1
|
Mozaffari A, Parvinzadeh Gashti M, Alimohammadi F, Pousti M. The Impact of Helium and Nitrogen Plasmas on Electrospun Gelatin Nanofiber Scaffolds for Skin Tissue Engineering Applications. J Funct Biomater 2024; 15:326. [PMID: 39590530 PMCID: PMC11595157 DOI: 10.3390/jfb15110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the fabrication of tannic acid-crosslinked gelatin nanofibers via electrospinning, followed by helium and nitrogen plasma treatment to enhance their biofunctionality, which was assessed using fibroblast cells. The nanofibers were characterized using scanning electron microscopy, atomic force microscopy, attenuated total reflection Fourier transform infrared spectroscopy, X-ray diffraction, and water contact angle measurements before and after treatment. Helium and nitrogen gas plasma were employed to modify the nanofiber surfaces. Results indicated that helium and nitrogen plasma treatment significantly increased the hydrophilicity and biofunctionality of the nanofibers by 5.1° ± 0.6 and 15.6° ± 2.2, respectively, making them more suitable for human skin fibroblast applications. To investigate the impact of plasma treatment on gelatin, we employed a computational model using density functional theory with the B3LYP/6-31+G(d) method. This model represented gelatin as an amino acid chain composed of glycine, hydroxyproline, and proline, interacting with plasma particles. Vibrational analysis of these systems was used to interpret the vibrational spectra of untreated and plasma-treated gelatin. To further correlate with experimental findings, molecular dynamics simulations were performed on a system of three interacting gelatin chains. These simulations explored changes in amino acid bonding. The computational results align with experimental observations. Comprehensive analyses confirmed that these treatments improved hydrophilicity and biofunctionality, supporting the use of plasma-treated gelatin nanofibers in skin tissue engineering applications. Gelatin's natural biopolymer properties and the versatility of plasma surface modification techniques underscore its potential in regenerating cartilage, skin, circulatory tissues, and hamstrings.
Collapse
Affiliation(s)
- Abolfazl Mozaffari
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd 14515-775, Iran
| | - Mazeyar Parvinzadeh Gashti
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Farbod Alimohammadi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Mohammad Pousti
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada;
| |
Collapse
|
2
|
Aliakbarshirazi S, Ghobeira R, Asadian M, Narimisa M, Nikiforov A, De Baere I, Van Paepegem W, De Geyter N, Declercq H, Morent R. Advanced Hollow Cathode Discharge Plasma Treatment of Unique Bilayered Fibrous Nerve Guidance Conduits for Enhanced/Oriented Neurite Outgrowth. Biomacromolecules 2024; 25:1448-1467. [PMID: 38412382 DOI: 10.1021/acs.biomac.3c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.
Collapse
Affiliation(s)
- Sheida Aliakbarshirazi
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Mehrnoush Narimisa
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Ives De Baere
- Mechanics of Materials and Structures (MMS), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark-Zwijnaarde 903, 9052 Zwijnaarde, Belgium
| | - Wim Van Paepegem
- Mechanics of Materials and Structures (MMS), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark-Zwijnaarde 903, 9052 Zwijnaarde, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Li D, Xu K, Zhang Y. A Review on Research Progress in Plasma-Controlled Superwetting Surface Structure and Properties. Polymers (Basel) 2022; 14:3759. [PMID: 36145911 PMCID: PMC9505013 DOI: 10.3390/polym14183759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Superwetting surface can be divided into (super) hydrophilic surface and (super) hydrophobic surface. There are many methods to control superwetting surface, among which plasma technology is a safe and convenient one. This paper first summarizes the plasma technologies that control the surface superwettability, then analyzes the influencing factors from the micro point of view. After that, it focuses on the plasma modification methods that change the superwetting structure on the surface of different materials, and finally, it states the specific applications of the superwetting materials. In a word, the use of plasma technology to obtain a superwetting surface has a wide application prospect.
