1
|
Lin M, Shen J, Qian Q, Li T, Zhang C, Qi H. Fabrication of Poly(Lactic Acid)@TiO 2 Electrospun Membrane Decorated with Metal-Organic Frameworks for Efficient Air Filtration and Bacteriostasis. Polymers (Basel) 2024; 16:889. [PMID: 38611147 PMCID: PMC11013116 DOI: 10.3390/polym16070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The development of high-performance filtration materials is essential for the effective removal of airborne particles, and metal-organic frameworks (MOFs) anchored to organic polymer matrices are considered to be one of the most promising porous adsorbents for air pollutants. Nowadays, most air filters are generally based on synthetic fiber polymers derived from petroleum residues and have limited functionality, so the use of MOFs in combination with nanofiber air filters has received a lot of attention. Here, a conjugated electrostatic spinning method is demonstrated for the one-step preparation of poly(lactic acid) (PLA) nanofibrous membranes with a bimodal diameter distribution and the anchoring of Zeolitic Imidazolate Framework-8 (ZIF-8) by the introduction of TiO2 and in situ generation to construct favorable multiscale fibers and rough structures. The prepared PLA/TZ maintained a good PM2.5 capture efficiency of 99.97%, a filtration efficiency of 96.43% for PM0.3, and a pressure drop of 96.0 Pa, with the highest quality factor being 0.08449 Pa-1. Additionally, ZIF-8 was uniformly generated on the surface of PLA and TiO2 nanofibers, obtaining a roughened structure and a larger specific surface area. An enhanced filtration retention effect and electrostatic interactions, as well as active free radicals, can be generated for the deep inactivation of bacteria. Compared with the unmodified membrane, PLA/TZ prepared antibacterial characteristics induced by photocatalysis and Zn2+ release, with excellent bactericidal effects against S. aureus and E. coli. Overall, this work may provide a promising approach for the development of efficient biomass-based filtration materials with antimicrobial properties.
Collapse
Affiliation(s)
- Minggang Lin
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Xinjiang University, Urumqi 830046, China
| | - Jinlin Shen
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| | - Qiaonan Qian
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| | - Tan Li
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Xinjiang University, Urumqi 830046, China
| | - Chuyang Zhang
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Xinjiang University, Urumqi 830046, China
| | - Huan Qi
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| |
Collapse
|
2
|
Ma S, Li H, Huang Q, Fei J. Trans-scale interface engineering: Constructing nature-inspired spider-web networks for regulating thermal transport and mechanical performance of carbon fiber/phenolic composites. J Colloid Interface Sci 2024; 653:777-794. [PMID: 37748405 DOI: 10.1016/j.jcis.2023.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The development of interfacial engineering was crucial for achieving the industrialization of high-performance carbon fiber/phenolic composites. In this study, establishing scalable interpenetrating networks (cellulose nanofiber-zeolitic imidazolate frameworks-8/aramid nanofiber-boron nitride) on the fiber/matrix interphase, was in favor of realizing precise repairation of interfacial defects, further regulating thermal conductivity, mechanical and tribological properties of the composites. Based on the physical and chemical bridging-effects arising from above spider-web networks, the flexural strength and modulus of modified sample were 74.69 MPa and 6.22 GPa, showing an increase of 135.99% and 56.68%, respectively. Meanwhile, this trans-scale spider-web structure acted as a micron skeleton-nano unit continuous thermal conductive network, significantly reduced phonon scattering and displayed a 258.33% enhancement in the thermal management capability of modified sample. This study reveals key design principles of trans-scale interfacial structure to dynamicly regulate performances and meet service requirements of next-generation carbon fiber/phenolic composites.
Collapse
Affiliation(s)
- Shanshan Ma
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hejun Li
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qiyue Huang
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jie Fei
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
3
|
Yang Z, Zhen Y, Feng Y, Jiang X, Qin Z, Yang W, Qie Y. Polyacrylonitrile@TiO 2 nanofibrous membrane decorated by MOF for efficient filtration and green degradation of PM2.5. J Colloid Interface Sci 2023; 635:598-610. [PMID: 36621109 DOI: 10.1016/j.jcis.2022.12.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5.
Collapse
Affiliation(s)
- Zhengren Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Yuhua Zhen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Yao Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Xiaolin Jiang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Zheng Qin
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Wenjie Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Yuanyue Qie
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| |
Collapse
|
4
|
Tan Y, Chen K, Zhu J, Sun F, Peng H, Zhan T, Lyu J. Gravity-driven rattan-based catalytic filter for rapid and highly efficient organic pollutant removal. J Colloid Interface Sci 2023; 643:124-136. [PMID: 37058888 DOI: 10.1016/j.jcis.2023.03.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Metal organic frameworks hold great promise as heterogeneous catalysts in sulfate radical (SO4∙-) based advanced oxidation. However, the aggregation of powdered MOF crystals and the complicated recovery procedure largely hinder their large-scale practical applications. It is important to develop eco-friendly and adaptable substrate-immobilized metal organic frameworks. Based on the hierarchical pore structure of the rattan, gravity-driven metal organic frameworks loaded rattan-based catalytic filter was designed to degrade organic pollutants by activating PMS at high liquid fluxes. Inspired by the water transportation of rattan, ZIF-67 was in-situ grown uniformly on the rattan channels inner surface using the continuous flow method. The intrinsically aligned microchannels in the vascular bundles of rattan acted as reaction compartments for the immobilization and stabilization of ZIF-67. Furthermore, the rattan-based catalytic filter exhibited excellent gravity-driven catalytic activity (up to 100 % treatment efficiency for a water flux of 10173.6 L·m-2·h-1), recyclability, and stability of organic pollutant degradation. After ten cycles, the TOC removal of ZIF-67@rattan was 69.34 %, maintaining a stable mineralisation capacity for pollutants. The inhibitory effect of the micro-channel promoted the interaction between active groups and contaminants, increasing the degradation efficiency and improving the stability of the composite. The design of a gravity-driven rattan-based catalytic filter for wastewater treatment provides an effective strategy for developing renewable and continuous catalytic systems.
