1
|
Kong Y, Lan X, Zhang W, Leu SY, Hu C, Wang Y, Fu S. Quantitative analysis of intermolecular forces in cellulose microfibrils and hemicellulose with AFM nano-colloidal probes. Int J Biol Macromol 2024; 278:134888. [PMID: 39168204 DOI: 10.1016/j.ijbiomac.2024.134888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
It is an interesting research topic to study the interfacial interactions between hemicellulose and cellulose, specifically how hemicellulose's structure affects its binding to cellulose nanofibers. Our research proposes that dispersion interaction play an important role in this interfacial interaction, more so than electrostatic forces when considering the adherence of cellulose to xylan. To quantify these interactions, the Atomic Force Microscope (AFM) colloidal probe technique is applied to measure the intermolecular forces between cellulose nanofibers, which are attached to the probe and xylan. These measured forces are then analyzed in relation to the length, diameter and functional groups of the nanocellulose, as well as the molecular weight and side chains of the xylan. Moreover, the predominance of dispersion forces by contrasting the adhesive forces before and after the grafting of a large nonpolar group onto xylan. This modification significantly reduces contact between the cellulose and xylan backbone, thereby markedly diminishing the dispersion interactions. Parallel to the AFM experiments, molecular dynamics (MD) simulations corroborate the experimental results and support our hypotheses. Collectively, these findings contribute to a deeper understanding of polysaccharide interactions within lignocellulose.
Collapse
Affiliation(s)
- Yi Kong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xingyu Lan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weixiong Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong
| | - Chuanshuang Hu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Ying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
Extraction and characterization of xylan from sugarcane tops as a potential commercial substrate. J Biosci Bioeng 2021; 131:647-654. [PMID: 33676868 DOI: 10.1016/j.jbiosc.2021.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023]
Abstract
Xylan is the major hemicellulose present in sugarcane stem secondary cell walls. Xylan is composed of xylose backbone with a high degree of substitutions, which affects its properties. In the present study, the xylan from sugarcane tops (SCT) was extracted and characterized. Compositional analysis of xylan extracted from SCT (SCTx) displayed the presence of 74% of d-xylose residues, 16% of d-glucuronic acid residues and 10% of l-arabinose. High performance size exclusion chromatographic analysis of SCTx displayed a single peak corresponding to a molecular mass of ∼57 kDa. The Fourier transform infrared spectroscopic analysis of SCTx displayed the peaks corresponding to those obtained from commercial xylan. FESEM analysis of SCTx showed the granular and porous surface structure. Differential thermogravimetric analysis (DTG) of SCTx displayed two thermal degradation temperatures (Td) of 228°C, due to breakdown of the side chains of glucuronic acid and arabinose and 275°C, due to breakdown of xylan back bone. The presence of arabinose and glucuronic acid as a side chains was confirmed by the DTG and thermogravimetric analysis. The CHNS analysis of SCTx showed the presence of only carbon and hydrogen supporting its purity. The recombinant xylanase (CtXyn11A) from Clostridium thermocellum displayed a specific activity of 1394 ± 51 U/mg with SCTx, which was higher than those with commercial xylans. The thin layer chromatography and electrospray ionization mass spectroscopy analyses of CtXyn11A hydrolysed SCTx contained a series of linear xylo-oligosaccharides ranging from degree of polymerization 2-6 and no substituted xylo-oligosaccharides because of the endolytic activity of enzyme. The extracted xylan from SCT can be used as an alternative commercial substrate and for oligo-saccharide production.
Collapse
|
3
|
Sharma K, Morla S, Khaire KC, Thakur A, Moholkar VS, Kumar S, Goyal A. Extraction, characterization of xylan from Azadirachta indica (neem) sawdust and production of antiproliferative xylooligosaccharides. Int J Biol Macromol 2020; 163:1897-1907. [DOI: 10.1016/j.ijbiomac.2020.09.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022]
|
4
|
Sharma K, Khaire KC, Thakur A, Moholkar VS, Goyal A. Acacia Xylan as a Substitute for Commercially Available Xylan and Its Application in the Production of Xylooligosaccharides. ACS OMEGA 2020; 5:13729-13738. [PMID: 32566838 PMCID: PMC7301597 DOI: 10.1021/acsomega.0c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/19/2020] [Indexed: 05/08/2023]
Abstract
Over the past two decades, birchwood and beechwood xylans have been used as a popular substrate for the characterization of xylanases. Recently, major companies have discontinued their commercial production. Therefore, there is a need to find an alternative to these substrates. Xylan extraction from Acacia sawdust resulted in 23.5% (w/w) yield. The extracted xylan is composed of xylose and glucuronic acid residues in a molar ratio of 6:1 with a molecular mass of ∼70 kDa. The specific optical rotation analysis of extracted xylan displayed that it is composed of the d-form of xylose and glucuronic acid monomeric sugars. The nuclear magnetic resonance analysis of extracted xylan revealed that the xylan backbone is substituted with 4-O-methyl glucuronic acid at the O2 position. Fourier transform infrared analysis confirmed the absence of lignin contamination in the extracted xylan. Xylanase from Clostridium thermocellum displayed the enzyme activity of 1761 U/mg against extracted xylan, and the corresponding activity against beechwood xylan was 1556 U/mg, which confirmed that the extracted xylan could be used as an alternative substrate for the characterization of xylanases.
