1
|
Romero AM, Zampini IC, Isla MI. Chemical-Functional Analysis of Extracts Obtained from Zuccagnia punctata Powder Using Green Solvents (NaDESs) in Conjunction with Traditional and Non-Traditional Techniques. PLANTS (BASEL, SWITZERLAND) 2024; 13:2563. [PMID: 39339538 PMCID: PMC11435240 DOI: 10.3390/plants13182563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Zuccagnia punctata Cav. (Family Fabaceae. Subfamily Caesalpinioideae) is a native plant species with a long history of use in Argentine traditional medicine. The purpose of the present study was to extract bioactive compounds with antioxidant and antifungal activity from Z. punctata aerial parts using conventional solvents (water, ethanol 60°, vegetal oil) and unconventional solvents (natural deep eutectic solvents or NaDESs) such as green solvents with and without the assistance of ultrasound (UAE) and microwaves (MAE). NaDESs such as glucose: lactic acid (LGH), sucrose: citric acid (CAS), choline chloride: urea (CU) and glucose: fructose: sucrose (FGS) were used. LGH and CU were effective in the extraction of phenolic compounds (6710 ± 10.12 µg GAE/mL and 7140 ± 15.00 µg GAE/mL, respectively) as well as ethanol (6270 µg ± 12.00 µg GAE/mL) using conventional methods. Two chemical markers of Z. punctata (2',4'-dihydroxychalcone and 2',4'-dihydroxy -3-methoxychalcone) were extracted in a high proportion in ethanol, oil, LGH and CU with UAE. The ABTS antioxidant capacity was higher in the extracts obtained with LGH and CU (SC50: 0.90 ± 0.10 µg GAE/mL and 1.08 ± 0.16 µg GAE/mL, respectively). The extract obtained with vegetal oil was the most potent as antifungal, followed by the extracts in ethanol, LGH and CU. These findings highlight the importance of using environmentally friendly solvents such as NaDESs to obtain bioactive metabolites from Z. punctata, an endemic plant of Argentina with a potential application in the food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Antonela Mariana Romero
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-Universidad Nacional de Tucumán (UNT), San Martin 1545, San Miguel de Tucumán T4000CWF, Argentina; (A.M.R.); (I.C.Z.)
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-Universidad Nacional de Tucumán (UNT), San Martin 1545, San Miguel de Tucumán T4000CWF, Argentina; (A.M.R.); (I.C.Z.)
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, San Miguel de Tucumán T4000JFE, Argentina
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-Universidad Nacional de Tucumán (UNT), San Martin 1545, San Miguel de Tucumán T4000CWF, Argentina; (A.M.R.); (I.C.Z.)
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, San Miguel de Tucumán T4000JFE, Argentina
| |
Collapse
|
2
|
Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, Sharma A, Giri J, Benival D, Kommineni N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15041313. [PMID: 37111795 PMCID: PMC10144389 DOI: 10.3390/pharmaceutics15041313] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chitosan, a biocompatible and biodegradable polysaccharide derived from chitin, has surfaced as a material of promise for drug delivery and biomedical applications. Different chitin and chitosan extraction techniques can produce materials with unique properties, which can be further modified to enhance their bioactivities. Chitosan-based drug delivery systems have been developed for various routes of administration, including oral, ophthalmic, transdermal, nasal, and vaginal, allowing for targeted and sustained release of drugs. Additionally, chitosan has been used in numerous biomedical applications, such as bone regeneration, cartilage tissue regeneration, cardiac tissue regeneration, corneal regeneration, periodontal tissue regeneration, and wound healing. Moreover, chitosan has also been utilized in gene delivery, bioimaging, vaccination, and cosmeceutical applications. Modified chitosan derivatives have been developed to improve their biocompatibility and enhance their properties, resulting in innovative materials with promising potentials in various biomedical applications. This article summarizes the recent findings on chitosan and its application in drug delivery and biomedical science.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Pranav Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Amit Sharma
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
3
|
Correa Uriburu FM, Zampini IC, Maldonado LM, Gómez Mattson M, Salvatori D, Isla MI. Powdered Beverage from Native Plants from Argentina ( Zuccagnia punctata and Solanum betaceum) Obtained by Spray-Drying: A Promising Source of Antioxidant Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:1646. [PMID: 37111869 PMCID: PMC10144312 DOI: 10.3390/plants12081646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
In previous studies, the Argentinean native plants called Zuccagnia punctata (jarilla, pus pus, lata) and Solanum betaceum (chilto, tree tomato) were reported as new natural sources of antioxidant compounds, mainly chalcones, anthocyanins and rosmarinic acid derivates. The present study deals with the production of antioxidant beverages of Z. punctata (Zp) extract and chilto juice with honey as sweetener. A Zp extract and red chilto juice were obtained according to Food Code and characterized. The beverages were formulated by using maltodextrin (MD) with two dextrose equivalents (DE), 10 and 15, and then spray-dried at an inlet air temperature of 130 °C. The physicochemical, microscopical, phytochemical and functional characteristics of the powders were surveyed. The experiments carried out showed good physical properties for both formulations showing high water solubility with adequate features for handling, transport and storage. The chromatic parameters of both powdered beverages indicate orange-pink tones regardless of the wall material used. The total polyphenol and flavonoid content in the beverages were kept after spray-drying (92 and 100%, respectively). The anthocyanins were less stable under drying conditions (yield 58%). Both powdered beverages showed high scavenger capacity on ABTS•+, HO• and H2O2 (SC50 between 3.29 to 41.05 µg GAE/mL) and were able to inhibit xanthine oxidase (XOD) activity (CI50 between 91.35 and 114.43 µg GAE/mL). The beverages were neither toxic nor mutagenic in the concentration range with biological activity. The results obtained in the present work scientifically support the use of the powdered beverages of Argentinean native plants as antioxidant.
