without significant toxicity in comparison with the injection of Ir solution. Taken together, dARTPC encapsulated with Ir has great potential for anticancer combination therapy.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lei Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
17
|
Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers (Basel) 2021; 13:polym13152464. [PMID: 34372067 PMCID: PMC8348146 DOI: 10.3390/polym13152464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The synthesis of light-responsive nanocarriers (LRNs) with a variety of surface functional groups and/or ligands has been intensively explored for space-temporal controlled cargo release. LRNs have been designed on demand for photodynamic-, photothermal-, chemo-, and radiotherapy, protected delivery of bioactive molecules, such as smart drug delivery systems and for theranostic duties. LRNs trigger the release of cargo by a light stimulus. The idea of modifying LRNs with different moieties and ligands search for site-specific cargo delivery imparting stealth effects and/or eliciting specific cellular interactions to improve the nanosystems’ safety and efficacy. This work reviews photoresponsive polymeric nanocarriers and photo-stimulation mechanisms, surface chemistry to link ligands and characterization of the resultant nanosystems. It summarizes the interesting biomedical applications of functionalized photo-controlled nanocarriers, highlighting the current challenges and opportunities of such high-performance photo-triggered delivery systems.
Collapse
|
18
|
Pavitra E, Dariya B, Srivani G, Kang SM, Alam A, Sudhir PR, Kamal MA, Raju GSR, Han YK, Lakkakula BVKS, Nagaraju GP, Huh YS. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol 2021; 69:293-306. [PMID: 31260733 DOI: 10.1016/j.semcancer.2019.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the deadliest diseases worldwide due to a lack of early detection methods and appropriate drug delivery strategies. Conventional imaging techniques cannot accurately distinguish benign from malignant tissue, leading to frequent misdiagnosis or diagnosis at late stages of the disease. Novel screening tools with improved accuracy and diagnostic precision are thus required to reduce the mortality burden of this malignancy. Additionally, current therapeutic strategies, including radio- and chemotherapies carry adverse side effects and are limited by the development of drug resistance. Recent advances in nanotechnology have rendered it an attractive approach for designing novel clinical solutions for CRC. Nanoparticle-based formulations could assist early tumor detection and help to overcome the limitations of conventional therapies including poor aqueous solubility, nonspecific biodistribution and limited bioavailability. In this review, we shed light on various types of nanoparticles used for diagnosis and drug delivery in CRC. In addition, we will explore how these nanoparticles can improve diagnostic accuracy and promote selective drug targeting to tumor sites with increased efficiency and reduced cytotoxicity against healthy colon tissue.
Collapse
Affiliation(s)
- Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| | - Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Gowru Srivani
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Putty-Reddy Sudhir
- The Center for Translational Biomedical Research, UNCG, Kannapolis, NC-28081, USA
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
19
|
Fabrication of a smart and biocompatible brush copolymer decorated on magnetic graphene oxide hybrid nanostructure for drug delivery application. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Alemi F, Zarezadeh R, Sadigh AR, Hamishehkar H, Rahimi M, Majidinia M, Asemi Z, Ebrahimi-Kalan A, Yousefi B, Rashtchizadeh N. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Fabrication of carboxymethyl functionalized β-cyclodextrin-modified graphene oxide for efficient removal of methylene blue. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328:171-191. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
Nanogels as a versatile vehicle for doxorubicin have attracted great attention during the last decade. Since a nanogel composite device transport encapsulated drugs to the site of action and release them in a desirable time-frame, it could provide higher therapeutic effect. By implementation of different polymers, polymer/inorganic NPs and various crosslinking chemistry, it is possible to fabricate novel composite nanogel systems with favorable characteristics such as smart intelligent systems or multipurpose platforms. Due to high stability, good drug loading capacity for hydrophobic and hydrophilic agents, nanogels introduce great opportunity in pharmaceutical innovations. Composite nanogels show capability in gene, drug and diagnostic agents' delivery while providing an ideal platform for theranostic purposes as multifunctional systems. Doxorubicin as an anticancer agent is widely used against numerous cancers. Due to high systemic toxicity of doxorubicin, there is still need for its safe and specific delivery to the site of action. In this regard, so many efforts have been put in by the researchers for preparation of different nanogel formulations of doxorubicin in order to produce more efficient formulations. This review focuses on design, fabrication, advantages and disadvantages of composite nanogel-based doxorubicin formulations.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Li J, Xue Y, Tian J, Liu Z, Zhuang A, Gu P, Zhou H, Zhang W, Fan X. Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia. Carbohydr Polym 2020; 237:116119. [PMID: 32241431 DOI: 10.1016/j.carbpol.2020.116119] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) is a method for killing cancer cells by employing reactive singlet oxygen (1O2). However, the inherent hypoxia and oxygen consumption in tumors during PDT lead to a deficient oxygen supply, which in turn hinder the photodynamic efficacy. To overcome this issue, fluorinated-functionalized polysaccharide-based nanocomplexes were prepared by anchoring perfluorocarbons (PFCs) and pyropheophorbide a (Ppa) onto the polymer chains of hyaluronic acid (HA) to deliver O2 in hypoxia area. These amphiphilic conjugates can self-assemble into micelles and its application in PDT is evaluated. Due to the high oxygen affinity of perfluorocarbon segments, and the tumor-targeting nature of HA, the photodynamic effect of the oxygen self-carrying micelles is remarkably enhanced, which is confirmed by increased generation of 1O2 and elevated phototoxicity in vitro and in vivo. These results emphasize the promising potential of polysaccharide-based nanocomplexes for enhanced PDT of Ocular Choroidal Melanoma.
