1
|
Zhang H, Wu A, Nan X, Yang L, Zhang D, Zhang Z, Liu H. The Application and Pharmaceutical Development of Etomidate: Challenges and Strategies. Mol Pharm 2024; 21:5989-6006. [PMID: 39495089 DOI: 10.1021/acs.molpharmaceut.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Etomidate is a synthetic imidazole anesthetic that exerts hypnotic effects by potentiating the action of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) or directly activating the anionic GABA (GABAA) receptor. It stands out among many anesthetics because of its multiple advantages, such as good hemodynamic stability and minimal inhibition of spontaneous respiration. However, its low water solubility and side effects, such as adrenal cortex inhibition and myoclonus, have limited the clinical application of this drug. To address these issues, extensive research has been conducted on the drug delivery of etomidate in recent decades, which has led to the emergence of different etomidate preparations. Despite so many etomidate preparations, so far some of the toxic side effects have not yet been effectively addressed. Herein we discuss the pharmaceutical design of etomidate that may resolve the above problem. We also propose targeted strategies for future research on etomidate preparations and discuss the feasibility of different administration routes and dosage forms to expand the application of this drug. Through this review, we hope to draw more attention to the potential of etomidate and its application challenges and provide valuable insights into the development of new etomidate preparations.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Pharmacy, Zigong First People's Hospital, Zigong, Sichuan 643000, People's Republic of China
| | - Ailing Wu
- Department of Anesthesiology, Second People's Hospital of Neijiang, Southwest Medical University, Neijiang, Sichuan 641000, People's Republic of China
- Department of Anesthesiology, First People's Hospital of Neijiang, Neijiang, Sichuan 641099, People's Republic of China
| | - Xichen Nan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
2
|
Jeong S, Lee HG, Yoo S. Effect of catalyst carrier type and concentration on oxygen-scavenging property and characteristics of iron-based active films. Food Sci Biotechnol 2024; 33:2533-2541. [PMID: 39144186 PMCID: PMC11319535 DOI: 10.1007/s10068-024-01520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 08/16/2024] Open
Abstract
The presence of oxygen can degrade food quality, making it essential to remove oxygen from the packaging headspace of food products. In this study, the effect of catalyst type and concentration on iron-based oxygen-scavenging films was investigated to enhance the oxygen removal efficiency in food packaging films. Among the investigated catalysts, calcium chloride and lipophilic silica improved the oxygen-scavenging capacity more than sodium chloride and hydrophilic silica. As the catalyst content was increased from 0.1 to 6.0 %(w/w), the oxygen content (%) in the package decreased from 3.90 to 0.36%. Application of oxygen-scavenging films in apple packaging decreased the apple browning index from 52.87 to 38.13 and reduced the oxygen concentration inside the package from 9.8 to 0.0%. Therefore, the food packaging film developed in this study can be used as a food packaging material that removes oxygen and thus prevents food quality deterioration. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01520-4.
Collapse
Affiliation(s)
- Suyeon Jeong
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Hyun-Gyu Lee
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - SeungRan Yoo
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| |
Collapse
|
3
|
Dakhili S, Yekta R, Zade SV, Mohammadi A, Hosseini SM, Shojaee-Aliabadi S. Release kinetic modeling of Satureja Khuzestanica Jamzad essential oil from fish gelatin/succinic anhydride starch nanocomposite films: The effects of temperature and nanocellulose concentration. Food Chem 2024; 439:138152. [PMID: 38070232 DOI: 10.1016/j.foodchem.2023.138152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Fish gelatin (FG) and octenyl succinic anhydride starch (OSAS) composite films loaded with 1, 2, 3 and 4 wt% bacterial nanocellulose (BNC) and Satureja Khuzestanica Jamzad essential oil (SKEO) were achieved successfully and their physicochemical and release properties were investigated. The results revealed that incorporation of BNC improved the tensile strength which was associated with FE-SEM, FTIR and XRD. Moreover, this study focused on the release modeling of SKEO in 4, 25 and 37 °C from nanocomposite films using different release kinetic and Arrhenius models. Also, analysis of variance-simultaneous component analysis (ASCA) and exploratory data visualization by principal component analysis (PCA) were carried out to investigate the effects of two controlled factors. Consequently, the Peleg model showed the best fitting of experimental data. The activation energies decreased by increasing the BNC concentration. This research demonstrated the nanocomposite film containing SKEO would be a suitable candidate for active food packaging.