Collapse
Affiliation(s)
- Dayu Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| | | | | |
Collapse
|
4
|
Demina TS, Bikmulina PY, Birdibekova AV, Kuryanova AS, Frolova AA, Koteneva PI, Aksenova NA, Kosheleva NV, Khlebnikova TM, Akopova TA, Timashev PS. Modification of the Chemical Structure, Morphology, and Cytocompatibility of Chitosan Films via Low-Frequency Plasma Treatment. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382202003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Nonthermal plasma processing for nanostructured biomaterials and tissue engineering scaffolds: A mini review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2020.100259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Esbah Tabaei PS, Asadian M, Ghobeira R, Cools P, Thukkaram M, Derakhshandeh PG, Abednatanzi S, Van Der Voort P, Verbeken K, Vercruysse C, Declercq H, Morent R, De Geyter N. Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering. Carbohydr Polym 2021; 253:117211. [DOI: 10.1016/j.carbpol.2020.117211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
|
7
|
Abstract
Tissue engineering refers to the attempt to create functional human tissue from cells in a laboratory. This is a field that uses living cells, biocompatible materials, suitable biochemical and physical factors, and their combinations to create tissue-like structures. To date, no tissue engineered skeletal muscle implants have been developed for clinical use, but they may represent a valid alternative for the treatment of volumetric muscle loss in the near future. Herein, we reviewed the literature and showed different techniques to produce synthetic tissues with the same architectural, structural and functional properties as native tissues.
Collapse
|
8
|
Astoreca L, Cools P, Schaubroeck D, Asadian M, Aliakbarshirazi S, Declercq H, Op de Beeck M, Morent R, De Smet H, De Geyter N. Non-thermal plasma activation of BPDA-PPD polyimide for improved cell-material interaction. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Căprărescu S, Zgârian RG, Tihan GT, Purcar V, Eftimie Totu E, Modrogan C, Chiriac AL, Nicolae CA. Biopolymeric Membrane Enriched with Chitosan and Silver for Metallic Ions Removal. Polymers (Basel) 2020; 12:polym12081792. [PMID: 32785152 PMCID: PMC7464649 DOI: 10.3390/polym12081792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 01/25/2023] Open
Abstract
The present paper synthesized, characterized, and evaluated the performance of the novel biopolymeric membrane enriched with cellulose acetate and chitosan (CHI)-silver (Ag) ions in order to remove iron ion from the synthetic wastewater using a new electrodialysis system. The prepared membranes were characterized by Fourier Transforms Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR), Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DSC), contact angle measurements, microscopy studies, and electrochemical impedance spectroscopy (EIS). The electrodialysis experiments were performed at the different applied voltages (5, 10, and 15 V) for one hour, at room temperature. The treatment rate (TE) of iron ions, current efficiency (IE), and energy consumption (Wc) were calculated. FTIR-ATR spectra evidenced that incorporation of CHI-Ag ions into the polymer mixture led to a polymer-metal ion complex formation within the membrane. The TGA-DSC analysis for the obtained biopolymeric membranes showed excellent thermal stability (>350 °C). The contact angle measurements demonstrated the hydrophobic character of the polymeric membrane and a decrease of it by CHI-Ag adding. The EIS results indicated that the silver ions induced a higher ionic electrical conductivity. The highest value of the iron ions treatment rate (>60%) was obtained for the biopolymeric membrane with CHI-Ag ions at applied voltage of 15 V.
Collapse
Affiliation(s)
- Simona Căprărescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania;
| | - Roxana Gabriela Zgârian
- Department of General Chemistry, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania;
| | - Graţiela Teodora Tihan
- Department of General Chemistry, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania;
- Correspondence:
| | - Violeta Purcar
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania; (V.P.); (A.-L.C.); (C.A.N.)
| | - Eugenia Eftimie Totu
- Analytical Chemistry and Environmental Engineering Department, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania; (E.E.T.); (C.M.)
| | - Cristina Modrogan
- Analytical Chemistry and Environmental Engineering Department, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania; (E.E.T.); (C.M.)
| | - Anita-Laura Chiriac
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania; (V.P.); (A.-L.C.); (C.A.N.)
| | - Cristian Andi Nicolae
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania; (V.P.); (A.-L.C.); (C.A.N.)
