1
|
Sethulekshmi AS, Joseph K, Santhosh Aprem A, Sisupal SB, Saritha A. Green synthesis of multifunctional natural rubber-lignin nanocomposites: A sustainable approach for waste reduction. Int J Biol Macromol 2024; 280:135887. [PMID: 39307510 DOI: 10.1016/j.ijbiomac.2024.135887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Lignin, a valuable biomaterial having an array of exciting properties is increasingly favoured as a reinforcement material in the fabrication of green composites. Reinforcement in biopolymers like natural rubber (NR) using lignin nanoparticles (LNP) is considered a hotspot today. In this study, LNP synthesized via the homogenization method was incorporated into natural rubber latex (NRL) using probe sonication, and NR/Lignin nanocomposites (NR/LNP) were fabricated using latex dipping method. The addition of LNP resulted in significant enhancements in mechanical and antibacterial properties, biodegradability, and ultraviolet (UV) blocking capabilities with the addition of 7 parts per hundred rubber (phr) of LNP, due to the uniform dispersion and effective interaction between NR and LNP. This research demonstrates a versatile pathway for integrating LNP into NR through a green method, enabling the production of eco-friendly NR nanocomposites for multifunctional applications. This pathway contributes to a safe disposal of NR based products.
Collapse
Affiliation(s)
- A S Sethulekshmi
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Kuruvilla Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala PO, Kerala, India.
| | - Abi Santhosh Aprem
- Corporate R&D Centre, HLL Lifecare Ltd. Akkulam, Trivandrum, Kerala, India.
| | | | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India.
| |
Collapse
|
2
|
Huang S, Liu T, Liu Y, Duan Y, Zhang J. Gradient heating activated ammonium persulfate oxidation for efficient preparation of high-quality chitin nanofibers. Carbohydr Polym 2024; 340:122308. [PMID: 38858009 DOI: 10.1016/j.carbpol.2024.122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
APS is a cheap and eco-friendly oxidant which enables one-step extraction of nanochitin (NCh) from fishery wastes. However, it is challenging to improve the preparation efficiency and NCh quality simultaneously, owing to the uneven or uncontrollable oxidation. Herein, we propose a simple and controllable way to isolate chitin nanofibers (ChNFs) from squid pen by gradient heating activated (GHA)- ammonium persulfate (APS) oxidation. Compared to the isothermal activated (ITA)-APS oxidation, our strategy reduced the mass ratio of squid pen to APS from 1:45 to 1:6 and reaction time from 15 h to 8 h. Meanwhile, the as-prepared ChNFs exhibited high yield (91.5 %), light transmittance (98 % at 500 nm), crystallinity index (96.9 %), and carboxyl content (1.53 mmol/g). GHA-APS oxidation involved multiple continuous heating and isothermal stages. The former stimulates a moderate activation of APS and enhances the oxidation rate, while the latter provides a duration for surface chemistry. This non-isothermal heating facilitates the continuous decomposition of APS at a relatively high and consistent rate, thereby enhances its oxidation efficiency. Furthermore, green assessments indicate this method is simple, time-saving, eco-friendly and cost-effective. Overall, this work introduces a novel perspective for the industrial extraction of high-efficiency and high-quality nanomaterials.
Collapse
Affiliation(s)
- Shasha Huang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Tianjiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yunxiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongxin Duan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
3
|
Mathew M, Midhun Dominic CD, Neenu KV, Begum PMS, Dileep P, Kumar TGA, Sabu AA, Nagane D, Parameswaranpillai J, Badawi M. Carbon black and chitin nanofibers for green tyres: Preparation and property evaluation. Carbohydr Polym 2023; 310:120700. [PMID: 36925259 DOI: 10.1016/j.carbpol.2023.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/28/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
This research highlights the synergistic use of carbon black (CB) and chitin nanofibers (CHNFs) for developing green tyres for the first time. The CHNFs (12-30 nm) were prepared from chitin powder with the help of steam explosion and mild oxalic acid hydrolysis. The CHNFs were uniformly dispersed in natural rubber (NR) latex, dried, and mixed with CB in a two-roll mill to form NR/CB/CHNF composites. The NR/CB/CHNF composite at 1 phr CHNF loading exhibited tensile and tear strengths that were about 47 and 160 % greater than the NR-Neat, respectively. The dynamic mechanical analysis showed that the loss tangent (tan δ) at 60 °C was 50 % lower for the NR/CB/CHNF 1.0 composite than for the NR/CB50 composite. The study succeeded in developing a new green tyre tread formulation that would be helpful for attaining sustainability and a circular economy.
Collapse
Affiliation(s)
- Mariya Mathew
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - C D Midhun Dominic
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India.
| | - K V Neenu
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin-682022, India
| | - P M Sabura Begum
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin-682022, India
| | - P Dileep
- J.J. Murphy Research Centre, Rubber Park, Valayanchrirangara, Kerala Pin-686009, India
| | - T G Ajith Kumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune Pin-411008, India
| | - Akshay Alax Sabu
- Department of Chemistry, St. Xavier's college (Autonomous), Ahmedabad, Gujarat Pin-380009, India
| | - Dhiraj Nagane
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune Pin-411008, India
| | - Jyotishkumar Parameswaranpillai
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura-Anekal Main Road, Bengaluru 562106, Karnataka, India
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France.