Collapse
Affiliation(s)
- Samira Dakhili
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Yekta
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somaye Vali Zade
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Liu S, Rao Z, Chen H, Zhang K, Lei X, Zhao J, Zeng K, Ming J. Development of antifogging double-layer film using cellulose nanofibers and carboxymethyl chitosan for white Hypsizygus marmoreus preservation. Int J Biol Macromol 2024; 256:128307. [PMID: 37992941 DOI: 10.1016/j.ijbiomac.2023.128307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Films with simultaneously excellent mechanical and anti-fog properties are of great importance for food packaging. A novel strategy is described here to prepare long-lasting anti-fog film with antibacterial and antioxidant capabilities via a simple, green approach. The CMC (carboxymethyl chitosan) gel was integrated with CNF/TA (cellulose nanofibers/tannic acid) composite solution based on layer-by-layer assembly to form a membrane with a bilayer structure. The anti-fog performance of the bilayer film could be adjusted by regulating the CNF/TA layer thickness. On the whole, the developed anti-fog film had high mechanical strength and excellent UV shielding properties, as well as good antibacterial and antioxidant properties, and could be non-fogging for a long time under water vapor (40 °C). The effect of double layer anti-fog film (3%CmFT-3) on the fresh-keeping effect of white Hypsizygus marmoreus was compared at room temperature (28 °C) with commercially available anti-fog PVC film. The results showed that the bilayer anti-fog film could effectively prevent the generation of fog, delay the Browning, inhibit mildew, improve the overall acceptability, and effectively extend the shelf life of white Hypsizygus marmoreus. This biomass-based anti-fog film offers great potential for the development of multifunctional green food packaging.
Collapse
Affiliation(s)
- Sili Liu
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Hong Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
5
|
Mirzaee N, Nikzad M, Battisti R, Araghi A. Isolation of cellulose nanofibers from rapeseed straw via chlorine-free purification method and its application as reinforcing agent in carboxymethyl cellulose-based films. Int J Biol Macromol 2023; 251:126405. [PMID: 37597636 DOI: 10.1016/j.ijbiomac.2023.126405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
In this study, cellulose nanofibers (CNFs) were successfully isolated from rapeseed straw (RS) whose valorization has been rarely investigated to date. A combined bleaching method without chlorine was applied for the purification of cellulose fibers, previously unexplored for RS. Chemical composition analysis and Fourier-transform infrared spectroscopy (FTIR) indicated that the purification method eliminated hemicellulose and reduced lignin content from 24.4 % to 1.8 %. The isolation of CNFs was performed using sulfuric acid hydrolysis under different acid concentrations (55 and 60 % v/v) and hydrolysis times (15, 30, and 45 min). The isolated CNFs were characterized by FTIR, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The formation of CNFs was confirmed by a significant increase in crystallinity index from 46.45 % of RS to >79.41 % of CNFs, depending on acid concentration and isolation duration. Carboxymethyl cellulose (CMC) films with different contents of CNFs were prepared by casting method. The mechanical properties and cytotoxicity of the prepared films were investigated. The CNFs obtained from RS via a chlorine-free purification method showed promising results for their usage as reinforcement in CMC matrix and film fabrication for various applications such as transdermal medicine and food packaging.