Collapse
Affiliation(s)
- Yujing Tan
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Kaiwen Chen
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Jianyi Zhu
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Fengze Sun
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Hui Peng
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Tianyi Zhan
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Jianxiong Lyu
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037 Nanjing, PR China; Research Institute of Wood Industry of Chinese Academy of Forestry, 100091 Beijing, PR China.
| |
Collapse
|
5
|
Mai T, Li DD, Chen L, Ma MG. Collaboration of two-star nanomaterials: The applications of nanocellulose-based metal organic frameworks composites. Carbohydr Polym 2023; 302:120359. [PMID: 36604046 DOI: 10.1016/j.carbpol.2022.120359] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Nanocellulose, as the star nanomaterial in carbohydrate polymers, has excellent mechanical properties, biodegradability, and easy chemical modification. However, further practical applications of nanocellulose are limited by their inadequate functionalization. Metal-organic frameworks (MOFs), as the star nanomaterial in functional polymers, have a large surface area, high porosity, and adjustable structure. The collaboration of nanocellulose and MOFs is a desirable strategy to make composites especially interesting for multifunctional and multi-field applications. What sparks will be produced by the collaboration of two-star nanomaterials? In this review article, we highlight an up-to-date overview of nanocellulose-based MOFs composites. The sewage treatment, gas separation, energy storage, and biomedical applications are mainly summarized. Finally, the challenges and research trends of nanocellulose-based MOFs composites are prospected. We hope this review may provide a valuable reference for the development and applications of carbohydrate polymer composites soon.
Collapse
Affiliation(s)
- Tian Mai
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Dan-Dan Li
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Lei Chen
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Akhter F, Jamali AR, Abbasi MN, Mallah MA, Rao AA, Wahocho SA, Anees-Ur-Rehman H, Chandio ZA. A comprehensive review of hydrophobic silica and composite aerogels: synthesis, properties and recent progress towards environmental remediation and biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11226-11245. [PMID: 36513899 DOI: 10.1007/s11356-022-24689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The hydrophobicity of silica and composite aerogels has enabled them to acquire applications in a variety of fields. With remarkable structural, morphological, and physiochemical properties such as high porosity, surface area, chemical stability, and selectivity, these materials have gained much attention of researchers worldwide. Moreover, the hydrophobic conduct has enabled these aerogels to adsorb substances, i.e., organic pollutants, without collapsing the pore and network structure. Hence, considering such phenomenal properties and great adsorption potential, exploiting these materials for environmental and biomedical applications is trending. The present study explores the most recent advances in synthetic approaches and resulting properties of hydrophobic silica and composite aerogels. It presents the various precursors and co-precursors used for hydrophobization and gives a comparative analysis of drying methods. Moreover, as a major focus, the work presents the recent progress where these materials have shown promising results for various environmental remediation and biomedical applications. Finally, the bottlenecks in synthesis and applicability along with future prospects are given in conclusions.
Collapse
Affiliation(s)
- Faheem Akhter
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan.
| | - Abdul Rauf Jamali
- Materials Engineering Department, NED University of Engineering and Technology, Karachi, Pakistan
| | - Mahmood Nabi Abbasi
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Ahsan Atta Rao
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Shafeeque Ahmed Wahocho
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Hafiz Anees-Ur-Rehman
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Zubair Ahmed Chandio
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| |
Collapse
|
7
|
A novel gradient structured nanofiber and silver nanowire composite membrane for multifunctional air Filters, oil water Separation, and health monitoring flexible wearable devices. J Colloid Interface Sci 2023; 630:484-493. [DOI: 10.1016/j.jcis.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
8
|
Atighi M, Hasanzadeh M, Sadatalhosseini AA, Azimzadeh HR. Metal–Organic Framework@Graphene Oxide Composite-Incorporated Polyacrylonitrile Nanofibrous Filters for Highly Efficient Particulate Matter Removal and Breath Monitoring. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Milad Atighi
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd89195-741, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd89195-741, Iran
| | | | | |
Collapse
|
9
|
Valuable aramid/cellulose nanofibers derived from recycled resources for reinforcing carbon fiber/phenolic composites. Carbohydr Polym 2022; 292:119712. [PMID: 35725188 DOI: 10.1016/j.carbpol.2022.119712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
The scale-up preparation of aramid nanofiber (ANF) and cellulose nanofiber (CNF), still faces serious challenges such as extreme production cost and lengthy preparation cycle. Herein, a feasible top-down strategy was proposed to achieve the efficient reclamation of waste resources, further realizing the large-scale production of high value-added nanofibers. The ANF/CNF as nanoscale building blocks and their reinforcement effects on the mechanical performances of carbon fiber/phenolic composites were investigated. Related strength and modulus of ANF/CNF-enhanced composites in the tensile, bending, shear and nano indentation tests, increased by 118.1% (tensile strength), 141.2% (tensile modulus), 142.2% (flexural strength), 354.4% (flexural modulus), 38.8% (shear strength) and 94.4% (elastic modulus), respectively. Our work offers a valuable reference in the fabrication of low-cost ANF/CNF derived from waste resources, which would facilitate the wide application of nanofibers in fabricating high-performance advanced functional materials.
Collapse
|
10
|
Ashouri Sharafshadeh S, Mehdinavaz Aghdam R, Akhlaghi P, Heirani-Tabasi A. Amniotic membrane/silk fibroin-alginate nanofibrous scaffolds containing Cu-based metal organic framework for wound dressing. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sina Ashouri Sharafshadeh
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Parisa Akhlaghi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhao K, Ren C, Lu Y, Zhang Q, Wu Q, Wang S, Dai C, Zhang W, Huang J. Cellulose nanofibril/PVA/bamboo activated charcoal aerogel sheet with excellent capture for PM2.5 and thermal stability. Carbohydr Polym 2022; 291:119625. [DOI: 10.1016/j.carbpol.2022.119625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
|
12
|
Nanocellulose implantation enriched the pore structure of aerogel for effective particulate matter removal. Int J Biol Macromol 2022; 219:1237-1243. [PMID: 36058392 DOI: 10.1016/j.ijbiomac.2022.08.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
Particulate matter (PM) pollution poses a serious threat to public health, disposable and degradable filter materials are expected to handle the problem in the future. Here, polyvinyl alcohol (PVA)/borax/cellulose nanofibrils (CNF) aerogels were implanted on a biodegradable corrugated paper to form composite air filters for the first time via freeze-drying the coated composite hydrogels. The low content of CNF and PVA could be cross-linked by borax to form hydrogels, which enhanced its maneuverability for surface implanting on the substrate. More importantly, the addition of CNF greatly enriched the pore structure of aerogels, which provided a structural basis for PM capture. The as-prepared composite air filters exhibited excellent filtration efficiencies of 92 % and 96 % toward PM1.0 and PM3.0, respectively. Moreover, the addition of dimethylol-5,5-dimethylhydantoin endowed the filters with an antibacterial property. This work shows a new possibility for the design of degradable and functional filter materials.