Collapse
Affiliation(s)
- Florencia María Correa Uriburu
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET—Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000CBG, Argentina; (F.M.C.U.); (I.C.Z.)
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Famaillá (INTA), Ruta Provincial 301-km 32, Famaillá 4132, Tucumán, Argentina;
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET—Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000CBG, Argentina; (F.M.C.U.); (I.C.Z.)
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000JFE, Argentina
| | - Luis Maria Maldonado
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Famaillá (INTA), Ruta Provincial 301-km 32, Famaillá 4132, Tucumán, Argentina;
| | - Milagros Gómez Mattson
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Neuquén 8300, Argentina; (M.G.M.); (D.S.)
| | - Daniela Salvatori
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Neuquén 8300, Argentina; (M.G.M.); (D.S.)
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET—Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000CBG, Argentina; (F.M.C.U.); (I.C.Z.)
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000JFE, Argentina
| |
Collapse
|
4
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
5
|
Engineering drug delivery systems to overcome the vaginal mucosal barrier: Current understanding and research agenda of mucoadhesive formulations of vaginal delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Thapa R, Gurung S, Parat MO, Parekh HS, Pandey P. Application of Sol–Gels for Treatment of Gynaecological Conditions—Physiological Perspectives and Emerging Concepts in Intravaginal Drug Delivery. Gels 2022; 8:gels8020099. [PMID: 35200479 PMCID: PMC8871440 DOI: 10.3390/gels8020099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Approaches for effective and sustained drug delivery to the female reproductive tract (FRT) for treating a range of gynaecological conditions remain limited. The development of versatile delivery platforms, such as soluble gels (sol–gels) coupled with applicators/devices, holds considerable therapeutic potential for gynaecological conditions. Sol–gel systems, which undergo solution-to-gel transition, triggered by physiological conditions such as changes in temperature, pH, or ion composition, offer advantages of both solution- and gel-based drug formulations. Furthermore, they have potential to be used as a suitable drug delivery vehicle for other novel drug formulations, including micro- and nano-particulate systems, enabling the delivery of drug molecules of diverse physicochemical character. We provide an anatomical and physiological perspective of the significant challenges and opportunities in attaining optimal drug delivery to the upper and lower FRT. Discussion then focuses on attributes of sol–gels that can vastly improve the treatment of gynaecological conditions. The review concludes by showcasing recent advances in vaginal formulation design, and proposes novel formulation strategies enabling the infusion of a wide range of therapeutics into sol–gels, paving the way for patient-friendly treatment regimens for acute and chronic FRT-related conditions such as bacterial/viral infection control (e.g., STDs), contraception, hormone replacement therapy (HRT), infertility, and cancer.