Collapse
Affiliation(s)
- Narges Mirzaee
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Maryam Nikzad
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Rodrigo Battisti
- Federal Institute of Education, Science and Technology of Santa Catarina, Criciúma Campus, 88813-600, Brazil
| | - Atefeh Araghi
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
6
|
Novel ammonia-responsive carboxymethyl cellulose/Co-MOF multifunctional films for real-time visual monitoring of seafood freshness. Int J Biol Macromol 2023; 230:123129. [PMID: 36610564 DOI: 10.1016/j.ijbiomac.2022.123129] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Nowadays, ammonia-responsive biopolymer-based intelligent active films are of great interest for their huge potential in maintaining and monitoring the freshness of seafood. However, it is still a challenge to create biopolymer-based intelligent active films with favorable color stability, antibacterial and visual freshness indication functions. Herein, cobalt-based metal-organic framework (Co-MOF) nanosheets with ammonia-sensitive and antibacterial functions were successfully synthesized and then embedded into carboxymethyl cellulose (CMC) matrix to develop high performance and multifunctional CMC-based intelligent active films. The influence of Co-MOF addition on the structure, physical and functional characters of CMC film was comprehensively studied. The results showed that the Co-MOF nanofillers were homogeneously embedded within the CMC matrix, bringing about remarkable promotion on tensile strength (from 45.3 to 62.2 MPa), toughness (from 0.7 to 2.3 MJ/m3), water barrier and UV-blocking performance of CMC film. Notably, the obtained CMC/Co-MOF nanocomposite films also presented excellent long-term color stability, antibacterial activity (with the bacteriostatic efficiency of 99.6 % and 99.3 % against Escherichia coli and Staphylococcus aureus), and ammonia-sensitive discoloration performance. Finally, the CMC/Co-MOF nanocomposite films were successfully applied for real-time visual monitoring of shrimp freshness. The above results demonstrate that the CMC/Co-MOF nanocomposite films possess huge potential applications in intelligent active packaging.
Collapse
|
7
|
Abalı H, Şimşek Veske N, Uslu B, Tokgöz Akyıl F, Tural Önür S. Factors Influencing Diagnostic Success of Computed Tomography-guided Transthoracic Needle Biopsy in Intrathoracic Lesions: An Experience of a Reference Chest Disease Hospital. ISTANBUL MEDICAL JOURNAL 2023. [DOI: 10.4274/imj.galenos.2022.00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
8
|
Chaudhari AK, Das S, Singh BK, Kishore Dubey N. Green facile synthesis of cajuput (Melaleuca cajuputi Powell.) essential oil loaded chitosan film and evaluation of its effectiveness on shelf-life extension of white button mushroom. Food Chem 2023; 401:134114. [DOI: 10.1016/j.foodchem.2022.134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
9
|
Gamal R, Sami NM, Hassan HS. Assessment of modified Salvadora Persica for removal of 134Cs and 152+154Eu radionuclides from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3072-3090. [PMID: 34383216 DOI: 10.1007/s11356-021-15828-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Biosorption is a simple and economical method utilized to remove hazardous elements from a waste solution. In this study, a low-cost agricultural waste, Salvadora Persica, was modified with iron oxyhydroxide and evaluated as an economic biosorbent to remove cesium and europium radionuclides from their aqueous solutions. The modified biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), elemental analysis as well as thermogravmetirc analysis (TGA). The sorption of 134Cs and 152+154Eu radioisotopes was investigated singly in a batch mode as a function of the solution pH, contact time, and the initial concentrations of the studied ions. The kinetic of the removal process was examined and it was found that the reaction obeys a pseudo-first-order model and the intraparticle diffusion is not the sole mechanism dominating the reaction. Temkin and Sips isotherm models provide the best fit for the equilibrium data. In addition, the sorption of cesium and europium ions was a spontaneous and endothermic process as inferred from thermodynamic studies. The reusability for the sorption of cesium and europium ions reveals the feasibility and efficacy of the modified biosorbent.
Collapse
Affiliation(s)
- Rasha Gamal
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| | | | | |
Collapse
|
10
|
Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
A Novel Biocompatible Herbal Extract-Loaded Hydrogel for Acne Treatment and Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5598291. [PMID: 34765083 PMCID: PMC8577930 DOI: 10.1155/2021/5598291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/16/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
A novel herbal extract-loaded gel containing several biofunctional extracts, including green tea, Zingiber officinale Rosc, Phyllanthus emblica, and salicylic acid, was developed for acne vulgaris. These natural raw materials were blended with suitable dosages of gelatin and carboxymethyl cellulose (CMC) to produce a biocompatible herbal gel. The physical chemistry properties of the hydrogel were determined by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), rheometry, and scanning electron microscopy (SEM), and the hydrogel showed good mechanical and morphological characteristics. The herbal extract-loaded hydrogel mimicked extracellular matrix properties and showed good antioxidant and anti-inflammatory properties and various advantages, serving as a potential wound dressing material because of its high moisture retention ability, wound exudate absorption behavior, and biocompatibility. It exhibited moderate-high antioxidative and anti-inflammatory qualities that were important for dermis wound closure. The clinical trial results showed that most patients experienced moderate to high healing rates, and four of twenty-four individuals (16.67%) had recovery area ratios greater than 80%. This herbal extract-loaded hydrogel has effective ingredients and excellent mechanical properties as a bioactive dressing agent for acne treatment.
