1
|
Li Q, Song X, Pan YT, Sun J, Bifulco A, Yang R. Dual function of carboxymethyl cellulose scaffold: A one-stone-two-birds strategy to prepare double-layer hollow ZIF-67 derivates for flame retardant epoxy composites. J Colloid Interface Sci 2024; 674:445-458. [PMID: 38941937 DOI: 10.1016/j.jcis.2024.06.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Aluminum hypophosphite (AHP) has been used as a flame retardant for a long time. Previous studies about AHP employed in flame retardant materials mostly focus on coating, modification, and complex system. It is valuable to explore simple experimental steps to prepare nano hybrids with AHP and metal-organic frameworks (MOFs). We found acidic substances could etch zeolitic imidazolate framework-67 (ZIF-67) to obtain MOF derivatives. Unfortunately, AHP and ZIF-67 could not directly form a hybrid. Therefore, carboxymethylcellulose (CMC) is introduced as a dual function layer (buffer and support). The CMC resists the complete conversion of ZIF-67 etched by phosphoric acid to amorphous cobalt phosphate hydrate (ACP). Meanwhile, CMC containing hydroxyl groups combines with AHP through electrostatic interaction and coordination bonds. A double-layer hollow MOF derivative is synthesized through this one-stone-two-birds strategy. Due to multiple flame retardant elements and unique nanostructure, this MOF derivative endows epoxy (EP) resin with excellent flame retardancy. With 2.0 wt% addition, the peak heat release rate (pHRR) and total heat release (THR) of EP/AHP/ACP@CMC are decreased by 47.8 and 21.0 %, respectively. This study proposes a novel scheme that converts AHP into MOF derivatives as high-performance FRs.
Collapse
Affiliation(s)
- Qianlong Li
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaoning Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aurelio Bifulco
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80 80125, Naples, Italy
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
2
|
Liu Y, Cheng F, Li K, Yao J, Li X, Xia Y. Lightweight, flame retardant Janus carboxymethyl cellulose aerogel with fire-warning properties for smart sensor. Carbohydr Polym 2024; 328:121730. [PMID: 38220348 DOI: 10.1016/j.carbpol.2023.121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Lightweight, flame retardant biomass aerogels combining with multi-functionalities are promising for thermal insulation, noise absorption and smart sensors. However, high flammability hinders the application of these aerogels in extreme condition. Herein, lightweight, flame retardant aerogel with fire-warning properties fabricated from resource-abundant graphite and green carboxymethyl cellulose (CMC) is reported. During sonicating expandable graphite (EG) in CMC solution, CMC not only fabricates the downsizing process via hydrogen bonding effect but also forms stable dispersions. Then biomass aerogel is fabricated by freeze-drying strategy and enhanced by metal ionic cross-linking method. This aerogel demonstrates Janus properties for electrical conductivity and thermal conductivity. Due to the synergistic flame retardant effect of graphite nanocomposite and metal ions with a barrier effect and catalytic carbonization capacity, the flame retardancy of these aerogels are enhanced with fire-warning properties. Furthermore, these aerogels are used for monitoring physical deformations as smart sensors, which provides inspiration and a sustainable solution for developing low-cost biomass aerogel with multifunction.
Collapse
Affiliation(s)
- Yide Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fangfang Cheng
- Qingdao Yuanhai New Material Technology co., Ltd, Qingdao 266000, China
| | - Kai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jiuyong Yao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiankai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Zhao Y, Zeng Q, Lai X, Li H, Zhao Y, Li K, Jiang C, Zeng X. Multifunctional cellulose-based aerogel for intelligent fire fighting. Carbohydr Polym 2023; 316:121060. [PMID: 37321743 DOI: 10.1016/j.carbpol.2023.121060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Multifunctional biomass-based aerogels with mechanically robust and high fire safety are urgently needed for the development of environmentally-friendly intelligent fire fighting but challenging. Herein, a novel polymethylsilsesquioxane (PMSQ)/cellulose/MXene composite aerogel (PCM) with superior comprehensive performance was fabricated by ice-induced assembly and in-situ mineralization. It exhibited light weight (16.2 mg·cm-3), excellent mechanical resilience, and rapidly recovered after being subjected to the pressure of 9000 times of its own weight. Moreover, PCM demonstrated outstanding thermal insulation, hydrophobicity and sensitive piezoresistive sensing. In addition, benefiting from the synergism of PMSQ and MXene, PCM displayed good flame retardancy and improved thermostability. The limiting oxygen index of PCM was higher than 45.0 %, and it quickly self-extinguished after being removed away from fire. More importantly, the rapid electrical resistance reduction of MXene at high temperature endowed PCM with sensitive fire-warning capability (trigger time was less than 1.8 s), which provided valuable time for people to evacuate and relief. This work provides new insights for the preparation and application of the next-generation high performance biomass-based aerogels.