Collapse
Affiliation(s)
- Ritu Thapa
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
| | - Shila Gurung
- School of Health and Allied Sciences, Pokhara University, Pokhara-30, Kaski 33700, Nepal;
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
| | - Harendra S. Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
- Correspondence: (H.S.P.); (P.P.)
| | - Preeti Pandey
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
- Correspondence: (H.S.P.); (P.P.)
| |
Collapse
|
7
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
8
|
Arauzo B, Lobera MP, Monzon A, Santamaria J. Dry powder formulation for pulmonary infections: Ciprofloxacin loaded in chitosan sub-micron particles generated by electrospray. Carbohydr Polym 2021; 273:118543. [PMID: 34560955 DOI: 10.1016/j.carbpol.2021.118543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/10/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Electrospray was used as a one-step technique to generate inhalable ciprofloxacin-loaded chitosan sub-micron particles with potential use in the treatment of pulmonary infections. The effect of operating parameters was studied and the preparation method optimized. The final sizes of ciprofloxacin-loaded particles were 386.1 ± 248.5 nm and 501.1 ± 276.3 nm for high and low molecular weight chitosan, respectively. The high surface charge of the particles formed, around +45 mV, enhances their mucoadhesive properties. The particles were biocompatible with alveolar cell line (A549), and showed a high antimicrobial activity against two of the most common respiratory pathogens Staphylococcus aureus and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Beatriz Arauzo
- Institute of Nanoscience and Materials of Aragon (INMA) CSIC-Universidad de Zaragoza, Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - M Pilar Lobera
- Institute of Nanoscience and Materials of Aragon (INMA) CSIC-Universidad de Zaragoza, Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Antonio Monzon
- Institute of Nanoscience and Materials of Aragon (INMA) CSIC-Universidad de Zaragoza, Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Jesus Santamaria
- Institute of Nanoscience and Materials of Aragon (INMA) CSIC-Universidad de Zaragoza, Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
9
|
Hua Y, Wei Z, Xue C. Chitosan and its composites-based delivery systems: advances and applications in food science and nutrition sector. Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34793271 DOI: 10.1080/10408398.2021.2004992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Natural bioactive ingredients have lower bioavailability because of their chemical instability and poor water solubility, which limits their applications in functional foods. Among diverse biopolymers that can be used to construct delivery systems of bioactives, chitosan has attracted extensive attention due to its unique cationic nature, excellent mucoadhesive properties and easy modification. In this review, chitosan and its composites-based food-grade delivery systems as well as the factors affecting their performance are summarized. Modification, crosslinking, combination with other biopolymer or utilization of coating material can effectively overcome the instability of pure chitosan-based carriers under acidic conditions, thereby constructing chitosan and its complex-based carriers with conspicuously improved performance. Furthermore, the applications of chitosan-based delivery systems in nutrition and health as well as their future development trends and challenges are discussed. Functional food ingredients, functional food packaging and biological health are potential applications of chitosan-based food-grade delivery systems. The research trends of nutraceutical delivery systems based on chitosan and its composites include co-delivery of nutrients and essential oils, targeted intestinal delivery, stimulus responsive/sustained release and their applications in real foods. In conclusion, food industry will be significantly promoted with the continuous innovation and development of chitosan-based nutraceutical delivery systems.
Collapse
Affiliation(s)
- Yijie Hua
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
He S, Zhong S, Meng Q, Fang Y, Dou Y, Gao Y, Cui X. Sonochemical preparation of folate-decorated reductive-responsive carboxymethylcellulose-based nanocapsules for targeted drug delivery. Carbohydr Polym 2021; 266:118174. [PMID: 34044962 DOI: 10.1016/j.carbpol.2021.118174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022]
Abstract
In this study, a biocompatible folate-decorated reductive-responsive carboxymethylcellulose-based nanocapsules (FA-RCNCs) were designed and prepared via sonochemical method for targeted delivery and controlled release of hydrophobic drugs. The shell of FA-RCNCs was cross-linked by disulfide bonds formed from hydrosulfuryl groups on the thiolated carboxymethylcellulose (TCMC) and encapsulated hydrophobic drug dispersed in the oil phase into nanocapsules. Moreover, the size and morphology of drug loaded FA-RCNCs were characterized by DLS, SEM and CLSM which indicated that the synthesized nanocapsules have suitable size range and excellent stability for circulating in the bloodstream. The drug release rate of FA-RCNCs could be controlled by adjusting their sizes and shell thickness, which could be dominated by the concentration of TCMC and sonochemical conditions. Furthermore, the obtained FA-RCNCs could be ingested into Hela cells via folate-receptor (FR)-mediated endocytosis and quickly release drugs under reductive environment, which demonstrated that FA-RCNCs could become potential hydrophobic drugs carries for cancer therapy.