Collapse
|
13
|
Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 2022; 291:119539. [DOI: 10.1016/j.carbpol.2022.119539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
|
14
|
Zahmatkesh S, Amesho KT, Sillanpaa M, Wang C. Integration of renewable energy in wastewater treatment during COVID-19 pandemic: Challenges, opportunities, and progressive research trends. CLEANER CHEMICAL ENGINEERING 2022. [PMCID: PMC9176107 DOI: 10.1016/j.clce.2022.100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 has aroused drastic effects on the global economy and public health. In response to this, personal protective equipment, hand hygiene, and social distancing have been considered the most important ways to prevent the direct spread of the virus. SARS-CoV-2 would be possible survive in wastewater for a few days, leading to secondary transmission via contact with water and wastewater. Thus, the most economical and practical approaches for decentralized wastewater treatment are renewable energies such as the solar energy disinfestation process. However, as freshwater requirements increase and fossil fuels become unsustainable, renewable energy becomes more attractive for desalination applications. Solar photovoltaic, membrane-based, and electricity desalination technologies are becoming increasingly popular due to their lower energy requirements. Several aquatic environments could be benefitted from solar energy wastewater disinfection. Besides, utilizing solar energy during the day can inactivate SARS-CoV-2 to nearly 90%. However, conventional membrane-based desalination practices have also been integrated, including reverse osmosis (RO) and electrodialysis (ED). Several exciting membrane processes have been developed recently, including membrane distillation (MD), pressure-reduced osmosis (PRO), and reverse electrodialysis (RED). Such operations can produce clean and sustainable electricity from brine and impaired water, generally considered hazardous to the environment. As a result, neither PRO nor RED can produce electricity without mixing a high salinity solution (such as seawater or brine and wastewater, respectively) with a low salinity solution. Herein, we critically review the progress in applying renewable energy such as solar energy and geothermal energy for generating electricity from wastewater treatment and uniquely discuss the effects of these two types of renewable energy on SARS-CoV-2 in air and wastewater treatment. We also highlight the significant process made on the membrane processes utilizing renewable energy and research gaps from the standpoint of producing clean and sustainable energy. The significant points of this review are: (1) among various types of renewable energy, solar energy and geothermal energy have been predominantly studied for wastewater treatment, (2) effects of these two types of renewable energy on SARS-CoV-2 in air and wastewater treatment are critically analyzed, and (3) the knowledge gaps and anticipated future research outlook have been consequently proposed thereof.
Collapse
|
15
|
Hao D, Fu B, Zhou J, Liu J. Efficient particulate matter removal by metal-organic frameworks encapsulated in cellulose/chitosan foams. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Ma S, Tian H, Fei J, Li H. Significant enhancement on the mechanical and tribological performances of paper‐based friction materials by designing silicone@
SiO
2
core‐shell structure. J Appl Polym Sci 2022. [DOI: 10.1002/app.52883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shanshan Ma
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials Northwestern Polytechnical University Xi'an China
| | - Haochen Tian
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials Northwestern Polytechnical University Xi'an China
| | - Jie Fei
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials Northwestern Polytechnical University Xi'an China
| | - Hejun Li
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials Northwestern Polytechnical University Xi'an China
| |
Collapse
|
17
|
Tan F, Zha L, Zhou Q. Assembly of AIEgen-Based Fluorescent Metal-Organic Framework Nanosheets and Seaweed Cellulose Nanofibrils for Humidity Sensing and UV-Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201470. [PMID: 35388558 DOI: 10.1002/adma.202201470] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Integrating synthetic low-dimensional nanomaterials such as metal-organic framework (MOF) nanosheets with a sustainable biopolymer is a promising strategy to endow composites with attractive structural and functional properties for expanded applications. Herein, aggregation-induced-emission luminogen (AIEgen)-based MOF bulk crystals are successfully exfoliated into ultrathin 2D nanosheets. Seaweed cellulose nanofibrils (CNFs) are assembled with low amounts (0.3 to 4.0 wt%) of the 2D nanosheets to generate luminescent composites. The 2D nanosheets are adsorbed onto the CNFs in dilute water suspensions owing to the flexibility of the MOF nanosheets and the high aspect ratio of the CNFs. Transparent films are prepared by solution casting from a water suspension of the CNF-MOF assembly. The fluorescence emission of the composite films is enhanced because of the favored affinity between MOF nanosheets and CNFs. Remarkably, these films demonstrate excellent UV-shielding capacity and high optical transmittance at the visible wavelength range. The composite films also show reversible changes in fluorescence emission intensity in response to ambient humidity. The tensile strength and modulus of the composite films are also enhanced owing to the increased adhesion between CNFs through the adsorbed MOF nanosheets. This work provides a novel pathway to fabricate luminescent CNFs-based composites with tunable optical properties for functional materials.
Collapse
Affiliation(s)
- Fangchang Tan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden
| | - Li Zha
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden
| | - Qi Zhou
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
18
|
Shen ZQ, Qu LL, Kan XL, Chen QY, He GQ, Sun M. Construction of BODIPY functional ZIF-8 with improved visible light-induced antibacterial activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Wang Z, Yin F, Zhang XF, Zheng T, Yao J. Delignified wood filter functionalized with metal-organic frameworks for high-efficiency air filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Peng H, Xiong W, Yang Z, Xu Z, Cao J, Jia M, Xiang Y. Advanced MOFs@aerogel composites: Construction and application towards environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128684. [PMID: 35303663 DOI: 10.1016/j.jhazmat.2022.128684] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollution has drawn forth advanced materials and progressive techniques concentrating on sustainable development. Metal-organic frameworks (MOFs) have aroused vast interest resulting from their excellent property in structure and function. Conversely, powdery MOFs in highly crystalline follow with fragility, poor processability and recoverability. Aerogels distinguished by the unique three-dimensional (3D) interconnected pore structures with high porosity and accessible surface area are promising carriers for MOFs. Given these, combining MOFs with aerogels at molecule level to obtain advanced composites is excepted to further enhance their performance with higher practicability. Herein, we focus on the latest studies on the MOFs@aerogel composites. The construction of MOFs@aerogel with different synthetic routes and drying methods are discussed. To explore the connection between structure and performance, pore structure engineering and quantitation of MOFs content are outlined. Furthermore, various types of MOFs@aerogel composites and their carbonized derivatives are reviewed, as well as the applications of MOFs@aerogel for environmental remediation referring to water purification and air clearing. More importantly, outlooks towards these emerging advanced composites have been presented from the perspective of practical application and future development.