| |
Collapse
|
10
|
Dufay M, Jimenez M, Degoutin S. Effect of Cold Plasma Treatment on Electrospun Nanofibers Properties: A Review. ACS APPLIED BIO MATERIALS 2020; 3:4696-4716. [DOI: 10.1021/acsabm.0c00154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Malo Dufay
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| | - Maude Jimenez
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| | - Stéphanie Degoutin
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| |
Collapse
|
11
|
Asadian M, Chan KV, Norouzi M, Grande S, Cools P, Morent R, De Geyter N. Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E119. [PMID: 31936372 PMCID: PMC7023287 DOI: 10.3390/nano10010119] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
This paper provides a comprehensive overview of nanofibrous structures for tissue engineering purposes and the role of non-thermal plasma technology (NTP) within this field. Special attention is first given to nanofiber fabrication strategies, including thermally-induced phase separation, molecular self-assembly, and electrospinning, highlighting their strengths, weaknesses, and potentials. The review then continues to discuss the biodegradable polyesters typically employed for nanofiber fabrication, while the primary focus lies on their applicability and limitations. From thereon, the reader is introduced to the concept of NTP and its application in plasma-assisted surface modification of nanofibrous scaffolds. The final part of the review discusses the available literature on NTP-modified nanofibers looking at the impact of plasma activation and polymerization treatments on nanofiber wettability, surface chemistry, cell adhesion/proliferation and protein grafting. As such, this review provides a complete introduction into NTP-modified nanofibers, while aiming to address the current unexplored potentials left within the field.
Collapse
Affiliation(s)
- Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Ke Vin Chan
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Mohammad Norouzi
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada;
| | - Silvia Grande
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Pieter Cools
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| |
Collapse
|
12
|
Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes. NANOMATERIALS 2019; 9:nano9091215. [PMID: 31466357 PMCID: PMC6780329 DOI: 10.3390/nano9091215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023]
Abstract
In this work, cyclopropylamine (CPA) monomer was plasma-polymerized on poly (ε-caprolactone) nanofiber meshes using various deposition durations to obtain amine-rich surfaces in an effort to improve the cellular response of the meshes. Scanning electron microscopy and X-ray photoelectron spectroscopy (XPS) were used to investigate the surface morphology and surface chemical composition of the PCL samples, respectively. The measured coating thickness was found to linearly increase with deposition duration at a deposition rate of 0.465 nm/s. XPS analysis revealed that plasma exposure time had a considerable effect on the surface N/C and O/C ratio as well as on amino grafting efficiency and amino selectivity. In addition, cell studies showed that cell adhesion and proliferation significantly improved for all coated samples.
Collapse
|
13
|
Stie MB, Jones M, Sørensen HO, Jacobsen J, Chronakis IS, Nielsen HM. Acids ‘generally recognized as safe’ affect morphology and biocompatibility of electrospun chitosan/polyethylene oxide nanofibers. Carbohydr Polym 2019; 215:253-262. [DOI: 10.1016/j.carbpol.2019.03.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/22/2019] [Accepted: 03/17/2019] [Indexed: 11/25/2022]
|
14
|
Wu CS, Wang SS. Bio-Based Electrospun Nanofiber of Polyhydroxyalkanoate Modified with Black Soldier Fly's Pupa Shell with Antibacterial and Cytocompatibility Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42127-42135. [PMID: 30451483 DOI: 10.1021/acsami.8b16606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on the antibacterial and cytocompatibility properties of a bio-based electrospun polyhydroxyalkanoate (PHA) nanofiber modified with Black Soldier Fly (BSF) pupa shell. A 5-50 μm chitosan powder (CSP) was made by grinding BSF pupa shell in water, acid, alkali. CSP was combined with PHA in an electrospinning machine using a biaxial feed method and manufactured into a 50-500 nm antibacterial nanofiber. We studied the morphology, mechanical properties, water absorption, and antibacterial properties of the electrospun PHA/CSP nanofiber. To improve the fiber's compatibility and functionality, acrylic acid (AA) was grafted onto PHA. The resulting tensile properties and morphological characterizations indicated enhanced adhesion between CSP and PHA- g-AA nanofiber, as well as an improvement in its water resistance and tensile strength, compared with the PHA/CSP nanofiber. To study the cytocompatibility of the material, human foreskin fibroblasts were seeded onto the nanofiber specimens with 3.0 and 6.0 wt % CSP. Increasing the CSP content in PHA/CSP and PHA- g-AA/CSP nanofibers enhanced cell proliferation; additionally, the nanofibers with CSP showed strong inhibition of bacteria. The enhanced antibacterial and biodegradable properties of PHA- g-AA/CSP and PHA/CSP nanofibers demonstrate their potential for biomedical material applications.
