1
|
Alfaro-Díaz A, Castillo-Herrera GA, Espinosa-Andrews H, Luna-Vital D, Mojica L. Development, characterization, and comparison of chitosan microparticles as a carrier system for black bean protein hydrolysates with antioxidant capacity. J Food Sci 2024. [PMID: 39495587 DOI: 10.1111/1750-3841.17492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 11/06/2024]
Abstract
Peptides in black bean protein hydrolysates (BPHs) exert antioxidant capacity. However, peptides are prone to degradation during processing and digestion. Chitosan (Ch) can protect them and provide a delayed release. This work develops and compares two drying methods producing porous structured Ch microparticles (MPs) as carriers for antioxidant BPH. Ch gels were obtained by ionic gelation and dried by supercritical CO2 solvent displacement or fast-freeze-drying methods. The resulting aerogels and fast-freeze-dried MPs were structurally characterized, and their swelling and release profiles were obtained at pH 1.2 and 7.4. The antioxidant capacity of systems was determined by 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulphonic acid) (ABTS) and superoxide radical assays. The results showed BPH-Ch best complexation conditions occurring at a pH of 4.5 and a 4:1 BPH/Ch ratio. The particle size of the complex was 1047.6 nm, and the entrapment efficiency and loading capacity were 28.2% and 54.3%, respectively. At pH 1.2 and 7.4, the release rate of BPH was lower in aerogel than in fast-freeze-dried MPs. Besides, entrapment BPH in Ch significantly reduced the ABTS antioxidant activity IC50 from 35.1 µM Trolox equivalents (TE)/mg to 250.7 and 406.2 µM TE/mg for Ch fast-freeze-dried and aerogels, respectively. Superoxide radical inhibition IC50 ranged from 74.6 to 92.9 mM ascorbic acid equivalents/mg in the different samples. BPH-loaded aerogels presented lower specific surface area (94.7 vs. 138.6 m2/g, p < 0.05) and higher average pore size (26.4 vs. 19.8 nm) than Ch aerogels. Ch aerogel is a promising carrier for delaying the release of common bean antioxidant peptides useful for developing functional foods. PRACTICAL APPLICATION: This novel system could act as an ingredient to incorporate antioxidant compounds in different formats to develop delayed-release nutraceuticals and functional foods, such as bakery, dairy products, or beverages. Along, antioxidant peptide-loaded aerogels could be used as a slow-release system for compounds acting as natural preserving antioxidants for food applications such as raw meat products or high-fat foods.
Collapse
Affiliation(s)
- Arturo Alfaro-Díaz
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Gustavo A Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Hugo Espinosa-Andrews
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Diego Luna-Vital
- Tecnológico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo Leon, Mexico
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
2
|
Atma Y, Murray BS, Sadeghpour A, Goycoolea FM. Encapsulation of short-chain bioactive peptides (BAPs) for gastrointestinal delivery: a review. Food Funct 2024; 15:3959-3979. [PMID: 38568171 DOI: 10.1039/d3fo04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.
Collapse
Affiliation(s)
- Yoni Atma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Food Science and Technology, Universitas Trilogi, Jakarta, 12760, Indonesia
| | - Brent S Murray
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
3
|
Caro-León FJ, López-Donaire ML, Vázquez R, Huerta-Madroñal M, Lizardi-Mendoza J, Argüelles-Monal WM, Fernández-Quiroz D, García-Fernández L, San Roman J, Vázquez-Lasa B, García P, Aguilar MR. DEAE/Catechol-Chitosan Conjugates as Bioactive Polymers: Synthesis, Characterization, and Potential Applications. Biomacromolecules 2023; 24:613-627. [PMID: 36594453 DOI: 10.1021/acs.biomac.2c01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This work provides the first description of the synthesis and characterization of water-soluble chitosan (Cs) derivatives based on the conjugation of both diethylaminoethyl (DEAE) and catechol groups onto the Cs backbone (Cs-DC) in order to obtain a Cs derivative with antioxidant and antimicrobial properties. The degree of substitution [DS (%)] was 35.46% for DEAE and 2.53% for catechol, determined by spectroscopy. Changes in the molecular packing due to the incorporation of both pendant groups were described by X-ray diffraction and thermogravimetric analysis. For Cs, the crystallinity index was 59.46% and the maximum decomposition rate appeared at 309.3 °C, while for Cs-DC, the values corresponded to 16.98% and 236.4 °C, respectively. The incorporation of DEAE and catechol groups also increases the solubility of the polymer at pH > 7 without harming the antimicrobial activity displayed by the unmodified polymer. The catecholic derivatives increase the radical scavenging activity in terms of the half-maximum effective concentration (EC50). An EC50 of 1.20 μg/mL was found for neat hydrocaffeic acid (HCA) solution, while for chitosan-catechol (Cs-Ca) and Cs-DC solutions, concentrations equivalent to free HCA of 0.33 and 0.41 μg/mL were required, respectively. Cell culture results show that all Cs derivatives have low cytotoxicity, and Cs-DC showed the ability to reduce the activity of reactive oxygen species by 40% at concentrations as low as 4 μg/mL. Polymeric nanoparticles of Cs derivatives with a hydrodynamic diameter (Dh) of around 200 nm, unimodal size distributions, and a negative ζ-potential were obtained by ionotropic gelation and coated with hyaluronic acid in aqueous suspension, providing the multifunctional nanoparticles with higher stability and a narrower size distribution.