Collapse
Affiliation(s)
- Shihao He
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Qingye Meng
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yu Fang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yueming Dou
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
11
|
Araujo VHS, de Souza MPC, Carvalho GC, Duarte JL, Chorilli M. Chitosan-based systems aimed at local application for vaginal infections. Carbohydr Polym 2021; 261:117919. [PMID: 33766328 DOI: 10.1016/j.carbpol.2021.117919] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
Vaginal administration is a promising route for the local treatment of infectious vaginal diseases since it can bypass the first-pass metabolism, drug interactions, and adverse effects. However, the commercial products currently available for topical vulvovaginal treatment have low acceptability and do not adequately explore this route. Mucoadhesive systems can optimize the efficacy of drugs administered by this route to increase the retention time of the drug in the vaginal environment. Several polymers are used to develop mucoadhesive systems, among them chitosan, a natural polymer that is highly biocompatible and technologically versatile. Thus, the present review aimed to analyze the studies that used chitosan to develop mucoadhesive systems for the treatment of local vaginal infections. These studies demonstrated that chitosan as a component of mucoadhesive drug delivery systems (DDS) is a promising device for the treatment of vaginal infectious diseases, due to the intrinsic antimicrobial activity of this biopolymer and because it does not interfere with the effectiveness of the drugs used for the treatment.
Collapse
Affiliation(s)
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|
12
|
Electrospraying: A facile technology unfolding the chitosan based drug delivery and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110326] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Propolis from the Monte Region in Argentina: A Potential Phytotherapic and Food Functional Ingredient. Metabolites 2021; 11:metabo11020076. [PMID: 33525321 PMCID: PMC7911552 DOI: 10.3390/metabo11020076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this review is to provide overall information on Argentine propolis and to shed light on its potential, especially the one from the Monte region so as to support future research in the field. Around 1999, the Argentine propolis began to be chemically and functionally characterized to give it greater added value. Because Argentina has a wide plant biodiversity, it is expected that its propolis will have various botanical origins, and consequently, a different chemical composition. To date, five types have been defined. Based on their functionality, several products have been developed for use in human and veterinary medicine and in animal and human food. Because the Argentine propolis with the greatest potential is that of the Monte eco-region, this review will describe the findings of the last 20 years on this propolis, its botanical source (Zuccagnia punctata Cav.), its chemical composition, and a description of markers of chemical quality (chalcones) and functionality. Propolis can regulate the activity of various pro-inflammatory enzymes and carbohydrate and lipid metabolism enzymes, as well as remove reactive oxygen and nitrogen species. Consequently, it can modulate metabolic syndrome and could be used as a functional ingredient in food. Furthermore, hydroalcoholic extracts can act against human and animal pathogenic bacteria and human yeast, and mycelial pathogenic fungi. The ability to stop the growth of post-harvest pathogenic bacteria and fungi was also demonstrated. For this reason, Argentine propolis are natural products capable of protecting crops and increasing the lifespan of harvested fruit and vegetables. Several reports indicate the potential of Argentine propolis to be used in innovative products to improve health, food preservation, and packaging. However, there is still much to learn about these natural products to make a wholesome use of them.
Collapse
|
14
|
Chindamo G, Sapino S, Peira E, Chirio D, Gallarate M. Recent Advances in Nanosystems and Strategies for Vaginal Delivery of Antimicrobials. NANOMATERIALS 2021; 11:nano11020311. [PMID: 33530510 PMCID: PMC7912580 DOI: 10.3390/nano11020311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Vaginal infections such as bacterial vaginosis (BV), chlamydia, gonorrhea, genital herpes, candidiasis, and trichomoniasis affect millions of women each year. They are caused by an overgrowth of microorganisms, generally sexually transmitted, which in turn can be favored by alterations in the vaginal flora. Conventional treatments of these infections consist in systemic or local antimicrobial therapies. However, in the attempt to reduce adverse effects and to contrast microbial resistance and infection recurrences, many efforts have been devoted to the development of vaginal systems for the local delivery of antimicrobials. Several topical dosage forms such as aerosols, lotions, suppositories, tablets, gels, and creams have been proposed, although they are sometimes ineffective due to their poor penetration and rapid removal from the vaginal canal. For these reasons, the development of innovative drug delivery systems, able to remain in situ and release active agents for a prolonged period, is becoming more and more important. Among all, nanosystems such as liposomes, nanoparticles (NPs), and micelles with tunable surface properties, but also thermogelling nanocomposites, could be exploited to improve local drug delivery, biodistribution, retention, and uptake in vulvovaginal tissues. The aim of this review is to provide a survey of the variety of nanoplatforms developed for the vaginal delivery of antimicrobial agents. A concise summary of the most common vaginal infections and of the conventional therapies is also provided.