Collapse
|
12
|
Rashki S, Shakour N, Yousefi Z, Rezaei M, Homayoonfal M, Khabazian E, Atyabi F, Aslanbeigi F, Safaei Lapavandani R, Mazaheri S, Hamblin MR, Mirzaei H. Cellulose-Based Nanofibril Composite Materials as a New Approach to Fight Bacterial Infections. Front Bioeng Biotechnol 2021; 9:732461. [PMID: 34858953 PMCID: PMC8631928 DOI: 10.3389/fbioe.2021.732461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistant microorganisms have become an enormous global challenge, and are predicted to cause hundreds of millions of deaths. Therefore, the search for novel/alternative antimicrobial agents is a grand global challenge. Cellulose is an abundant biopolymer with the advantages of low cost, biodegradability, and biocompatibility. With the recent growth of nanotechnology and nanomedicine, numerous researchers have investigated nanofibril cellulose to try to develop an anti-bacterial biomaterial. However, nanofibril cellulose has no inherent antibacterial activity, and therefore cannot be used on its own. To empower cellulose with anti-bacterial properties, new efficient nanomaterials have been designed based on cellulose-based nanofibrils as potential wound dressings, food packaging, and for other antibacterial applications. In this review we summarize reports concerning the therapeutic potential of cellulose-based nanofibrils against various bacterial infections.
Collapse
Affiliation(s)
- Somaye Rashki
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marzieh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Khabazian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Rabbani M, Pezeshki A, Ahmadi R, Mohammadi M, Tabibiazar M, Ahmadzadeh Nobari Azar F, Ghorbani M. Phytosomal nanocarriers for encapsulation and delivery of resveratrol- Preparation, characterization, and application in mayonnaise. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Daliri H, Ahmadi R, Pezeshki A, Hamishehkar H, Mohammadi M, Beyrami H, Khakbaz Heshmati M, Ghorbani M. Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Babapour H, Jalali H, Mohammadi Nafchi A. The synergistic effects of zinc oxide nanoparticles and fennel essential oil on physicochemical, mechanical, and antibacterial properties of potato starch films. Food Sci Nutr 2021; 9:3893-3905. [PMID: 34262746 PMCID: PMC8269571 DOI: 10.1002/fsn3.2371] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to evaluate the effects of a combination of zinc oxide (ZnO-N) nanoparticles and fennel essential oil (FEO) on the functional and antimicrobial properties of potato starch films. Films based on potato starch containing a combination of ZnO-N (1, 3, and 5%(w/w)) and FEO (1, 2, and 3% (w/w)) produced by casting method and water solubility, water absorption capacity (WAC), barrier properties, mechanical properties, color indexes, and antimicrobial activity of the films against Staphylococcus aureus, Escherichia coli, and Aspergillus flavus were studied. The combination of ZnO-N and FEO had a significant decreasing effect on solubility, WAC, water vapor and oxygen permeability, elongation, and L* index. These additives had an increasing impact on tensile strength, Yang's modulus, and a* and b* indexes (p < .05). By increasing the concentration of ZnO-N and FEO, the antimicrobial activities of bionanocomposite films significantly increased (p < .05). Both ZnO-N and FEO had a significant effect in this respect, although the effects of ZnO-N were more significant. In conclusion, an excellent synergistic effect of ZnO-N and FEO was observed in potato starch films.