Collapse
Affiliation(s)
- Yinan Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Qingtao Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Ying Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Changcheng Jiang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
4
|
Zhong X, Jian H, Dou G, Liu J, Tan H. Preparation and Characterization of a Bentonite-Based Hybrid Gel for Coal Spontaneous Combustion Prevention. ACS OMEGA 2022; 7:46536-46549. [PMID: 36570190 PMCID: PMC9773800 DOI: 10.1021/acsomega.2c05359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/21/2022] [Indexed: 05/30/2023]
Abstract
This paper presents an investigation of the feasibility of intercalating lignocellulose/xanthan gum (XG) and organic polymers into bentonite to obtain an efficient fire extinguishing gel material. The bentonite-based hybrid gel was prepared by adding polyacrylates, Al(OH)3, lignocellulose, and XG into a bentonite suspension, and the resulting gel was characterized. The results showed that no cracking and powdering were found on the surface of the hybrid gel due to the formation of the cross-linked network in the bentonite, and a wide mesopore size distribution and good thermal stability were observed. The hybrid gel also exhibits a wide range of water adsorption ratios, excellent water retention, adjustable gelation times, shear thinning characteristics, and improved compressive strength (the yield stress reaches up to 13 MPa). Based on these characterizations, the mechanism of hybrid gel formation is proposed. The inhibition performance of the hybrid gel on coal spontaneous combustion indicates that the addition of the gel slows down the oxygen chemisorption and thus increases the ignition temperature. Due to the presence of the hybrid gel in the coal, the crossing point temperatures were increased and the lowest CO concentration was produced.
Collapse
|
5
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Synthesis and Applications of Carboxymethyl Cellulose Hydrogels. Gels 2022; 8:gels8090529. [PMID: 36135241 PMCID: PMC9498359 DOI: 10.3390/gels8090529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Hydrogels are basic materials widely used in various fields, especially in biological engineering and medical imaging. Hydrogels consist of a hydrophilic three-dimensional polymer network that rapidly expands in water and can hold a large volume of water in its swelling state without dissolving. These characteristics have rendered hydrogels the material of choice in drug delivery applications. In particular, carboxymethyl cellulose (CMC) hydrogels have attracted considerable research attention for the development of safe drug delivery carriers because of their non-toxicity, good biodegradability, good biocompatibility and low immunogenicity. Aiming to inspire future research in this field, this review focuses on the current preparation methods and applications of CMC gels and highlights future lines of research for the further development of diverse applications.
Collapse
|
7
|
Godek E, Grządka E, Maciołek U. Influence of polysaccharides with different chemical character on stability of montmorillonite suspensions in the presence of pseudoamphoteric cocamidopropyl betaine. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Iskandar MA, Yahya EB, Abdul Khalil HPS, Rahman AA, Ismail MA. Recent Progress in Modification Strategies of Nanocellulose-Based Aerogels for Oil Absorption Application. Polymers (Basel) 2022; 14:polym14050849. [PMID: 35267674 PMCID: PMC8912783 DOI: 10.3390/polym14050849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Oil spills and oily wastewater have become a major environmental problem in recent years, directly impacting the environment and biodiversity. Several techniques have been developed to solve this problem, including biological degradation, chemicals, controlled burning, physical absorption and membrane separation. Recently, biopolymeric aerogels have been proposed as a green solution for this problem, and they possess superior selective oil absorption capacity compared with other approaches. Several modification strategies have been applied to nanocellulose-based aerogel to enhance its poor hydrophobicity, increase its oil absorption capacity, improve its selectivity of oils and make it a compressible and elastic magnetically responsive aerogel, which will ease its recovery after use. This review presents an introduction to nanocellulose-based aerogel and its fabrication approaches. Different applications of nanocellulose aerogel in environmental, medical and industrial fields are presented. Different strategies for the modification of nanocellulose-based aerogel are critically discussed in this review, presenting the most recent works in terms of enhancing the aerogel performance in oil absorption in addition to the potential of these materials in near future.
Collapse
Affiliation(s)
- M. A. Iskandar
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.A.I.); (A.A.R.)