Collapse
Affiliation(s)
- Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhengyong Xu
- Hunan Modern Environmental Technology Co. Ltd, Changsha 410004, PR China
| | - Jiao Cao
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
21
|
Niu Z, Xiao C, Mo J, Zhang L, Chen C. Investigating the Influence of Metal-Organic Framework Loading on the Filtration Performance of Electrospun Nanofiber Air Filters. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27096-27106. [PMID: 35656762 DOI: 10.1021/acsami.2c06808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Integrating metal-organic frameworks (MOFs) into electrospun nanofiber filters has become an effective method for improving particle filtration efficiency. This study hypothesized that there is an optimal amount of MOFs that can be integrated into electrospun nanofiber filters to achieve the maximum particle removal efficiency while minimizing the corresponding MOF synthesis time. To test the hypothesis, this study systematically explored the influence of the time-dependent in situ growing process of zeolitic imidazolate framework-67 (ZIF-67), a typical type of MOFs, on the filtration performance of polyacrylonitrile (PAN) electrospun nanofibers. The results show that the surface morphology and chemical composition of the PAN/ZIF-67 hybrid nanofiber filters gradually changed with the reaction time. For PAN/ZIF-67 hybrid nanofiber filters with relatively low initial PM0.3-0.4 filtration efficiency, a reaction time of only 5 min was sufficient for the synthesis of the amount of ZIF-67 that maximized the PM0.3-0.4 filtration efficiency. However, for thick filters with high original PM0.3-0.4 filtration efficiency (>90%), the integration of ZIF-67 was not necessary, because the efficiency enhancement would not be significant. In addition, the enhancement of filtration efficiency for ultrafine particles was positively correlated with the amount of incorporated ZIF-67. In summary, this study shortened the synthesis time of the in situ incorporation of MOFs into electrospun nanofiber filters from more than 10 h (reported in the literature) to only 5 min.
Collapse
Affiliation(s)
- Zhuolun Niu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
| | - Can Xiao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
| | - Chun Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
22
|
Lu Y, Liu C, Mei C, Sun J, Lee J, Wu Q, Hubbe MA, Li MC. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214496] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14105768] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal–organic frameworks (MOFs) and their derivatives have delivered perfect answers in detection, separation, solving water and electromagnetic pollution and improving catalysis and energy storage efficiency due to their advantages including their highly tunable porosity, structure and versatility. Recently, MOF/biomass, bio-MOFs and their derivatives have gradually become a shining star in the MOF family due to the improvement in the application performance of MOFs using biomass and biomolecules. However, current studies lack a systematic summary of the synthesis and advancements of MOF/biomass, bio-MOFs and their derivatives. In this review, we describe their research progress in detail from the following two aspects: (1) synthesis of MOF/biomass using biomass as a template to achieve good dispersion and connectivity at the same time; (2) preparing bio-MOFs by replacing traditional organic linkers with biomolecules to enhance the connection stability between metal ions/clusters and ligands and avoid the formation of toxic by-products. This enables MOFs to possess additional unique advantages, such as improved biocompatibility and mechanical strength, ideal reusability and stability and lower production costs. Most importantly, this is a further step towards green and sustainable development. Additionally, we showcase some typical application examples to show their great potential, including in the fields of environmental remediation, energy storage and electromagnetic wave absorption.
Collapse
|
24
|
Fan Y, Li T, Ge W, Lou C, Lin J. Flexible
Micro‐Nano
Composite Membranes Based on a
Two‐Step
Strategy: Charge Recovery and Efficiently Gradient Air Filtration. POLYM INT 2022. [DOI: 10.1002/pi.6410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yujia Fan
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and Engineering Tiangong University Tianjin 300387 China
| | - Ting‐Ting Li
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and Engineering Tiangong University Tianjin 300387 China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials Tiangong University Tianjin 300387 China
| | - Wankai Ge
- School of Mechanical Engineering Tiangong University Tianjin 300387 China
| | - ChingWen Lou
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and Engineering Tiangong University Tianjin 300387 China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials Tiangong University Tianjin 300387 China
- Department of Bioinformatics and Medical Engineering Asia University Taichung 41354 Taiwan
- Department of Medical Research, China Medical University Hospital China Medical University Taichung 40402 Taiwan
| | - Jia‐Horng Lin
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and Engineering Tiangong University Tianjin 300387 China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials Tiangong University Tianjin 300387 China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials Feng Chia University Taichung 40724 Taiwan
- School of Chinese Medicine China Medical University Taichung 40402 Taiwan
| |
Collapse
|
25
|
Bansal P, Batra R, Yadav R, Purwar R. Electrospun polyacrylonitrile nanofibrous membranes supported with montmorillonite for efficient
PM2
.5 filtration and adsorption of Cu (
II
) ions. J Appl Polym Sci 2022. [DOI: 10.1002/app.51582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Priya Bansal
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Radhika Batra
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Reetu Yadav
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| |
Collapse
|
26
|
Tian Z, Lei Y, Ye X, Fan Y, Zhou P, Zhu Z, Sun H, Liang W, Li A. Efficient capture of airborne PM by nanotubular conjugated microporous polymers based filters under harsh conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127047. [PMID: 34523490 DOI: 10.1016/j.jhazmat.2021.127047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 05/06/2023]
Abstract
The exploitation of high-performance filters which can capture and remove airborne particulate matter (PM) in harsh conditions is greatly important to limit the serious effect of PM on human health. Herein, we demonstrate a simple approach for the creation of robust and hierarchically porous filters based on conjugated microporous polymers (CMPs) nanotubes for efficient PM capture. Taking advantage of their inherently superhydrophobic wettability, the CMPs-based filters possess high filtration efficiency of higher than 99.4% for PM0.3 and 99.9% for PM2.5 and PM10, respectively, even in high humidity environment (RH ≥ 94%). The CMPs-based filters show highly physicochemical and thermal stability, e.g., by calcination at 500 °C for 2 h, the filtration efficiency of the samples still reaches as great as 99.4% for both PM2.5 and PM10 with a low-pressure drop of only 10 Pa. In addition, these CMPs-based filters can be easily regenerated and their high PM filtration efficiency remains nearly unchanged by a simple methanol washing. More interestingly, the CMPs-based filters also exhibit superior antibacterial performance, which enables them to sterilize or eliminate the bacteria possibly loaded on PM pollutions, thus showing great potential for various applications such as PM removal, air purification and so on.