Collapse
|
15
|
Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2020; 169:103-121. [PMID: 33338522 DOI: 10.1016/j.ijbiomac.2020.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
One of the most promising pharmaceutical research areas is developing advanced delivery systems for controlled and sustained drug release. The drug delivery system (DDS) can be designed to strengthen the pharmacological and therapeutic characteristics of different medicines. Natural polymers have resolved numerous commencing hurdles, which hindered the clinical implementation of traditional DDS. The naturally derived polymers furnish various advantages such as biodegradability, biocompatibility, inexpensiveness, easy availability, and biologically identifiable moieties, which endorse cellular activity in contrast to synthetic polymers. Among them, chitosan has recently been in the spotlight for devising safe and efficient DDSs due to its superior properties such as minimal toxicity, bio-adhesion, stability, biodegradability, and biocompatibility. The primary amino group in chitosan shows exceptional qualities such as the rate of drug release, anti-microbial properties, the ability to cross-link with various polymers, and macrophage activation. This review intends to provide a glimpse into different practical utilization of chitosan as a drug carrier. The first segment of the review will give cognizance into the source of extraction and chitosan's remarkable properties. Further, we have endeavored to provide recent literature pertaining to chitosan applications in various drug delivery systems via different administration routes along with current patented chitosan formulations.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India; Department of Polymeric Medical Devices, Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695011, India.
| | - Vaishnavi Sali
- C.U. Shah College of Pharmacy, SNDT Women's University, Sir Vithaldas Thakersay, Santacruz West, Juhu, Mumbai, Maharashtra 400049, India
| |
Collapse
|
16
|
Orqueda ME, Moreno MA, Zampini IC, Bravo K, Osorio E, Isla MI. Potential use of medicinal plants from Argentinean highland as agent anti-photoaging. J Cosmet Dermatol 2020; 20:1188-1196. [PMID: 33040425 DOI: 10.1111/jocd.13701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The overexposure to sun ultraviolet (UV) radiation produce photoaging by effect of free radicals on lipid, protein, and nucleic acid or by direct activation of responsible enzymes of cleavage of extracellular matrix components (EMC). AIMS To develop new anti-photoaging agents, the anti-aging activity of four "jarillas" standardized extracts from Argentina (Zuccagnia punctata Cav.,Larrea divaricata Cav.,Larrea cuneifolia Cav., and Larrea nitida Cav.) were examined. METHODS The effect on the activity and expression of enzymes related to photoaging (collagenase, hyaluronidase, elastase, tyrosinase) and the antioxidant capacity of four "jarillas" extracts were examined. RESULTS The results suggest that "jarillas" extracts could protect EMC by inhibition of skin aging-related enzymes and suppression of the expression of metalloproteinases (MMP-1) in human skin fibroblasts from photoinduced damage. Modulation of MMP-1 expression induced by UV radiation in human skin cells could be associated, at least in part, with the ROS scavenging capacity of "jarilla" extracts. The extract of Z punctata was more active than Larrea species extracts in all the trials. The activity of Z punctata and Larrea extracts could be ascribed to chalcones and lignans, major constituents of "jarillas," respectively. CONCLUSIONS The results obtained would indicate the potential of these adapted species to live in arid zones of Argentina, exposed to high ultraviolet radiation in production of cosmetic products and justify the promotion of their sustainable use and the development of crops.
Collapse
Affiliation(s)
- María Eugenia Orqueda
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT). Facultad de Ciencias Naturales e IML. Universidad Nacional de Tucumán., San Miguel de Tucuman, Argentina
| | - María Alejandra Moreno
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT). Facultad de Ciencias Naturales e IML. Universidad Nacional de Tucumán., San Miguel de Tucuman, Argentina
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT). Facultad de Ciencias Naturales e IML. Universidad Nacional de Tucumán., San Miguel de Tucuman, Argentina
| | - Karent Bravo
- Grupo de Investigación en Sustancias Bioactivas. Facultad de Ciencias Farmacéuticas y Alimentarias. Universidad de Antioquia., Medellin, Colombia
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas. Facultad de Ciencias Farmacéuticas y Alimentarias. Universidad de Antioquia., Medellin, Colombia
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT). Facultad de Ciencias Naturales e IML. Universidad Nacional de Tucumán., San Miguel de Tucuman, Argentina
| |
Collapse
|
17
|
Ma Z, Song Z, Jiang Q, Lv W. Novel method for microencapsulation of oxalic acid with ethyl cellulose shell for sustained-release performance. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Castro Coelho S, Nogueiro Estevinho B, Rocha F. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying - A review. Food Chem 2020; 339:127850. [PMID: 32861932 DOI: 10.1016/j.foodchem.2020.127850] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Nowadays the world population has been more conscious about healthy food products based on bioactive ingredients in order to protect against diseases and to develop healthy diets. Emerging electrohydrodynamic techniques have been object of interest in the scientific community as well as in the industry. In fact, electrospinning and electrospraying methods are promising techniques to fabricate delivery vehicles. These vehicles present structural and functional benefits for encapsulation of bioactive ingredients. They can be used in several food and nutraceutical matrices, protecting the ingredients from environmental conditions. They can also enhance biomolecules bioavailability and controlled release, at the same time that improve the product's shelf life. This review provides the recent state of art for electrospinning/electrospraying techniques. It highlights the crucial parameters that influence these techniques. Further, the recent studies of vitamins encapsulation for applications in functional foods and nutraceuticals fields are summarized. Electrosprayed particles/electrospun fibres are easily produced and present suitable physico-chemical characteristics to encapsulate bioactives to improve the functional foods.