Collapse
Affiliation(s)
- Hamid Babapour
- Food Biopolymer Research GroupFood Science and Technology DepartmentIslamic Azad UniversityDamghanIran
| | - Hossein Jalali
- Food Biopolymer Research GroupFood Science and Technology DepartmentIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Food Biopolymer Research GroupFood Science and Technology DepartmentIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| |
Collapse
|
16
|
Kwak H, Shin S, Kim J, Kim J, Lee D, Lee H, Lee EJ, Hyun J. Protective coating of strawberries with cellulose nanofibers. Carbohydr Polym 2021; 258:117688. [PMID: 33593561 DOI: 10.1016/j.carbpol.2021.117688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023]
Abstract
Since shelf life of perishable foods is short, a compelling challenge is to prolong the freshness of foods with a cost-effective strategy. A perishable fruit, the strawberry, is chosen as a model perishable food and an edible film coating is applied to it using carboxymethylated cellulose nanofibers (CM-CNFs) stabilized by cationic salts. A transparent and impermeable CM-CNF film is formed at the strawberry surface using a dip coating process. The formation of the film is dependent on the electrostatic interaction between anionic CM-CNF and salt cations. Physical properties of the film are characterized and the effectiveness of edible film coating on the freshness of perishable fruit is evaluated by the measurement of weight loss, CO2 release, firmness, total solid sugar and acidity. Cellulose nanofiber is a promising cost-effective material appropriate for use as an edible coating that contributes to the long-term storage and prolonged freshness of foods.
Collapse
Affiliation(s)
- Hojung Kwak
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungchul Shin
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehwan Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Joonggon Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghan Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwarueon Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Jin Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Hyun
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
17
|
Shahvalizadeh R, Ahmadi R, Davandeh I, Pezeshki A, Seyed Moslemi SA, Karimi S, Rahimi M, Hamishehkar H, Mohammadi M. Antimicrobial bio-nanocomposite films based on gelatin, tragacanth, and zinc oxide nanoparticles - Microstructural, mechanical, thermo-physical, and barrier properties. Food Chem 2021; 354:129492. [PMID: 33756322 DOI: 10.1016/j.foodchem.2021.129492] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/23/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022]
Abstract
Gelatin and tragacanth were employed to fabricate antimicrobial nanocomposites with 1, 3, and 5% zinc oxide nanoparticles (ZnO-NPs). FT-IR and XRD proved new chemical interactions among GEL/TGC/ZnO-NPs and higher crystallinity of nanocomposites, respectively. DSC showed a significant increase in melting point temperature (Tm) from ~ 90 to ~ 93-101 °C after adding 1-5% ZnO-NPs. Ultimate tensile strength (UTS) was remarkably increased to 31.21, 34.57, and 35.06 MPa, as well as Young's Modulus to 287.44, 335.47, and 367.04 MPa after incorporating 1, 3, and 5% ZnO-NPs. The ZnO-NPs dose-dependently reduced the water vapor permeability (WVP) of the films. FE-SEM analysis from surface and cross-section illustrated the compact and homogenous structure of the nanocomposites even up to 5% ZnO-NPs. The ZnO-NPs-containing nanocomposites had a good antimicrobial activity (~10-20 mm) against both Staphylococcus aureus and Escherichia coli. Generally, the results indicated that the prepared nanocomposite films are promising antimicrobial bio-materials for food packaging.
Collapse
Affiliation(s)
- Rahim Shahvalizadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raman Ahmadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iskandar Davandeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akram Pezeshki
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Amir Seyed Moslemi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Sanaz Karimi
- Department of Food Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mahdi Rahimi
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Abd El-latif AM, El-Gawad EAA, Soror EI, Shourbela RM, Zahran E. Dietary supplementation with miswak (Salvadora persica) improves the health status of Nile tilapia and protects against Aeromonas hydrophila infection. AQUACULTURE REPORTS 2021; 19:100594. [DOI: 10.1016/j.aqrep.2021.100594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Bilal M, Gul I, Basharat A, Qamar SA. Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 2021; 176:540-557. [PMID: 33607134 DOI: 10.1016/j.ijbiomac.2021.02.107] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Polysaccharides are omnipresent biomolecules that hold great potential as promising biomaterials for a myriad of applications in various biotechnological and industrial sectors. The presence of diverse functional groups renders them tailorable functionalities for preparing a multitude of novel bio-nanostructures. Further, they are biocompatible and biodegradable, hence, considered as environmentally friendly biopolymers. Application of nanotechnology in food science has shown many advantages in improving food quality and enhancing its shelf life. Recently, considerable efforts have been made to develop polysaccharide-based nanostructures for possible food applications. Therefore, it is of immense importance to explore literature on polysaccharide-based nanostructures delineating their food application potentialities. Herein, we reviewed the developments in polysaccharide-based bio-nanostructures and highlighted their potential applications in food preservation and bioactive "smart" food packaging. We categorized these bio-nanostructures into polysaccharide-based nanoparticles, nanocapsules, nanocomposites, dendrimeric nanostructures, and metallo-polysaccharide hybrids. This review demonstrates that the polysaccharides are emerging biopolymers, gaining much attention as robust biomaterials with excellent tuneable properties.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