Collapse
Affiliation(s)
- Zhuoyue Tian
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Yang Lei
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Xingyun Ye
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Yukang Fan
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Peilei Zhou
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China.
| |
Collapse
|
27
|
Naragund VS, Panda PK. Electrospun nanofiber-based respiratory face masks-a review. EMERGENT MATERIALS 2022; 5:261-278. [PMID: 35098033 PMCID: PMC8788396 DOI: 10.1007/s42247-022-00350-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic of 2019 forced widespread use of face coverings as a mandatory step towards reducing infection by the virus. The face mask acts as a barrier for transmission of infected aerosols among its user and surrounding people. This has propelled pace of research and development of face masks around the world. This short review is an effort to present advances in materials and designs used for face masks. Details available in scientific literature and company brochures have been accessed and the use of nanomaterials and designs for the new generation of face masks have been discussed. Special attention was given to the face masks based on electrospun nanofiber-based membrane materials due to their nano-sized pores, light weight, and high filtration efficiency; therefore, they are commercially viable and popular among various products available in the market. Incorporation of metal organic framework (MOFs) and graphene have opened avenues to more advanced/multi-functional, reusable, and high capacity adsorption filtration membranes. Rapid prototyping/3-dimensional (3-D) printing techniques have been applied to shorten the time of manufacture of face masks. This review is expected to be very helpful for engineers, scientists, and entrepreneurs working on development of novel face masks required in plenty during this pandemic period.
Collapse
Affiliation(s)
- Veereshgouda S. Naragund
- Materials Science Division, CSIR – National Aerospace Laboratories, HAL Old Airport Road, Kodihalli, Bengaluru, 560017 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - P. K. Panda
- Materials Science Division, CSIR – National Aerospace Laboratories, HAL Old Airport Road, Kodihalli, Bengaluru, 560017 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
28
|
Tian Z, Ye X, Zhou P, Zhu Z, Li J, Sun H, Liang W, Liu Y, Li A. Bifunctional conjugated microporous polymer based filters for highly efficient PM and gaseous iodine capture. Polym Chem 2022. [DOI: 10.1039/d2py00529h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross-linked conjugated microporous polymers (CMPs) based air filters obtained by a one-step cross-coupling reaction for effective capture of particulate matter and gaseous iodine from dusty air.
Collapse
Affiliation(s)
- Zhuoyue Tian
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Xingyun Ye
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Peilei Zhou
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Yin Liu
- Gansu Research Institute of chemical Industry Co., Ltd., Guchengping Road 1, Lanzhou 730050, P. R. China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| |
Collapse
|
29
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Wang Z, Wang T, Zhang Z, Ji L, Pan L, Wang S. ZIF-67 grown on a fibrous substrate via a sacrificial template method for efficient PM2.5 capture and enhanced antibacterial performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
A lightweight, mechanically strong, and shapeable copper-benzenedicarboxylate/cellulose aerogel for dye degradation and antibacterial applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Mukhtar A, Sarfaraz S, Ayub K. Organic transformations in the confined space of porous organic cage CC2; catalysis or inhibition. RSC Adv 2022; 12:24397-24411. [PMID: 36128520 PMCID: PMC9415023 DOI: 10.1039/d2ra03399b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Porous organic cages have shape persistent cavities which provide a suitable platform for encapsulation of guest molecules with size suitably fitting to the cavity. The interactions of the guest molecule with the porous organic cage significantly alter the properties of the guest molecule. Herein, we report the effect of encapsulation on the kinetics of various organic transformations including 2 + 4 cycloaddition, 1,5-sigmatropic, 6π-electrocyclization, ring expansion, cheletropic, dyotropic, trimerization and tautomerization reactions. Non-bonding interactions are generated between the CC2 cage and encapsulated species. However, the number and nature/strength of interactions are different for reactant and TS with the CC2 cage and this difference detects the reaction to be accelerated or slowed down. A significant drop in the barrier of reactions is observed for reactions involving strong interactions of the transition state within the cage. However, for some reactions such as the Claisen rearrangement, reactants are stabilized more than the transition state and therefore an increase in activation barrier is observed. Furthermore, non-covalent analyses of all transition states (inside the cage) confirm the interaction between the CC2 cage and substrate. The current study will promote further exploration of the potential of other porous structures for similar applications. Porous organic cages have shape persistent cavities which provide a suitable platform for encapsulation of guest molecules with size suitably fitting to the cavity.![]()
Collapse
Affiliation(s)
- Ayesha Mukhtar
- Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Pakistan, 22060
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Pakistan, 22060
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Pakistan, 22060
| |
Collapse
|
33
|
Ma S, Li H, Li C, Tian H, Tao M, Fei J, Qi L. Metal-organic frameworks/polydopamine synergistic interface enhancement of carbon fiber/phenolic composites for promoting mechanical and tribological performances. NANOSCALE 2021; 13:20234-20247. [PMID: 34851344 DOI: 10.1039/d1nr07104a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbon fiber/phenolic composites have wide application prospects in the transmission of vehicles, where the combination of prominent mechanical and tribological properties is required. Multiscale metal-organic frameworks (MOFs) and polydopamine (PDA) as binary reinforcements were employed to construct a rigid-flexible hierarchical structure for improving the interfacial performances of friction materials. This unique rigid-flexible (MOFs/PDA) reinforcement could act as an effective interfacial linker, significantly facilitating the integration of fibers into the matrix and establishing a strong mechanical interlocking and chemical bonding onto the fiber/matrix interphase, thus boosting the mechanical and tribological properties of the composites. Benefiting from the MOF/PDA synergistic enhancement effects, the interlaminar shear strength of ZIF-8-composites (P1), MOF-5-composites (P2) and UiO-66-(COOH)2-composites (P3) was improved by 70.80%, 43.80% and 53.28%, respectively. In addition, the wear rate of P1 decreased from 3.55 × 10-8 cm3 J-1 to 2.45 × 10-8 cm3 J-1. This work provides a feasible approach for establishing rigid-flexible reinforced structures and opens up a double-component synergistic enhancement strategy to efficiently promote mechanical and tribological properties for fabricating high-performance carbon fiber/phenolic composites.