Collapse
Affiliation(s)
- Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jun Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zeyang Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
24
|
Shen H, Huang X, Min J, Le S, Wang Q, Wang X, Dogan AA, Liu X, Zhang P, Draz MS, Xiao J. Nanoparticle Delivery Systems for DNA/RNA and their Potential Applications in Nanomedicine. Curr Top Med Chem 2020; 19:2507-2523. [PMID: 31775591 DOI: 10.2174/1568026619666191024170212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/04/2023]
Abstract
The rapid development of nanotechnology has a great influence on the fields of biology, physiology, and medicine. Over recent years, nanoparticles have been widely presented as nanocarriers to help the delivery of gene, drugs, and other therapeutic agents with cellular targeting ability. Advances in the understanding of gene delivery and RNA interference (RNAi)-based therapy have brought increasing attention to understanding and tackling complex genetically related diseases, such as cancer, cardiovascular and pulmonary diseases, autoimmune diseases and infections. The combination of nanocarriers and DNA/RNA delivery may potentially improve their safety and therapeutic efficacy. However, there still exist many challenges before this approach can be practiced in the clinic. In this review, we provide a comprehensive summary on the types of nanoparticle systems used as nanocarriers, highlight the current use of nanocarriers in recombinant DNA and RNAi molecules delivery, and the current landscape of gene-based nanomedicine-ranging from diagnosis to therapeutics. Finally, we briefly discuss the biosafety concerns and limitations in the preclinical and clinical development of nanoparticle gene systems.
Collapse
Affiliation(s)
- Hua Shen
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China.,Department of Cardiovascular Surgery, Institute of Cardiac Surgery, PLA General Hospital, Beijing, China
| | - Xiaoyi Huang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Changhai Road 168#, Shanghai 200433, China
| | - Jie Min
- Department of Cardiothoracic Surgery, Bethune International Peace Hospital, Shijiazhuang, China
| | - Shiguan Le
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Qing Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Xi Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Asli Aybike Dogan
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 Bornova-Izmir, Turkey
| | - Xiangsheng Liu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, United States.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, United States.,Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| |
Collapse
|
25
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [PMID: 31546465 DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
26
|
Garg P, Venuganti VVK, Roy A, Roy G. Novel drug delivery methods for the treatment of keratitis: moving away from surgical intervention. Expert Opin Drug Deliv 2019; 16:1381-1391. [PMID: 31701781 DOI: 10.1080/17425247.2019.1690451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Introduction: Corneal ulceration is one of the leading causes of blindness especially in low- and mid-income countries (LMICs). Surgical treatment of microbial keratitis is associated with multiple challenges that include non-availability of donor corneal tissues, lack of trained corneal surgeons, and poor compliance to follow up care. As a result, the surgery fails in 70-90% cases. Therefore, improving outcome of medical treatment and thereby avoiding the need for the surgery is an unmet need in the care of corneal ulcer cases.Areas covered: In this review article, the authors have tried to compile information on the novel drug-delivery systems that have potential to enhance success of medical management. We have discussed the following systems: cyclodextrins, gel formulations, colloidal system, nanoformulations, drug-eluting contact lens, microneedle patch, and ocular inserts.Expert opinion: The goals of corneal ulcer treatment are as follows: rapid eradication of causative microorganisms, control of damage from induced inflammation and microbial toxins, and facilitation of repair. The ocular surface anatomy poses several challenges for drug delivery using standard topical therapy. The novel drug-delivery systems mentioned above aim to enhanced tear solubility; superior stability; improved bio-availability; reduced toxicity; besides facilitating targeted drug delivery and convenience of administration.
