1
|
Pentari C, Zerva A, Kosinas C, Karampa P, Puchart V, Dimarogona M, Topakas E. The role of CE16 exo-deacetylases in hemicellulolytic enzyme mixtures revealed by the biochemical and structural study of the novel TtCE16B esterase. Carbohydr Polym 2024; 327:121667. [PMID: 38171682 DOI: 10.1016/j.carbpol.2023.121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Acetyl esterases belonging to the carbohydrate esterase family 16 (CE16) is a growing group of enzymes, with exceptional diversity regarding substrate specificity and regioselectivity. However, further insight into the CE16 specificity is required for their efficient biotechnological exploitation. In this work, exo-deacetylase TtCE16B from Thermothelomyces thermophila was heterologously expressed and biochemically characterized. The esterase targets positions O-3 and O-4 of singly and doubly acetylated non-reducing-end xylopyranosyl residues, provided the presence of a free vicinal hydroxyl group at position O-4 and O-3, respectively. Crystal structure of TtCE16B, the first representative among the CE16 enzymes, in apo- and product-bound form, allowed the identification of residues forming the catalytic triad and oxyanion hole, as well as the structural elements related to the enzyme preference for oligomers. The role of TtCE16B in hemicellulose degradation was investigated on acetylated xylan from birchwood and pre-treated beechwood biomass. TtCE16B exhibited complementary activity to commercially available OCE6 acetylxylan esterase. Moreover, it showed synergistic effects with SrXyl43 β-xylosidase. Overall, supplementation of xylan-targeting enzymatic mixtures with both TtCE16B and OCE6 esterases led to a 3-fold or 4-fold increase in xylose release, when using TmXyn10 and TtXyn30A xylanases respectively.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Christos Kosinas
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Panagiota Karampa
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Vladimír Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Pentari C, Zerva A, Dimarogona M, Topakas E. The xylobiohydrolase activity of a GH30 xylanase on natively acetylated xylan may hold the key for the degradation of recalcitrant xylan. Carbohydr Polym 2023; 305:120527. [PMID: 36737185 DOI: 10.1016/j.carbpol.2022.120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Acetyl substitutions are common on the hemicellulosic structures of lignocellulose, which up until recently were known to inhibit xylanase activity. Emerging data, however, suggest that xylanases are able to accommodate acetyl side-groups within their catalytic site. In the present work, a fungal GH30 xylanase from Thermothelomyces thermophila, namely TtXyn30A, was shown to release acetylated xylobiose when acting on pretreated lignocellulosic substrate. The released disaccharides could be acetylated at the 2-OH, 3-OH or both positions of the non-reducing end xylose, but the existence of the acetylation on the reducing end cannot be excluded. The synergy of TtXyn30A with acetyl esterases indicates that particular subsites within its active site cannot tolerate acetylated xylopyranose residues. Molecular docking showed that acetyl group can be accommodated on the 2- or 3-OH position of the non-reducing end xylose, unlike the reducing-end xylose (subsite -1), where only 3-OH decoration can be accommodated. Such insight into the catalytic activity of TtXyn30A could contribute to a better understanding of its biological role and thus lead to a more sufficient biotechnological utilization.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Ishida K, Noutoshi Y. The function of the plant cell wall in plant-microbe interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:273-284. [PMID: 36279746 DOI: 10.1016/j.plaphy.2022.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
5
|
Zerva A, Pentari C, Ferousi C, Nikolaivits E, Karnaouri A, Topakas E. Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 342:126058. [PMID: 34597805 DOI: 10.1016/j.biortech.2021.126058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The field of enzymatic degradation of lignocellulose is actively growing and the recent updates of the last few years indicate that there is still much to learn. The growing number of protein sequences with unknown function in microbial genomes indicates that there is still much to learn on the mechanisms of lignocellulose degradation. In this review, a summary of the progress in the field is presented, including recent discoveries on the nature of the structural polysaccharides, new technologies for the discovery and functional annotation of gene sequences including omics technologies, and the novel lignocellulose-acting enzymes described. Novel enzymatic activities and enzyme families as well as accessory enzymes and their synergistic relationships regarding biomass breakdown are described. Moreover, it is shown that all the valuable knowledge of the enzymatic decomposition of plant biomass polymers can be employed towards the decomposition and upgrading of synthetic polymers, such as plastics.
Collapse
Affiliation(s)
- Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
6
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
7
|
Xylanases of glycoside hydrolase family 30 - An overview. Biotechnol Adv 2021; 47:107704. [PMID: 33548454 DOI: 10.1016/j.biotechadv.2021.107704] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022]
Abstract
Xylan is the most abundant hemicellulose in nature and as such it is a huge source of renewable carbon. Its bioconversion requires a battery of xylanolytic enzymes. Of them the most important are the endo-β-1,4-xylanases which depolymerize the polysaccharide into smaller fragments. Most of the xylanases are members of glycoside hydrolase (GH) families 10 and 11, although they are classified in some other GH families. The relatively new xylanases of GH30 are of special interest. Initially, they appeared to be specific glucuronoxylanases, however, other specificities were found later among prokaryotic and in particular eukaryotic enzymes. This review gives an overview of the substrate and product specificities observed for the GH30 xylanases characterized to date. An emphasis is given to the structure-activity relationship in order to explain how minor differences in catalytic centre and its vicinity can alter catalytic properties from the endoxylanase into the reducing end xylose releasing exoxylanase or into the non-reducing end xylobiohydrolase. Biotechnological potential of the GH30 xylanases is also considered.
Collapse
|
8
|
Puchart V, Gjermansen M, Mastihubová M, Mørkeberg Krogh KB, Biely P. Positional specificity of Flavobacterium johnsoniae acetylxylan esterase and acetyl group migration on xylan main chain. Carbohydr Polym 2020; 232:115783. [DOI: 10.1016/j.carbpol.2019.115783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
|
9
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|