| |
Collapse
|
4
|
Wu J, Yin J, Hu J, Wang Q, Zhang H, Xin R, Wang S, Yan S, Zhang J. Strain-induced 3D-oriented crystallites in natural rubber/chitin nanofiber composites. SOFT MATTER 2023; 19:2932-2940. [PMID: 37013408 DOI: 10.1039/d3sm00022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Natural rubber (NR) composites containing bio-based chitin nanofibers (ChNFs) exhibit a wide range of mechanical properties - from rubber to plastic behavior - with increasing chitin contents. A constrained 3-dimensional network can be formed by mixing natural rubber latex and a modified zwitterionic rigid chitin counterpart. By inclusion of highly anisotropic chitin nanofibers (30 wt%), strain-induced NR crystallization occurs at a much lower strain of 50%. More intriguingly, 2D-WAXD results reveal that the strain-induced crystallization of NR/ChNFs composites show 3-dimensionally oriented crystallite formation behaving similar to "3D-single crystals orientation" when the content of ChNFs is over 5 wt%. It is suggested that not only c-axis (NR chains) orients along the stretching direction, but also the a- and b-axes deliberately arrange along the normal direction and transverse direction, respectively. Structure and morphology in 3-dimensional spaces after strain-induced crystallization of the NR/ChNFs30 composite are investigated in detail. Therefore, this study might pave a new way to enhance mechanical properties by incorporation of ChNFs, obtaining 3-dimensionally oriented crystallites of novel multifunctional NR/ChNFs composite with shape memory ability.
Collapse
Affiliation(s)
- Jinghua Wu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, P. R. China.
| | - Jin Yin
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, P. R. China.
| | - Jian Hu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, P. R. China.
| | - Qiran Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, P. R. China.
| | - Hao Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, P. R. China.
| | - Rui Xin
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, P. R. China.
| | - Shaojuan Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, P. R. China.
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, P. R. China.
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, P. R. China.
| |
Collapse
|
5
|
Yuan C, Sun J, Tian X, Yuan Y. Preparation of high‐performance deproteinized natural rubber/chitosan composite films via a green and sulfur‐free method. J Appl Polym Sci 2022. [DOI: 10.1002/app.53253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Changcheng Yuan
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Jinyu Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Yizhong Yuan
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
6
|
High Performance of PVA Nanocomposite Reinforced by Janus-like Asymmetrically Oxidized Graphene: Synergetic Effect of H-bonding Interaction and Interfacial Crystallization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2664-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Sethulekshmi AS, Saritha A, Joseph K. A comprehensive review on the recent advancements in natural rubber nanocomposites. Int J Biol Macromol 2022; 194:819-842. [PMID: 34838576 DOI: 10.1016/j.ijbiomac.2021.11.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Natural rubber (NR) is an eminent sustainable material and is the only agricultural product among various rubbers. Use of nanofillers in NR matrix as a reinforcing agent has gained huge attention because they offer excellent matrix-filler interaction upon forming a good dispersion in the NR matrix. Nanoscale dispersion of fillers lead to greater interfacial interactions between NR and fillers compared to microfillers, which in turn lead to a conspicuous reinforcing effect. Addition of various nanofillers into NR matrix improves not only the mechanical properties but also the electrical, thermal and antimicrobial properties to an extreme level. The current review describes the reinforcing ability of various nanofillers such as clay, graphene, carbon nanotube (CNT), titanium dioxide (TiO2), chitin, cellulose, barium titanate (BaTiO3) and lignin in NR matrix. Moreover, reinforcement of various hybrid nanofillers in NR is also discussed in a comprehensive manner. The review also includes the historical trajectory of rubber nanocomposites and a comprehensive account on the factors affecting the properties of the NR nanocomposites.
Collapse
Affiliation(s)
- A S Sethulekshmi
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India.
| | - Kuruvilla Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala PO, Kerala, India
| |
Collapse
|
8
|
Engkagul V, Rader C, Pon N, Rowan SJ, Weder C. Nanocomposites Assembled via Electrostatic Interactions between Cellulose Nanocrystals and a Cationic Polymer. Biomacromolecules 2021; 22:5087-5096. [PMID: 34734702 DOI: 10.1021/acs.biomac.1c01056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
On account of their high strength and stiffness and their renewable nature, cellulose nanocrystals (CNCs) are widely used as a reinforcing component in polymer nanocomposites. However, CNCs are prone to aggregation and this limits the attainable reinforcement. Here, we show that nanocomposites with a very high CNC content can be prepared by combining the cationic polymer poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) and negatively charged, carboxylated CNCs that are provided as a sodium salt (CNC-COONa). Free-standing films of the composites can be prepared by simple solvent casting from water. The appearance and polarized optical microscopy and electron microscopy images of these films suggest that CNC aggregation is absent, and this is supported by the very pronounced reinforcement observed. The incorporation of 33 wt % CNC-COONa into PMETAC allowed increasing the storage modulus of this already rather stiff, glassy amorphous matrix polymer from 1.5 ± 0.3 to 6.6 ± 0.1 GPa, while the maximum strength increased from 11 to 32 MPa. At this high CNC content, the reinforcement achieved in the PMETAC/CNC-COONa nanocomposite is much more pronounced than that observed for a reference nanocomposite made with unmodified CNCs (CNC-OH).
Collapse
Affiliation(s)
- Visuta Engkagul
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Chris Rader
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nanetta Pon
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
9
|
|
10
|
Ding B, Huang S, Shen K, Hou J, Gao H, Duan Y, Zhang J. Natural rubber bio-nanocomposites reinforced with self-assembled chitin nanofibers from aqueous KOH/urea solution. Carbohydr Polym 2019; 225:115230. [DOI: 10.1016/j.carbpol.2019.115230] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
|