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence:
| | - A. A. Rahman
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.A.I.); (A.A.R.)
| | - M. A. Ismail
- Teraju Saga Sdn. Bhd. MP813, Jalan Melaka Perdana 2, Taman Melaka Perdana, Alor Gajah, Melaka 78000, Malaysia;
| |
Collapse
|
9
|
Ouyang K, Zhuang J, Chen C, Wang X, Xu M, Xu Z. Gradient Diffusion Anisotropic Carboxymethyl Cellulose Hydrogels for Strain Sensors. Biomacromolecules 2021; 22:5033-5041. [PMID: 34813283 DOI: 10.1021/acs.biomac.1c01003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, because of the unique properties of anisotropic and isotropic structures, there are more research studies on anisotropic hydrogels. We prepared a gradient anisotropic carboxymethyl cellulose hydrogel (CMC-Al3+) by directionally diffusing aluminum chloride solution. The orientation of carboxymethyl cellulose (CMC) chains is perpendicular to the direction of aluminum ion diffusion. The degree of cross-linking and orientation gradually decrease along the direction of aluminum ion diffusion. Compared with anisotropic hydrogels prepared by other methods, the hydrogels prepared by directionally diffusing aluminum ion solution have a gradient lamellar structure. Because of the large amount of aluminum ions in CMC-Al3+, the hydrogel shows good sensing performance. CMC-Al3+ is packaged with PVC electrical flame retardant tape to produce a strain sensor used to detect human tiny movements, which can accurately and stably monitor tiny movements. Hydrogel-based strain sensors can be widely used in the fields of human-computer intelligence, human-computer interaction, and wearable devices in the future.
Collapse
Affiliation(s)
- Kangwen Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.,College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Zhuang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chuchu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuerong Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengting Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.,College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Qiang X, Guo X, Su H, Zhao H, Ouyang C, Huang D. In situ nanoarchitectonics of magnesium hydroxide particles for property regulation of carboxymethyl cellulose/poly(vinyl alcohol) aerogels. RSC Adv 2021; 11:35197-35204. [PMID: 35493185 PMCID: PMC9043012 DOI: 10.1039/d1ra06556d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Carboxymethyl cellulose (CMC)-based aerogels with low density, low thermal conductivity, and biodegradability are promising candidates for environmentally friendly heat-insulating materials. However, the application of CMC-based aerogels as insulation materials in building exterior walls is limited by the high water sensitivity, poor mechanical properties and high flammability of these aerogels. In this work, a simple hydration method was used to generate magnesium hydroxide (MH) directly from CMC/polyvinyl alcohol (PVA) mixed sol with active MgO obtained by calcined magnesite as the raw material. A series of composite aerogels with different MH contents were prepared through the freeze-drying method. Scanning electron microscopy showed that nanoflower-like MH was successfully synthesised in situ in the 3D porous polymer aerogel matrix. Compared with the mechanical properties and water resistance of the original CMC/PVA composite aerogels, those of the composite aerogels were significantly improved. In addition, the flame retardancy of the CMC/PVA composite aerogels was greatly enhanced by the introduction of MH into the polymer matrix, and the limiting oxygen index reached 35.5% when the MH loading was 60%.
Collapse
Affiliation(s)
- Xiaohu Qiang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Xin Guo
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Hongxi Su
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Hong Zhao
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Chengwei Ouyang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Dajian Huang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| |
Collapse
|
11
|
Yu J, Wang L, Zhao Y, Zhou C. Preparation, characterization, and antibacterial property of carboxymethyl cellulose derivatives bearing tetrabutylammonium salt. Int J Biol Macromol 2021; 176:72-77. [PMID: 33577813 DOI: 10.1016/j.ijbiomac.2021.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022]
Abstract
Carboxymethyl cellulose derivatives bearing tetrabutylammonium moieties (CMC-TBA) were synthesized by the acidification of carboxymethyl cellulose (CMC) followed by acid-base neutralization with tetrabutylammonium hydroxide. The products were identified by Fourier transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR) spectroscopy and the degrees of substitution (DS) values were also quantified according to the integral area values in 1H NMR spectra. It was revealed that DS values had a positive relationship with the molar ratios of TBAOH to CMC. The antibacterial behaviors against gram-positive bacteria S. aureus and gram-negative bacteria E. coli were investigated using serial two-fold dilution method (MIC and MBC) and the disc diffusion method (inhibition zone). The results showed that comparison with CMC, all new CMC-TBA derivatives exhibited high antibacterial activity that depends on bacteria type and their degrees of cationization. The antibacterial action was more effective against S. aureus than E. coli, which could be attributed to the fact that the latter has a complicated bilayer structure of cell wall. Besides, an apparent tendency that the antibacterial activity of CMC-TBA derivatives enhanced with an increase in the degrees of cationization was found. This work suggests that these new derivatives can be introduced as efficient antibacterial biomaterials for biomedical purposes.
Collapse
Affiliation(s)
- Jing Yu
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Lingjiao Wang
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yuanyuan Zhao
- First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Chunhua Zhou
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
12
|
Chen W, Lin Q, Cheng S, Wu M, Tian Y, Ni K, Bai Y, Ma H. Synthesis and adsorption properties of amphoteric adsorbent HAx/CMC-yAl. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|