20
|
Yu B, Zeng X, Wang L, Regenstein JM. Preparation of nanofibrillated cellulose from grapefruit peel and its application as fat substitute in ice cream. Carbohydr Polym 2021; 254:117415. [PMID: 33357899 DOI: 10.1016/j.carbpol.2020.117415] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 02/02/2023]
Abstract
Grapefruit peel nanofibrillated cellulose (GNFC) was used as fat substitute in ice cream. GNFC was characterized by TEM, SEM, and XRD. The effects of GNFC on textural profiles, rheological properties, melting resistance, sensory properties, microstructure, and gross energy (GE) of ice cream were investigated. The results showed that GNFC was short rod-shaped crystal. Ice cream added with GNFC exhibited elastic-dominated behavior and better textural properties. The sensory evaluation score reached the highest level with desirable three-dimensional network structure at 0.4 % GNFC addition. GE of ice cream significantly decreased with reducing fat with maximal reduction rate of 17.90 %. Furthermore, the results of in vitro simulated digestion showed that GNFC addition and fat reduction significantly inhibited fat digestibility of ice cream due to coalescence of fat droplets on GNFC. This study provides new sustainable perspectives for the application of GNFC prepared from agricultural waste as fat substitute in food products.
Collapse
Affiliation(s)
- Ben Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics 2021; 13:pharmaceutics13020230. [PMID: 33562128 PMCID: PMC7915176 DOI: 10.3390/pharmaceutics13020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Site-Specific release of active molecules with antimicrobial activity spurred the interest in the development of innovative polymeric nanocarriers. In the preparation of polymeric devices, nanotechnologies usually overcome the inconvenience frequently related to other synthetic strategies. High performing nanocarriers were synthesized using a wide range of starting polymer structures, with tailored features and great chemical versatility. Over the last decade, many antimicrobial substances originating from plants, herbs, and agro-food waste by-products were deeply investigated, significantly catching the interest of the scientific community. In this review, the most innovative strategies to synthesize nanodevices able to release antimicrobial natural extracts were discussed. In this regard, the properties and structure of the starting polymers, either synthetic or natural, as well as the antimicrobial activity of the biomolecules were deeply investigated, outlining the right combination able to inhibit pathogens in specific biological compartments.
Collapse
|
22
|
Functional biocompatible nanocomposite films consisting of selenium and zinc oxide nanoparticles embedded in gelatin/cellulose nanofiber matrices. Int J Biol Macromol 2021; 175:87-97. [PMID: 33485892 DOI: 10.1016/j.ijbiomac.2021.01.135] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
In recent decades, environmental concerns and increasing consumer demand for healthy and nutritious food products with prolonged shelf life have made the food packaging industry pay more attention to the preparation of multifunctional biodegradable packaging films based on biopolymers containing active components such as antioxidant and antimicrobial agents. In this study, bio-nanocomposite films were fabricated from gelatin (G) and cellulose nanofibers (CNFs), and different concentrations of zinc oxide (ZnO) and/or Selenium (Se) nanoparticles (NPs) by the casting method. The mechanical, barrier, optical, and structural (FTIR, XRD, and SEM) properties of the films were investigated along with their antibacterial and antioxidant features. The incorporation of ZnO and Se NPs improved the physicomechanical and water resistance of G/CNF films. In this regard, the maximum tensile strength value was obtained for the G/CNF containing 5% w/w ZnO NPs (G/CNF/ZnO3) and G/CNF containing 0.1% w/w Se NPs (G/CNF/Se2) films (~2.20-fold and ~2.13-fold higher than the G/CNF film, respectively). Also, G/CNF with 3% w/w ZnO NPs (G/CNF/ZnO2) film had the lowest water vapor permeability and water solubility among all films. Results of the disc diffusion assay showed a stronger antibacterial effect of ZnO NPs compared with Se NPs. The bacterial susceptibility to the antibacterial films was as follows: Listeria monocytogenes > Escherichia coli > Staphylococcus aureus > Pseudomonas fluorescens. The G/CNF films incorporated with Se nanoparticles possessed the higher property of scavenging free radicals in comparison films containing ZnO nanoparticles. Also, the combination of Se NPs and ZnO NPs enhanced the antioxidant effect of the films. In conclusion, gelatin-based edible films containing CNFs, ZnO NPs, and Se NPs can be used in the development of active food packaging products.