Collapse
Affiliation(s)
- Prashant Garg
- Tej Kohli Cornea Institute, KAR campus, L. V. Prasad Eye Institute, Hyderabad, India
| | | | - Aravind Roy
- Tej Kohli Cornea Institute, KVC campus, L. V. Prasad Eye Institute, Vijayawada, India
| | - Girdhari Roy
- Department of Pharmacology, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad, India
| |
Collapse
|
27
|
Advances in delivery of Irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. Int J Pharm 2019; 568:118499. [DOI: 10.1016/j.ijpharm.2019.118499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
|
28
|
Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S. Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics 2019; 11:E302. [PMID: 31262096 PMCID: PMC6680655 DOI: 10.3390/pharmaceutics11070302] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life. Thus, the development of novel therapeutic approaches or modifications of current strategies is paramount to improve individual health outcomes and survival, while early tumour detection remains a priority and significant challenge. In recent years, drug delivery systems and chronotherapy have been developed as alternative methods aiming to enhance the benefits of the current anticancer therapies, while minimizing their undesirable toxic effects on the healthy non-cancerous cells. Targeted drug delivery systems have the potential to increase drug bioavailability and bio-distribution at the site of the primary tumour. This review confers current knowledge on the diverse drug delivery methods, potential carriers (e.g., polymeric, inorganic, and combinational nanoparticles; nanolipids; hydrogels; exosomes) and anticancer targeted approaches for oral squamous cell carcinoma treatment, with an emphasis on their clinical relevance in the era of precision medicine, circadian chronobiology and patient-centred health care.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Fatemeh Mohabatpour
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lubomir Hadjiiski
- Departmnet of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada.
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Khot MI, Andrew H, Svavarsdottir HS, Armstrong G, Quyn AJ, Jayne DG. A Review on the Scope of Photothermal Therapy-Based Nanomedicines in Preclinical Models of Colorectal Cancer. Clin Colorectal Cancer 2019; 18:e200-e209. [PMID: 30852125 DOI: 10.1016/j.clcc.2019.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Oncologic thermal ablation involves the use of hyperthermic temperatures to damage and treat solid cancers. Thermal ablation is being investigated as a method of treatment in colorectal cancers and has the potential to complement conventional anticancer treatments in managing local recurrence and metastatic disease. Photothermal therapy utilizes photosensitive agents to generate local heat and induce thermal ablation. There is growing interest in developing nanotechnology platforms to deliver such photosensitive agents. An advantage of nanomedicines is their multifunctionality, with the capability to deliver combinations of chemotherapeutics and cancer-imaging agents. To date, there have been no clinical studies evaluating photothermal therapy-based nanomedicines in colorectal cancers. This review presents the current scope of preclinical studies, investigating nanomedicines that have been developed for delivering multimodal photothermal therapy to colorectal cancers, with an emphasis on potential clinical applications.
Collapse
Affiliation(s)
- M Ibrahim Khot
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK.
| | - Helen Andrew
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | | | - Gemma Armstrong
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Aaron J Quyn
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - David G Jayne
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
30
|
Cova TF, Milne BF, Pais AA. Host flexibility and space filling in supramolecular complexation of cyclodextrins: A free-energy-oriented approach. Carbohydr Polym 2019; 205:42-54. [DOI: 10.1016/j.carbpol.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
|
31
|
He W, Li P, Zhu Y, Liu M, Huang X, Qi H. An injectable silk fibroin nanofiber hydrogel hybrid system for tumor upconversion luminescence imaging and photothermal therapy. NEW J CHEM 2019. [DOI: 10.1039/c8nj05766d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this paper, we developed a silk fibroin nanofiber (SF) hydrogel system complexed with upconversion nanoparticles and nano-graphene oxide (SF/UCNP@NGO) for upconversion luminescence imaging and photothermal therapy.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Beijing Jishuitan Hospital
- Beijing 100035
- P. R. China
| | - Po Li
- Department of Chemistry, Capital Normal University
- Beijing 100048
- P. R. China
| | - Yue Zhu
- Department of Chemistry, Capital Normal University
- Beijing 100048
- P. R. China
| | - Mingming Liu
- Department of Spine Surgery, Beijing Jishuitan Hospital
- Beijing 100035
- P. R. China
| | - Xiaonan Huang
- Department of Chemistry, Capital Normal University
- Beijing 100048
- P. R. China
| | - Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics
- Beijing 100035
- P. R. China
| |
Collapse
|
32
|
Qian C, Yan P, Wan G, Liang S, Dong Y, Wang J. Facile synthetic Photoluminescent Graphene Quantum dots encapsulated β-cyclodextrin drug carrier system for the management of macular degeneration: Detailed analytical and biological investigations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:244-249. [DOI: 10.1016/j.jphotobiol.2018.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 01/19/2023]
|
33
|
Borandeh S, Abdolmaleki A, Abolmaali SS, Tamaddon AM. Synthesis, structural and in-vitro characterization of β-cyclodextrin grafted L-phenylalanine functionalized graphene oxide nanocomposite: A versatile nanocarrier for pH-sensitive doxorubicin delivery. Carbohydr Polym 2018; 201:151-161. [PMID: 30241806 DOI: 10.1016/j.carbpol.2018.08.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
Abstract
To enhance graphene stability, drug loading capacity and biocompatibility, β-cyclodextrin (β-CD) was grafted onto graphene oxide (GO) using L-plenylalanine (Phe) as a linker. The doxorubicin (DOX) loading efficiency and capacity of GO-Phe-CD were 78.7% and 85.2%, respectively. The cone shaped cavity of CD acts as a host for DOX loading through inclusion complex formation. The GO-Phe-CD nanocarrier showed higher release ratio of DOX in acidic milieu of cancer cells. In addition, general cytotoxicity of the nanocarriers was examined by MTT assay and trypan blue dye exclusion in MCF-7 cell lines. It was established that the MTT assay was not an appropriate technique for predicting the cytotoxicity of graphene based nanocarriers due to the spontaneous formation of MTT formazan by these materials; leading to a false high biocompatibility. According to the trypan blue experiment, the GO-Phe-CD had significant cytocompatibility, and the DOX-loaded GO-Phe-CD had outstanding killing capability to MCF-7 cells.