Collapse
Affiliation(s)
- Francisco J Caro-León
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), 83304Hermosillo, México
| | | | - Roberto Vázquez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040Madrid, Spain.,Networking Biomedical Research Centre in Respiratory Diseases, CIBERES, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Miguel Huerta-Madroñal
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Jaime Lizardi-Mendoza
- Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), 83304Hermosillo, México
| | - Waldo Manuel Argüelles-Monal
- Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), 83304Hermosillo, México
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, Universidad de Sonora, 83000Hermosillo, México
| | - Luis García-Fernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Julio San Roman
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040Madrid, Spain.,Networking Biomedical Research Centre in Respiratory Diseases, CIBERES, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Maria Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| |
Collapse
|
4
|
Duarte MM, Silva IV, Eisenhut AR, Bionda N, Duarte ARC, Oliveira AL. Contributions of supercritical fluid technology for advancing decellularization and postprocessing of viable biological materials. MATERIALS HORIZONS 2022; 9:864-891. [PMID: 34931632 DOI: 10.1039/d1mh01720a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The demand for tissue and organ transplantation worldwide has led to an increased interest in the development of new therapies to restore normal tissue function through transplantation of injured tissue with biomedically engineered matrices. Among these developments is decellularization, a process that focuses on the removal of immunogenic cellular material from a tissue or organ. However, decellularization is a complex and often harsh process that frequently employs techniques that can negatively impact the properties of the materials subjected to it. The need for a more benign alternative has driven research on supercritical carbon dioxide (scCO2) assisted decellularization. scCO2 can achieve its critical point at relatively low temperature and pressure conditions, and for its high transfer rate and permeability. These properties make scCO2 an appealing methodology that can replace or diminish the exposure of harsh chemicals to sensitive materials, which in turn could lead to better preservation of their biochemical and mechanical properties. The presented review covers relevant literature over the last years where scCO2-assisted decellularization is employed, as well as discussing major topics such as the mechanism of action behind scCO2-assisted decellularization, CO2 and cosolvents' solvent properties, effect of the operational parameters on decellularization efficacy and on the material's properties.
Collapse
Affiliation(s)
- Marta M Duarte
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Inês V Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | | | - Nina Bionda
- iFyber, LLC, 950 Danby Road, Ithaca, NY 14850, USA
| | - Ana Rita C Duarte
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana L Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
5
|
Vázquez R, Caro-León FJ, Nakal A, Ruiz S, Doñoro C, García-Fernández L, Vázquez-Lasa B, San Román J, Sanz J, García P, Aguilar MR. DEAE-chitosan nanoparticles as a pneumococcus-biomimetic material for the development of antipneumococcal therapeutics. Carbohydr Polym 2021; 273:118605. [PMID: 34561005 DOI: 10.1016/j.carbpol.2021.118605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
Advanced biomaterials provide an interesting and versatile platform to implement new and more effective strategies to fight bacterial infections. Chitosan is one of these biopolymers and possesses relevant features for biomedical applications. Here we synthesized nanoparticles of chitosan derivatized with diethylaminoethyl groups (ChiDENPs) to emulate the choline residues in the pneumococcal cell wall and act as ligands for choline-binding proteins (CBPs). Firstly, we assessed the ability of diethylaminoethyl (DEAE) to sequester the CBPs present in the bacterial surface, thus promoting chain formation. Secondly, the CBP-binding ability of ChiDENPs was purposed to encapsulate a bio-active molecule, the antimicrobial enzyme Cpl-711 (ChiDENPs-711), with improved stability over non-derivatized chitosan. The enzyme-loaded system released more than 90% of the active enzybiotic in ≈ 2 h, above the usual in vivo half-life of this kind of enzymes. Therefore, ChiDENPs provide a promising platform for the controlled release of CBP-enzybiotics in biological contexts.