Collapse
Affiliation(s)
- Shanshan Ma
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Hejun Li
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Chang Li
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Haochen Tian
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Meixia Tao
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Jie Fei
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Lehua Qi
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
34
|
Liu X, Xiao Y, Zhang Z, You Z, Li J, Ma D, Li B. Recent Progress in
Metal‐Organic
Frameworks@Cellulose Hybrids and Their Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yun Xiao
- General English Department, College of Foreign Languages Nankai University Tianjin 300071 China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Dingxuan Ma
- College of Chemistry and Molecular Engineering, Laboratory of Eco‐chemical Engineering, Ministry of Education Qingdao University of Science and Technology Qingdao 266042 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| |
Collapse
|
35
|
Preparation of Ag@ZIF-8@PP Melt-Blown Nonwoven Fabrics: Air Filter Efficacy and Antibacterial Effect. Polymers (Basel) 2021; 13:polym13213773. [PMID: 34771330 PMCID: PMC8588488 DOI: 10.3390/polym13213773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Serving as matrices, polypropylene (PP) melt-blown nonwoven fabrics with 4% electrostatic electret masterbatch were incorporated with a 6%, 10%, 14%, or 18% phosphorus-nitrogen flame retardant. The test results indicate that the incorporation of the 6% flame retardant prevented PP melt-blown nonwoven fabrics from generating a molten drop, which, in turn, hampers the secondary flame source while increasing the fiber diameter ratio. With a combination of 4% electrostatic electret masterbatch and the 6% flame retardant, PP melt-blown nonwoven fabrics were grafted with ZIF-8 and Ag@ZIF-8. The antibacterial effect of ZIF-8 and Ag@ZIF-8 was 40% and 85%, respectively. Moreover, four reinforcing measures were used to provide Ag@ZIF-8 PP melt-blown nonwoven fabrics with synergistic effects, involving lamination, electrostatic electret, and Ag@ZIF-8 grafting, as well as a larger diameter because of the addition of phosphorus-nitrogen flame retardants. As specified in the GB2626-2019 and JIS T8151-2018 respiratory resistance test standards, with a constant 60 Pa, Ag@ZIF-8 PP melt-blown nonwoven membranes were tested for a filter effect against PM 0.3. When the number of lamination layers was five, the filter effect was 88 ± 2.2%, and the respiratory resistance was 51 ± 3.6 Pa.
Collapse
|
36
|
Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal–organic frameworks in antimicrobial applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Yoo DK, Woo HC, Jhung SH. Removal of Particulate Matters by Using Zeolitic Imidazolate Framework-8s (ZIF-8s) Coated onto Cotton: Effect of the Pore Size of ZIF-8s on Removal. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35214-35222. [PMID: 34275264 DOI: 10.1021/acsami.1c11796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Removal of particulate matter (PM) like PM2.5 and PM10 from air was carried out with cotton coated with metal-organic frameworks (MOFs) having various pore sizes to understand the effect of the pore size of MOFs (here, ZIF-8s) on the performances in PM elimination. Both removal efficiency and quality factor, based on the unit surface area of ZIF-8s, in the filtration of PMs with ZIF-8/cotton did not rely considerably on the pore size of ZIF-8s. More importantly, small pores (even less than 0.5 nm) of conventional MOFs like ZIF-8 are more than enough in the elimination of large PMs like PM10 with a size of microns probably because small active sites (such as polar functional groups) on PMs can interact with porous materials having polarity. Additionally, electrostatic interactions between PMs and porous materials could be confirmed as a plausible mechanism for PM removal with ZIF-8/cotton.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
38
|
Liu Y, Zhou L, Dong Y, Wang R, Pan Y, Zhuang S, Liu D, Liu J. Recent developments on MOF-based platforms for antibacterial therapy. RSC Med Chem 2021; 12:915-928. [PMID: 34223159 PMCID: PMC8221260 DOI: 10.1039/d0md00416b] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
With increasing pathogenic bacterial infection that is occurring worldwide, antibacterial therapy has become an important research field. There is great antimicrobial potential in the nanomaterial-based metal-organic framework (MOF) platform because it is highly biocompatible, biodegradable, and nontoxic, and it is now widely used in the anticancer agent industry and in the production of medical products. This review summarizes the possible mechanisms of representative MOF-based nanomaterials, and recounts recent progress in the design and development of MOF-based antibacterial materials for the remedy of postoperative infection. The existing shortcomings and future perspectives of the rapidly growing field of antimicrobial therapy addressing patient quality of life issues are also briefly discussed. Because of their wide applicability, further studies on the use of different MOF antimicrobial therapies will be of great interest.
Collapse
Affiliation(s)
- Yiwei Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Luyi Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Ying Dong
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Rui Wang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Ying Pan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Shuze Zhuang
- Dongguan Sixth People's Hospital No. 216 Dongcheng West Road, Guancheng District Dongguan 523808 China
| | - Dong Liu
- Shenzhen Huachuang Biopharmaceutical Technology Co. Ltd. Shenzhen 518112 Guangdong China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| |
Collapse
|
39
|
Jiang J, Shao Z, Wang X, Zhu P, Deng S, Li W, Zheng G. Three-dimensional composite electrospun nanofibrous membrane by multi-jet electrospinning with sheath gas for high-efficiency antibiosis air filtration. NANOTECHNOLOGY 2021; 32:245707. [PMID: 33657545 DOI: 10.1088/1361-6528/abeb9a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) composite polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN) electrospun nanofibrous membranes combining both thick and thin nanofibers have been fabricated by the method of multi-jet electrospinning with sheath gas to realize high-efficiency air filtration under a low pressure drop. The thin PAN nanofibers form a dense membrane, with a strong capturing ability on the ultra-fine particles, while the thick PVDF nanofibers play a 3D supporting effect on the thin PAN nanofibers. In this case, the combination results in a fluffy membrane with higher porosity, which could achieve the airflow passing through the membrane without the air pressure drop. The effects of the composite manner of thick nanofibers and thin nanofibers are investigated, in order to optimize the air filtration performance of the 3D composite nanofibrous membrane. As a result, the maximum quality factor for air filtration could reach up to 0.398 Pa-1. The particle-fiber interaction model was used to simulate the air filtration process as well, and the simulation results were fairly consistent with the experimental results, providing a guidance method for the optimization of composite nanofibrous membrane for high-efficiency air filtration. More interestingly, a cationic poly[2-(N,N-dimethyl amino) ethyl methacrylate] (PDMAEMA) was added in the PVDF solution to obtain a composite air filtration membrane with excellent antibiosis performance, which achieved the highest inhibition rate of approximately 90%. In short, this work provides an effective way to promote antibiosis air filtration performance by using an electrospun nanofibrous membrane, and might also effectively accelerate the biological protection application of current air filtration membranes.