Collapse
Affiliation(s)
- Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Abdolmaleki
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran; Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Alibolandi M, Amel Farzad S, Mohammadi M, Abnous K, Taghdisi SM, Kalalinia F, Ramezani M. Tetrac-decorated chitosan-coated PLGA nanoparticles as a new platform for targeted delivery of SN38. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1003-1014. [PMID: 29806500 DOI: 10.1080/21691401.2018.1477789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New integrin-targeted nanoparticles made of chitosan-stabilized PLGA matrix was developed to specifically target colon adenocarcinoma. To this aim, SN38-encapsulated chitosan-coated PLGA NPs were conjugated with tetrac for integrin receptor-guided delivery. To provide a sustained release pattern for SN38, it was loaded into nanoparticles using single emulsion method. The size of NPs were 174.23 ± 6.12 nm with drug encapsulation efficiency and loading content of 73.16 ± 11.15 and 4.45 ± 0.31, respectively. The in vitro results confirmed that the designed nanoplatform showed specific cellular uptake and cytotoxicity in integrin overexpressing cancer cells and provided a sustained release profile for SN38. Additionally, an increased therapeutic potency of targeted formulation over both non-targeted and free drug was shown in vivo.
Collapse
Affiliation(s)
- Mona Alibolandi
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Sara Amel Farzad
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Marzieh Mohammadi
- b Department of Pharmaceutical Nanotechnology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran.,c Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Khalil Abnous
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mohammad Taghdisi
- d Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Fatemeh Kalalinia
- e Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran.,b Department of Pharmaceutical Nanotechnology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
35
|
Huang Q, Li M, Wang L, Yuan H, Wang M, Wu Y, Li T. Synthesis of novel cyclodextrin-modified reduced graphene oxide composites by a simple hydrothermal method. RSC Adv 2018; 8:37623-37630. [PMID: 35558627 PMCID: PMC9089399 DOI: 10.1039/c8ra07807f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 11/21/2022] Open
Abstract
Cyclodextrin (β-CD)-functionalized reduced graphene oxide was successfully synthesized by a simple hydrothermal method, followed by conjugating with polyethylene glycol (PEG) and folic acid (FA). Microscopic and spectroscopic techniques were used to characterize the nanocomposites. Photothermal experiments showed that β-CD-functionalized reduced graphene oxide exhibited higher photothermal conversion efficiency in the near infrared region than reduced graphene oxide functionalized with other molecules under the same conditions. Cytotoxicity experiments indicated that rGO@CD@PEG@FA possessed good biocompatibility even at high concentration. When doxorubicin (DOX) was loaded on the rGO@CD@PEG@FA nanocomposite, it showed the stimulative effect of heat, pH response, and sustained drug release. Cytotoxicity experiments also confirmed the targeted effect and high efficiency of the combined therapy. The findings of the present study provide an ideal drug delivery system for malignant cancer therapy due to the advanced synergistic chemo-photothermal targeted therapy and good drug release properties. The rGO@CD@PEG@FA nanocomposite showed the stimulative effect of heat, pH response, and sustained drug release for cancer therapy![]()
Collapse
Affiliation(s)
- Qingli Huang
- Department of Pathology
- Laboratory of Clinical and Experimental Pathology
- Xuzhou Medical University
- Xuzhou
- China
| | - MingYan Li
- Department of Pathology
- Laboratory of Clinical and Experimental Pathology
- Xuzhou Medical University
- Xuzhou
- China
| | - LiLi Wang
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| | - Honghua Yuan
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| | - Meng Wang
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| | - Yongping Wu
- Department of Pathology
- Laboratory of Clinical and Experimental Pathology
- Xuzhou Medical University
- Xuzhou
- China
| | - Ting Li
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| |
Collapse
|