Collapse
Affiliation(s)
- Roberto Vázquez
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Francisco J Caro-León
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain; Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico.
| | - Alberto Nakal
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain.
| | - Susana Ruiz
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Carmen Doñoro
- Animal Cell Culture Facility, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.
| | | | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales, y Nanomedicina (CIBER-BBN), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy (SUSPLAST), Madrid, Spain.
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain.
| | - Jesús Sanz
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Pedro García
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales, y Nanomedicina (CIBER-BBN), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy (SUSPLAST), Madrid, Spain.
| |
Collapse
|
6
|
Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. NANO TODAY 2021; 38:101146. [PMID: 33897805 PMCID: PMC8059603 DOI: 10.1016/j.nantod.2021.101146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| |
Collapse
|
7
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemie der Chitosan‐Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| |
Collapse
|
8
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemistry of Chitosan Aerogels: Three‐Dimensional Pore Control for Tailored Applications. Angew Chem Int Ed Engl 2020; 60:9828-9851. [DOI: 10.1002/anie.202003053] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| |
Collapse
|
9
|
Solvents, CO 2 and biopolymers: Structure formation in chitosan aerogel. Carbohydr Polym 2020; 247:116680. [PMID: 32829808 DOI: 10.1016/j.carbpol.2020.116680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/01/2023]
Abstract
The functionality of biopolymer aerogels is inherently linked to its microstructure, which in turn depends on the synthesis protocol. Detailed investigations on the macroscopic size change and nanostructure formation during chitosan aerogel synthesis reveal a new aspect of biopolymer aerogels that increases process flexibility. Formaldehyde-cross-linked chitosan gels retain a significant fraction of their original volume after solvent exchange into methanol (50.3 %), ethanol (47.1 %) or isopropanol (26.7 %), but shrink dramatically during subsequent supercritical CO2 processing (down to 4.9 %, 3.5 % and 3.7 %, respectively). In contrast, chitosan gels shrink more strongly upon exchange into n-heptane (7.2 %), a low affinity solvent, and retain this volume during CO2 processing. Small-angle X-ray scattering confirms that the occurrence of the volumetric changes correlates with mesoporous network formation through physical coagulation in CO2 or n-heptane. The structure formation step can be controlled by solvent-polymer and polymer-drying interactions, which would be a new tool to tailor the aerogel structure.
Collapse
|
10
|
Goyal N, Gao P, Wang Z, Cheng S, Ok YS, Li G, Liu L. Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122494. [PMID: 32193120 DOI: 10.1016/j.jhazmat.2020.122494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
A fresh adsorbent nanostructured chitosan/molecular sieve 4A hybrid (NSC@MS-4A) was fabricated for the rapid adsorption of strontium (Sr2+) and cesium (Cs+) ions from aqueous solutions. The as-obtained NSC@MS-4A were thoroughly characterized by XRD, FE-SEM, EDS, BET, XPS and FT-IR. The physio-chemical properties and structural aspects revealed that NSC@MS-4A acquires fine surface area (72 m2/g), porous structure as well as compatible functional groups (-P-O-P and -C-O-C) for the admission of Cs+ and Sr2+ ions. The batch adsorption studies concluded that prepared adsorbent displayed a maximum adsorption of 92-94 % within 40 min. Fast adsorption of Cs+ and Sr2+ was achieved at neutral pH (6-7), ambient temperature (25-30 °C) and slow agitation speed (50-60 rpm) which could propose vast benefits such as little power utilization and uncomplicated operation. Among six types of adsorption isotherms, Freundlich isotherm showed the best fit with R2>0.997. Pseudo-second order made a better agreement as compare to other kinetic models. The thermodynamic coefficients suggested the passage of Cs+ and Sr2+ ions through the liquid solid boundary is exothermic and spontaneous. The NSC@MS-4A displayed excellent regenerability properties over five repetitive adsorption/desorption cycles, which specified that as-obtained NSC@MS-4A is a sustainable as well as efficient adsorbent for practical decontamination of radioactive liquid waste.
Collapse
Affiliation(s)
- Nitin Goyal
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Peng Gao
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Zhe Wang
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Shuwen Cheng
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Gang Li
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China; Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Liying Liu
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
11
|
Characterization of functionalized chitosan-clinoptilolite nanocomposites for nitrate removal from aqueous media. Int J Biol Macromol 2019; 130:545-555. [DOI: 10.1016/j.ijbiomac.2019.02.127] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/08/2019] [Accepted: 02/22/2019] [Indexed: 02/05/2023]
|