Collapse
Affiliation(s)
- Jiaxin Jiang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| | - Ping Zhu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Shiqing Deng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
40
|
Wu H, Hu S, Nie C, Zhang J, Tian H, Hu W, Shen T, Wang J. Fabrication and characterization of antibacterial epsilon-poly-L-lysine anchored dicarboxyl cellulose beads. Carbohydr Polym 2021; 255:117337. [DOI: 10.1016/j.carbpol.2020.117337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
|
41
|
Woo HC, Yoo DK, Jhung SH. Particulate matters removal by using cotton coated with isomeric metal-organic frameworks (MOFs): Effect of voidage of MOFs on removal. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Cai L, Xin F, Zhai C, Chen Y, Xu B, Li X. The effects of DOPO modified Co-based metalorganic framework on flame retardancy, stiffness and thermal stability of epoxy resin. RSC Adv 2021; 11:6781-6790. [PMID: 35423181 PMCID: PMC8694927 DOI: 10.1039/d0ra08982f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
In this work, the effect of a modified metal organic framework material on the fire resistance and mechanical properties of epoxy resin (EP) has been explored. The cobalt based metal organic framework (ZIF-67) was synthesized from an organic ligand with a Schiff base structure. Then DOPO@ZIF-67 was synthesized by modifying ZIF-67 with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), and its effect on EP modification was explored. Compared with the pure EP, 4% DOPO@ZIF-67/EP passed the UL94 V-0 level and the ultimate oxygen index (LOI) reached 32.1%. The SEM pictures of carbon residue indicated that DOPO@ZIF-67 formed a more continuous and dense microstructure, which can enhance the thermal barrier and the physical barrier effect. The addition of DOPO@ZIF-67 also can effectively improve the stiffness and damping coefficient of EP composite material. The porous skeleton structure of DOPO@ZIF-67 can endow EP with rigidity and flame-retardant properties. Furthermore, the existence of DOPO made the combination of ZIF-67 with EP better. The results of this study suggest that DOPO@ZIF-67 may be a good additive for modification of the properties of epoxy thermosetting materials.
Collapse
Affiliation(s)
- Liyun Cai
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 People's Republic of China +86-10-68985531
| | - Fei Xin
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 People's Republic of China +86-10-68985531
| | - Congcong Zhai
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 People's Republic of China +86-10-68985531
| | - Yu Chen
- Beijing Huateng Hightech Co., Ltd. Beijing 100048 People's Republic of China
| | - Bo Xu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 People's Republic of China +86-10-68985531
| | - Xiangmei Li
- School of Materials Science & Engneering, Beijing Institute of Technology Beijing 100081 People's Republic of China +86-10-68913066
| |
Collapse
|
43
|
Ryu U, Jee S, Rao PC, Shin J, Ko C, Yoon M, Park KS, Choi KM. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 2021; 426:213544. [PMID: 32981945 PMCID: PMC7500364 DOI: 10.1016/j.ccr.2020.213544] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.
Collapse
Key Words
- 2,4-DNT, 2,4-dinitrotoluene
- 4-NP, 4-nitrophenol
- ABS, acrylonitril-butadiene-styrene
- BET, Brunauer–Emmett–Teller
- CA, Cellulose-acetate
- CEES, 2-Chloroethyl ethyl sulfide
- CIE, Commission international ed’Eclairage
- CNF, Cellulose nanofiber
- CNG, compressed natural gas
- CVD, Chemical vapor deposition
- CWA, Chemical warfare agent
- CWC, Chemical weapons convention
- Commercialization
- DCP, Diethylchlorophosphonate
- DDM, n-dodecyl β-D-maltoside
- DEF, N,N-Diethyl formamide
- DFP, Diisopropyl fluorophosphate
- DFT, Density functional theory
- DIFP, Diisopropylfluorophosphate
- DLS, Dynamic light scattering
- DMA, Dimethylacetamide
- DMF, N,N-Dimethyl formamide
- DMMP, Dimethyl methylphosphonate
- DRIFTS, Diffuse reflectance infrared fourier transform spectroscopy
- Dispersion
- E. Coli, Escherichia coli
- ECS, Extrusion-crushing-sieving
- EDLCs, Electrochemical double-layer capacitors
- EPA, Environmental protection agency
- EXAFS, Extended X-ray absorption fine structure
- FT-IR, Fourier-transform infrared spectroscopy
- Fn, Fusobacterium nucleatum
- Future applications
- GC–MS, Gas chromatography–mass spectrometry
- GRGDS, Gly-Arg-Gly-Asp-Ser
- ILDs, Interlayer dielectrics
- ITRS, International technology roadmap for semiconductors
- LED, Light-emitting diode
- LIBs, Lithium-ion batteries
- LMOF, Luminescent metal–organic framework
- LOD, Limit of detection
- MB, methylene blue
- MBC, Minimum bactericidal concentration
- MIC, Minimum inhibitory concentration
- MIM, Metal-insulator–metal
- MMP, Methyl methylphosphonate
- MOF, metal–organic framework
- MOGs, Metal-organic gels
- MRA, mesoporous ρ-alumina
- MRSA, Methicillin-resistant staphylococcus aureus
- MVTR, Moisture vapor transport rate
- Mass production
- Metal–organic framework
- NMP, N-methyl-2-pyrrolidone
- NMR, Nuclear magnetic resonance
- PAN, Polyacrylonitrile
- PANI, Polyaniline
- PEG-CCM, polyethylene-glycol-modified mono-functional curcumin
- PEI, Polyetherimide
- PEMFCs, Proton-exchange membrane fuel cells
- PM, Particulate matter
- POM, Polyoxometalate
- PPC, Polypropylene/polycarbonate
- PS, Polystyrene
- PSM, Post-synthetic modification
- PVA, Polyvinyl alcohol
- PVB, Polyvinyl Butyral
- PVC, Polyvinylchloride
- PVF, Polyvinylformal
- PXRD, Powder x-ray diffraction
- Pg, Porphyromonas gingivalis
- RDX, 1,3,5-trinitro-1,3,5-triazinane
- ROS, Reactive oxygen species
- SALI, Solvent assisted ligand incorporation
- SBU, Secondary building unit
- SCXRD, Single-crystal X-ray diffraction
- SEM, Scanning electron microscope
- SIBs, Sodium-ion batteries
- SSEs, Solid-state electrolytes
- STY, space–time yield, grams of MOF per cubic meter of reaction mixture per day of synthesis
- Shaping
- TEA, Triethylamine
- TIPS-HoP, Thermally induced phase separation-hot pressing
- TNP, 2,4,6-trinitrophenol
- TNT, 2,4,6-trinitrotoluene
- UPS, Ultraviolet photoelectron spectroscopy
- VOC, Volatile organic compound
- WHO, World health organization
- WLED, White light emitting diode
- XPS, X-ray photoelectron spectroscopy
- ZIF, zeolitic imidazolate framework
- hXAS, Hard X-ray absorption spectroscopy
- sXAS, Soft X-ray absorption spectroscopy
Collapse
Affiliation(s)
- UnJin Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Seohyeon Jee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Purna Chandra Rao
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Changhyun Ko
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Department of Applied Physics, College of Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyo Sung Park
- Corporation R&D, Research Park, LG Chem, LG Science Park, 30, Magokjungang-10-Ro, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
44
|
Lai C, Wang Z, Qin L, Fu Y, Li B, Zhang M, Liu S, Li L, Yi H, Liu X, Zhou X, An N, An Z, Shi X, Feng C. Metal-organic frameworks as burgeoning materials for the capture and sensing of indoor VOCs and radon gases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213565] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Zhao W, Deng J, Ren Y, Xie L, Li W, Wang Q, Li S, Liu S. Antibacterial application and toxicity of metal-organic frameworks. Nanotoxicology 2020; 15:311-330. [PMID: 33259255 DOI: 10.1080/17435390.2020.1851420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal-organic frameworks (MOFs), which are also referred to as coordination polymers, have been widely used in adsorption separation and catalysis, especially in the field of physical chemistry in the past few years, because of their unique physical structure and potential chemical properties. In recent years, particularly with the continuous expansion of the research field, deepening of research levels, and sustained advancements in science and technology, powerful and diverse MOFs that have demonstrated great biomedical application potential have been successively developed. Consequently, this study summarizes the origin, development, and common synthesis methods of MOFs, with major emphasis on their antibacterial application and safety evaluation in biomedicine.