Collapse
Affiliation(s)
- Sílvia Castro Coelho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta Nogueiro Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
19
|
Salas AL, Mercado MI, Eugenia Orqueda M, Correa Uriburu FM, García ME, Pérez MJ, Alvarez MDLA, Ponessa GI, Maldonado LM, Zampini IC, Isla MI. Zuccagnia
‐type Propolis from Argentina: A potential functional ingredient in food to pathologies associated to metabolic syndrome and oxidative stress. J Food Sci 2020. [DOI: 10.1111/1750-3841.15323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ana L. Salas
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales Universidad Nacional de Tucumán San Miguel de Tucumán Tucumán 4000 Argentina
| | - María Inés Mercado
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| | - Maria Eugenia Orqueda
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
| | - Florencia M. Correa Uriburu
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales Universidad Nacional de Tucumán San Miguel de Tucumán Tucumán 4000 Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria Famaillá Famaillá Tucumán 4132 Argentina
| | - Maria Elena García
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| | - María Jorgelina Pérez
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
| | - María de los Angeles Alvarez
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
| | - Graciela I. Ponessa
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| | - Luis Maldonado Maldonado
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria Famaillá Famaillá Tucumán 4132 Argentina
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales Universidad Nacional de Tucumán San Miguel de Tucumán Tucumán 4000 Argentina
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales Universidad Nacional de Tucumán San Miguel de Tucumán Tucumán 4000 Argentina
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| |
Collapse
|
20
|
Moreno MA, Zampini IC, Isla MI. Antifungal, anti-inflammatory and antioxidant activity of bi-herbal mixtures with medicinal plants from Argentinean highlands. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112642. [PMID: 32035220 DOI: 10.1016/j.jep.2020.112642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Argentinean medicinal plants such as Larrea divaricata Cav., Larrea cuneifolia Cav., Larrea nitida Cav., Zuccagnia punctata Cav. and Tetraglochin andina Ciald. are used alone and in combination in traditional medicine by inhabitants from northwestern Argentina to solve mycosis, vaginal infections, gastrointestinal, respiratory, and inflammatory processes. AIM OF THE STUDY To assess the effect of interactions between hydroalcoholic extracts of these five species of medicinal plants against yeast strains isolated from vaginal infections, select the most active mixtures and evaluate anti-inflammatory and antioxidant activities. MATERIAL AND METHODS Synergy between the plant extracts was studied by using a broth microdilution assay by means of the checkerboard method against Saccharomyces cerevisiae, Candida albicans, and non albicans strains. The inhibitory effect on lipoxygenase and the antioxidant capacity in cell-free and cell systems were studied. The chemical profile was evaluated by qualitative and quantitative screening, whereas chemical markers were quantified by HPLC-DAD. RESULTS A synergistic antifungal effect was observed in some binary combinations. Z. punctata/L. divaricata, Z. punctata/L. cuneifolia, and Z. punctata/L. nitida were the most active mixtures. Nordihydroguaiaretic acid and 2',4'-dihydroxychalcone, two antifungal compounds, present in these extracts, were identified and quantified by HPLC-DAD. Both single extracts and bi-herbal mixtures showed antioxidant activity (in cellular and in cell-free systems) and were active on pro-inflammatory enzymes (LOX). CONCLUSIONS Our results indicated that the most active combinations of these species extracts could be useful in the treatment of vaginal infectious diseases caused by Saccharomyces cerevisiae and Candida spp. strains and in associated oxidative and inflammatory processes, supporting its traditional use. In addition, the results highlighted the phyto-therapeutic potential of total phytochemical compounds present in these medicinal plants.
Collapse
Affiliation(s)
- María Alejandra Moreno
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Argentina.