Collapse
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology , Kao Yuan University , Kaohsiung County , Taiwan 82101 , Republic of China
| | - Shan-Shue Wang
- Department of Applied Cosmetology , Kao Yuan University , Kaohsiung County , Taiwan 82101 , Republic of China
| |
Collapse
|
15
|
Asadian M, Dhaenens M, Onyshchenko I, De Waele S, Declercq H, Cools P, Devreese B, Deforce D, Morent R, De Geyter N. Plasma Functionalization of Polycaprolactone Nanofibers Changes Protein Interactions with Cells, Resulting in Increased Cell Viability. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41962-41977. [PMID: 30444341 DOI: 10.1021/acsami.8b14995] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The surface properties of electrospun scaffolds can greatly influence protein adsorption and, thus, strongly dictate cell-material interactions. In this study, we aim to investigate possible correlations between the surface properties of argon, nitrogen, and ammonia and helium plasma-functionalized polycaprolactone (PCL) nanofibers (NFs) and their cellular interactions by examining the protein corona patterns of the plasma-treated NFs as well as the cell membrane proteins involved in cell proliferation. As a result of the performed plasma treatments, PCL NFs morphology was preserved, while wettability was improved profoundly after all treatments because of the incorporation of polar surface groups. Depending on the discharge gas, different types of groups are incorporated, which influenced the resultant cell-material interactions. Argon plasma-functionalized PCL NFs, only enriched by oxygen-containing functional groups, were found to show the best cell-material interactions, followed by N2 and He/NH3 plasma-treated samples. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry clearly indicated an increased protein retention compared with non-treated PCL NFs. The nine proteins retained best on plasma-treated NF are important mediators of extracellular matrix interaction, illustrating the importance thereof for cell proliferation and the viability of cells. Finally, 92 proteins that can be used to differentiate how the different plasma treatments are clustered and subjected to a gene ontology study, illustrating the importance of keratinization and extracellular matrix organization.
Collapse
Affiliation(s)
- Mahtab Asadian
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture , Ghent University , Sint-Pietersnieuwstraat 41, B4 , 9000 Ghent , Belgium
| | - Maarten Dhaenens
- Laboratory for Pharmaceutical Biotechnology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Iuliia Onyshchenko
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture , Ghent University , Sint-Pietersnieuwstraat 41, B4 , 9000 Ghent , Belgium
| | - Stijn De Waele
- Laboratory of Microbiology, Protein Research Unit , Ghent University , Karel Lodewijk Ledeganckstraat 35 , 9000 Ghent , Belgium
| | - Heidi Declercq
- Department of Basic Medical Sciences, Tissue Engineering Group, Faculty of Medicine and Health Sciences , Ghent University , De Pintelaan 185, B3 , 9000 , Ghent , Belgium
| | - Pieter Cools
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture , Ghent University , Sint-Pietersnieuwstraat 41, B4 , 9000 Ghent , Belgium
| | - Bart Devreese
- Laboratory of Microbiology, Protein Research Unit , Ghent University , Karel Lodewijk Ledeganckstraat 35 , 9000 Ghent , Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Rino Morent
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture , Ghent University , Sint-Pietersnieuwstraat 41, B4 , 9000 Ghent , Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture , Ghent University , Sint-Pietersnieuwstraat 41, B4 , 9000 Ghent , Belgium
| |
Collapse
|