Collapse
Affiliation(s)
- Wanling Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinqiong Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ren
- Guangdong Provincial People's Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqing Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sijun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
46
|
Effective and facile fabrication of MOFs/cellulose composite paper for air hazards removal by virtue of in situ synthesis of MOFs/chitosan hydrogel. Carbohydr Polym 2020; 250:116955. [DOI: 10.1016/j.carbpol.2020.116955] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022]
|
47
|
|
48
|
Li TT, Fan Y, Cen X, Wang Y, Shiu BC, Ren HT, Peng HK, Jiang Q, Lou CW, Lin JH. Polypropylene/Polyvinyl Alcohol/Metal-Organic Framework-Based Melt-Blown Electrospun Composite Membranes for Highly Efficient Filtration of PM 2.5. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2025. [PMID: 33066527 PMCID: PMC7602219 DOI: 10.3390/nano10102025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Particulate matter 2.5 (PM2.5) has become a public hazard to people's lives and health. Traditional melt-blown membranes cannot filter dangerous particles due to their limited diameter, and ultra-fine electrospinning fibers are vulnerable to external forces. Therefore, creating highly efficient air filters by using an innovative technique and structure has become necessary. In this study, a combination of polypropylene (PP) melt-blown and polyvinyl alcohol (PVA)/zeolite imidazole frameworks-8 (ZIF-8) electrospinning technique is employed to construct a PP/PVA/ZIF-8 membrane with a hierarchical fibrous structure. The synergistic effect of hierarchical fibrous structure and ZIF-8 effectively captures PM2.5. The PP/PVA composite membrane loaded with 2.5% loading ZIF-8 has an average filtration efficacy reaching as high as 96.5% for PM2.5 and quality factor (Qf) of 0.099 Pa-1. The resultant membrane resists 33.34 N tensile strength and has a low pressure drop, excellent filtration efficiency, and mechanical strength. This work presents a facile preparation method that is suitable for mass production and the application of membranes to be used as air filters for highly efficient filtration of PM2.5.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yujia Fan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Xixi Cen
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Yi Wang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | | | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Hao-Kai Peng
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Qian Jiang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- Ocean College, Minjiang University, Fuzhou 350108, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
49
|
Liu J, Ding C, Dunne FO, Guo Y, Fu X, Zhong WH. A Bimodal Protein Fabric Enabled via In Situ Diffusion for High-Performance Air Filtration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12042-12050. [PMID: 32936622 DOI: 10.1021/acs.est.0c02828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Design and fabrication of bimodal structures are essential for successful development of advanced air filters with ultralow airflow resistance. To realize this goal, simplified processing procedures are necessary for meeting the practical needs. Here, a bimodal protein fabric with high-performance air filtration, and effectively lowered airflow resistance is reported. The various functional groups of proteins provide versatile interactions with pollutants. By utilizing a novel and cost-effective "cross-axial" configuration with an optimized condition (75° of contacting angle between solution nozzle and cospinning solvent nozzle), the diffusion in Taylor cone is in situ controlled, which results in the successful production of bimodal protein fabric. The bimodal protein fabric (16.7 g/m2 areal density) is demonstrated to show excellent filtration performance for removing particulate matter (PM) pollutants and only causes 17.1 Pa air pressure drop. The study of multilayered protein fabric air filters shows a further improvement in filtration performance of removing 97% of PM0.3 and 99% of PM2.5 with a low airflow resistance (34.9 Pa). More importantly, the four-layered bimodal protein fabric shows an exceptional long-term performance and maintains a high removal efficiency in the humid environment. This study presents an effective and viable strategy for fabricating bimodal fibrous materials for advanced air filtration.
Collapse
Affiliation(s)
- Juejing Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chenfeng Ding
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Francis O Dunne
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yiran Guo
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Xuewei Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Wei-Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
50
|
Yu YH, Su JF, Shih Y, Wang J, Wang PY, Huang CP. Hazardous wastes treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1833-1860. [PMID: 32866315 DOI: 10.1002/wer.1447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics related to hazardous waste management in water, soils, sediments, and air. The review covered treatment technologies applying physical, chemical, and biological principles for the remediation of contaminated water, soils, sediments, and air. PRACTICAL POINTS: This report provides a review of technologies for the management of waters, wastewaters, air, sediments, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) in three scientific areas of physical, chemical, and biological methods. Physical methods for the management of hazardous wastes including general adsorption, sand filtration, coagulation/flocculation, electrodialysis, electrokinetics, electro-sorption ( capacitive deionization, CDI), membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, potassium permanganate processes, and Fenton and Fenton-like process were reviewed. Biological methods such as aerobic, anoxic, anaerobic, bioreactors, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed. Case histories were reviewed in four areas including contaminated sediments, contaminated soils, mixed industrial solid wastes and radioactive wastes.
Collapse
Affiliation(s)
- Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jenn Fang Su
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan
| | - Yujen Shih
- Graduate Institute of Environmental Essngineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Jianmin Wang
- Department of Civil Architectural and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Po Yen Wang
- Department of Civil Engineering, Widener University, Chester, Pennsylvania, USA
| | - Chin Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|