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina.
| | - María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
21
|
Active properties of edible marine polysaccharide-based coatings containing Larrea nitida polyphenols enriched extract. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105595] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Carrizo SL, Zampini IC, Sayago JE, Simirgiotis MJ, Bórquez J, Cuello AS, Isla MI. Antifungal activity of phytotherapeutic preparation of Baccharis species from argentine Puna against clinically relevant fungi. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112553. [PMID: 31923539 DOI: 10.1016/j.jep.2020.112553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE B. boliviensis and B. tola are used in traditional medicine in the Argentine Puna to treat skin and soft tissue infections and inflammatory processes in humans and animals. AIM OF THE STUDY To assess the potential of phytotherapeutic preparations of Baccharis species as antifungal agents against clinically relevant fungi and to determine the chemical composition of the extracts. MATERIAL AND METHODS Phytotherapeutic preparations of B. boliviensis and B. tola collected in Argentine Puna were evaluated as an antifungal agent against clinically relevant fungi (yeast, non-dermatophytes, and dermatophytes) isolated of patients from a local Hospital, and reference strains, using macrodilution and microdilution assays. The bioactivity was supported by UHPLC-OT-MS metabolome fingerprinting. RESULTS The results revealed that the plant preparations were active against most of evaluated fungal strains; B. boliviensis was more active than B. tola. Dermatophyte fungi strains were the most sensitive isolates. The phytotherapeutic preparation showed Minimal Inhibitory Concentration (MIC) values between 25 and 400 μg GAE/mL and Minimum Fungicidal Concentration (MFC) values between 50 and 400 μg GAE/mL. Regarding the phytochemical analysis, total phenolic and total flavonoid contents of hydroalcoholic preparation of B. boliviensis were greater than those of the B. tola extract. Both Baccharis species showed similar chromatographic patterns, fifty-two compounds were identified based on UHPLC-OT-MS including several terpenoids, flavonoids and phenolic acids that have been identified in this two endemic South American Baccharis species for the first time. Several identified compounds present antifungal properties, the presence of these compounds support the bioactivity of the Baccharis extracts. CONCLUSIONS In this work the traditional use of both Baccharis species as an antimicrobial against commercial products resistant fungal strains was validate, principally against dermatophytes fungi such as T. rubrum, T. mentagrophytes, M. canis, and M. gypseum. These results indicate that the hydroalcoholic preparations could be used for the treatment of fungal infectious.
Collapse
Affiliation(s)
- Silvana Lorena Carrizo
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, San Lorenzo 1469, San Miguel de Tucumán, 4000, Tucumán, Argentina.
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, San Lorenzo 1469, San Miguel de Tucumán, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, 4000, Tucumán, Argentina.
| | - Jorge Esteban Sayago
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, San Lorenzo 1469, San Miguel de Tucumán, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia. Universidad Nacional de Tucumán, Ayacucho 471, San Miguel de Tucumán, 4000, Tucumán, Argentina.
| | - Mario Juan Simirgiotis
- Instituto de Farmacia, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 5090000, Chile.
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, 1240000, Chile.
| | - Ana Soledad Cuello
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, San Lorenzo 1469, San Miguel de Tucumán, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, 4000, Tucumán, Argentina.
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, San Lorenzo 1469, San Miguel de Tucumán, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, 4000, Tucumán, Argentina.
| |
Collapse
|
23
|
Li L, Zhang W, Peng J, Xue B, Liu Z, Luo Z, Lu D, Zhao X. A Novel Shell Material-Highland Barley Starch for Microencapsulation of Cinnamon Essential Oil with Different Preparation Methods. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1192. [PMID: 32155895 PMCID: PMC7085060 DOI: 10.3390/ma13051192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 01/17/2023]
Abstract
Highland barley starch (HBS), as a carbohydrate shell material with excellent performance in microcapsule applications, has rarely been reported. In the present study, three different microcapsules (CEO-SWSM, CEO-PM, and CEO-UM) were synthesized successfully via saturated aqueous solution method, molecular inclusion method and ultrasonic method, respectively, using HBS as shell material coupled with cinnamon essential oil (CEO) as the core material. The potential of HBS as a new shell material and the influence of synthetic methods on the performance of microcapsules, encapsulation efficiency (EE), yield, and release rate of CEO-SWSM, CEO-PM, and CEO-UM were determined, respectively. The results confirmed that CEO-PM had the most excellent EE (88.2%), yield (79.1%), as well as lowest release rate (11.5%, after 25 days of storage). Moreover, different kinetic models were applied to fit the release process of these three kinds of microcapsules: CEO-SWSM, CEO-PM, and CEO-UM had the uppermost R-squared value in the Higuchi model, the zero-order model, and the first-level model, respectively. Over all, this work put forward a novel perspective for the improved encapsulation effect of perishable core materials (e.g., essential oil) for the food industry.