Collapse
Affiliation(s)
- Kedar Sharma
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kaustubh Chandrakant Khaire
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Abhijeet Thakur
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vijayanand Suryakant Moholkar
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
5
|
Jacomini D, Bussler L, Corrêa JM, Kadowaki MK, Maller A, da-Conceição Silva JL, Simão RDCG. Cloning, expression and characterization of C. crescentus xynA2 gene and application of Xylanase II in the deconstruction of plant biomass. Mol Biol Rep 2020; 47:4427-4438. [PMID: 32424521 DOI: 10.1007/s11033-020-05507-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/08/2020] [Indexed: 11/24/2022]
Abstract
Biotechnology offers innovative alternatives for industrial bioprocesses mainly because it uses enzymes that biodegrade the hemicellulose releasing fermentable sugars. Caulobacter crescentus (C. crescentus) has seven genes responsible for xylanolytic cleavage, 5 to β-xylosidases (EC 3.2.1.37) and 2 for endoxylanases, like xynA2 (CCNA_03137) that encodes Xylanase II (EC 3.2.1.8) of the glycohydrolases-GH10 group. The xynA2 gene was amplified by PCR, cloned into the pTrcHisA vector e efficiently overexpressed in E. coli providing a His-tag fusion protein. Recombinant xylanase (XynA2) was purified by affinity chromatography using a nickel sepharose column and exhibited a single 43 kDa band on SDS-PAGE gel. XynA2 showed an optimum alkaline pH (8) and stability at alkaline pH for 24 h. Although C. crescentus is mesophilic, XynA2 has optimum temperature of 60 °C and is thermo-resistance at 65 °C. XynA maintains 66% of the enzymatic activity at high temperatures (90 °C) without being denatured.The enzyme displayed a xylanolitic activity free of cellulase to xylan from beechwood and it was not inhibited in the presence of 50 μmol mL-1 of xylose. In addition, dithiothreitol (DTT) induced XynA2 activity, as it improved its kinetic parameters by lowering the KM (5.78 μmol mL-1) and increasing the KCat/KM ratio (1.63 U s-1). Finally, C. crescentus XynA2 efficiently hydrolyzed corn straw with high release of reducing sugars that can be applied in different branches of the industry.
Collapse
Affiliation(s)
- Débora Jacomini
- Laboratório de Bioquímica Molecular, Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Cascavel,, Paraná, 85814-110, Brazil
| | - Larissa Bussler
- Laboratório de Bioquímica Molecular, Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Cascavel,, Paraná, 85814-110, Brazil
| | - Juliana Moço Corrêa
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Marina Kimiko Kadowaki
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Alexandre Maller
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - José Luis da-Conceição Silva
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Rita de Cássia Garcia Simão
- Laboratório de Bioquímica Molecular, Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Cascavel,, Paraná, 85814-110, Brazil. .,Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil.
| |
Collapse
|
6
|
Chen Z, Jacoby WA, Wan C. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings. BIORESOURCE TECHNOLOGY 2019; 279:281-286. [PMID: 30738354 DOI: 10.1016/j.biortech.2019.01.126] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 05/05/2023]
Abstract
Ternary deep eutectic solvents (DESs) were developed to enable rapid and high-solid biomass pretreatment as well as concentrated sugar hydrolysate production. Six ternary DESs constituted choline chloride (ChCl) or guanidine hydrochloride (GH) as a hydrogen bond acceptor (HBA), ethylene glycol (EG) or propylene glycol (PG) or glycerin (GLY) as a polyol-based hydrogen bond donor (HBD), and p-toluenesulfonic acid (PTSA) as an acidic HBD. GH-EG-PTSA was the most effective, evidenced by 79% xylan and 82% lignin removal in only 6 min at 120 °C and 10 wt% solid loading. Even at 35 wt% solid loading, both GH-EG-PTSA and ChCl-EG-PTSA still removed more than 60% xylan and lignin in 30 min. Using a 20% solid loading and a low enzyme loading of 5 mg protein/g solid, 128 g/L glucose and 20 g/L xylose was obtained, with a glucose yield of 78.4%. Overall, this study demonstrated novel and high-performance ternary DESs for effective lignocellulose deconstruction.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Biomedical, Bioengineering, and Chemical Engineering, University of Missouri, Columbia, MO 65203, USA
| | - William A Jacoby
- Department of Biomedical, Bioengineering, and Chemical Engineering, University of Missouri, Columbia, MO 65203, USA
| | - Caixia Wan
- Department of Biomedical, Bioengineering, and Chemical Engineering, University of Missouri, Columbia, MO 65203, USA.
| |
Collapse
|
7
|
Antiproliferative xylan from corn cobs induces apoptosis in tumor cells. Carbohydr Polym 2019; 210:245-253. [DOI: 10.1016/j.carbpol.2019.01.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/01/2019] [Accepted: 01/21/2019] [Indexed: 01/23/2023]
|