Collapse
Affiliation(s)
- Liang Li
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Wenhui Zhang
- Institute of Agriculture Products Development and Food Science Research, Tibet Academy of Agriculture and Animal Science, Lhasa 850032, China;
| | - Jian Peng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China;
| | - Bei Xue
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Zhendong Liu
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Zhang Luo
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Deze Lu
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| | - Xiaorui Zhao
- Food Science College, TAAHC-SWU Medicinal Plants Joint Research and Development Centre, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (L.L.); (B.X.); (D.L.); (X.Z.)
| |
Collapse
|
24
|
Yaneva Z, Ivanova D, Nikolova N, Tzanova M. The 21st century revival of chitosan in service to bio-organic chemistry. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1731333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, Stara Zagora, Bulgaria
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, Stara Zagora, Bulgaria
| | - Nevena Nikolova
- Faculty of Veterinary Medicine, Radioecology and Ecology Unit, Trakia University, Stara Zagora, Bulgaria
| | - Milena Tzanova
- Faculty of Agriculture, Department of Biochemistry, Microbiology and Physics, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
25
|
Chahar FC, Alvarez PE, Zampini C, Isla MI, Brandán SA. Experimental and DFT studies on 2′,4′-dihydroxychalcone, a product isolated from Zuccagnia punctata Cav. (Fabaceae) medicinal plant. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Melo CM, Cardoso JF, Perassoli FB, de Oliveira Neto AS, Pinto LM, de Freitas Marques MB, da Nova Mussel W, Magalhães JT, de Lima Moura SA, de Freitas Araújo MG, Da Silva GR. Amphotericin B-loaded Eudragit RL100 nanoparticles coated with hyaluronic acid for the treatment of vulvovaginal candidiasis. Carbohydr Polym 2020; 230:115608. [DOI: 10.1016/j.carbpol.2019.115608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/08/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
|
27
|
Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105376] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Antonella Carabajal MP, Perea MC, Isla MI, Zampini IC. The use of jarilla native plants in a Diaguita-Calchaquí indigenous community from northwestern Argentina: An ethnobotanical, phytochemical and biological approach. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112258. [PMID: 31574342 DOI: 10.1016/j.jep.2019.112258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/10/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In northwestern Argentina inhabit several ancient indigenous communities with diverse cultural and historical background. Geographical isolation has contributed to the prevalence of a native plant-based folk medicine; "jarilla" species are medicinal plants widely used in local communities for the treatment of mycosis, respiratory, gastrointestinal and rheumatic disorders. THE AIM OF THE STUDY To assemble the traditional knowledge acquired through years with scientific data concerning to phytochemistry, antioxidant and anti-inflammatory potential of three "jarillas" species. MATERIAL AND METHODS Ethnobotanical data of three "jarillas", Zuccagnia punctata (Zp), Larrea cuneifolia (Lc), and Larrea divaricata (Ld), were explored by interviewing native people from Indigenous Community of Amaicha del Valle, Tucumán. Phenolic profiles from each infusion were analyzed by HPLC-ESI-MS/MS. Antioxidant activity was determined by superoxide anion and hydrogen peroxide scavenging capacity, lipoperoxidation inhibition, and ferrous iron chelating activity. It was also assessed their ability to inhibit pro-inflammatory enzymes, such as xanthine oxidase, lipoxygenase, and hyaluronidase. RESULTS Ethnobotanical interviews showed that local people use "jarillas" mainly as infusions and baths. It was reported different categories of uses, such as medicinal (10 curative applications), to religious purposes, tinctorial, as construction material and as fuel. From infusions prepared, the MS and MS/MS data allowed the identification of 27 compounds from Z. punctata, and 11 from both Larrea sp. The infusions showed an important antioxidant activity through different mechanisms, highlighting Zp and Lc in free radical scavenging capacity and Ld on lipid peroxidation inhibition and iron binding. They were also capable of inhibit xanthine oxidase and lipoxygenase enzymes, being Lc the most active one. CONCLUSIONS This research work provides novel information concerning to several categories of traditional uses of "jarilla" species in a Diaguita-Calchaquí community and focus attention to infusions from a phytochemical and biological approach.
Collapse
Affiliation(s)
- Mónica Patricia Antonella Carabajal
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Argentina; Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina.
| | - María Cristina Perea
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Argentina; Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina.
| | - María Inés Isla
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Argentina; Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina.
| | - Iris Catiana Zampini
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Argentina; Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
29
|
Moreno MA, Orqueda ME, Gómez-Mascaraque LG, Isla MI, López-Rubio A. Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|