Collapse
|
23
|
Khah MD, Ghanbarzadeh B, Roufegarinejad Nezhad L, Ostadrahimi A. Effects of virgin olive oil and grape seed oil on physicochemical and antimicrobial properties of pectin-gelatin blend emulsified films. Int J Biol Macromol 2021; 171:262-274. [PMID: 33421466 DOI: 10.1016/j.ijbiomac.2021.01.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
The active emulsified blend films based on gelatin-pectin (5% w/w) containing virgin olive oil (VOO) (0.1-0.3 g/g biopolymer) and grape seed oil (GSO) (0.1-0.3 g/g biopolymer) were prepared by casting method. GSO showed slightly more decreasing effect than VOO on ultimate tensile strength (UTS) and strain at break (SAB) of blend films however; VOO had more reducing effect than GSO on the water vapor permeability (WVP). The scanning electron microscopy (SEM) images showed that incorporating 0.3 g GSO and VOO oils had not considerable effect on the morphology of the emulsified films. Atomic force microscopy (AFM) topography images indicated that adding of oils considerably could increase roughness of emulsified film. Fourier transforms infrared (FTIR) revealed that no new chemical bond formed by adding oils into biopolymer matrix. The minimum inhibitory concentration (MIC) of VOO, GSO and Savory essential oil (SEO) against four important spoilage bacteria showed that GSO had higher antibacterial effect than VOO however; both showed very lower antimicrobial effect than SEO. All active films showed lower inhibitory zone for S. aureus than S. typhimurium and P. fluorescence. The chicken breast fillets wrapped in the films containing VOO-GSO-SEO (0.15-0.15-0.02 g/g polymer) showed considerably lower total viable count (TVC), Pseudomonas spp., Enterobacteriaceae, E. coli 157:H7 and S. typhimurium count than the control one during 12 days storage. Also, it caused significant decrease in peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and total volatile basic nitrogen (TVB-N) of fillet samples.
Collapse
Affiliation(s)
- Mehran Dolat Khah
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus, Mersin 10, Turkey.
| | | | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Wang L, Lin L, Pang J. A novel glucomannan incorporated functionalized carbon nanotube films: Synthesis, characterization and antimicrobial activity. Carbohydr Polym 2020; 245:116619. [PMID: 32718660 DOI: 10.1016/j.carbpol.2020.116619] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022]
Abstract
A novel nanocomposite film was developed by incorporating functionalized carbon nanotube (PCNT) and gallic acid (GA) into carboxymethyl konjac glucomannan (CKGM) and gelatin (GL) matrix. The influences of the PCNT content on the structural, morphological, mechanical, barrier, thermal and antimicrobial properties of CKGM/GL nanocomposite film were discussed. The structure of PCNT@CKGM/GL nanocomposite film was characterized by FT-IR, SEM, and AFM. The crystal structure and thermal ability of the film were generated by XRD and TGA-DTG. The analyses of FT-IR revealed that the amide linkage and strong hydrogen bonding were formed between CKGM, GL, and PCNT. Moreover, the characterization of mechanical properties, moisture barrier, and antimicrobial activities indicated the benefits of adding PCNT into CKGM/GL films. The results suggested that the PCNT@CKGM/GL films exhibited antimicrobial activity against Staphylococcus aureus and Escherichia coli. Therefore, such antimicrobial nanocomposite films have the potential of maintaining the quality and prolong the shelf life of food products.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Lizhuan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| |
Collapse
|
25
|
Ahmadi A, Ahmadi P, Ehsani A. Development of an active packaging system containing zinc oxide nanoparticles for the extension of chicken fillet shelf life. Food Sci Nutr 2020; 8:5461-5473. [PMID: 33133549 PMCID: PMC7590311 DOI: 10.1002/fsn3.1812] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/01/2023] Open
Abstract
The casting method was employed to prepare gelatin-based nanocomposite films containing different concentrations of cellulose nanofiber (CNF) as a reinforcement filler (2.5%, 5%, and 7.5% w/w of gelatin) as well as zinc oxide nanoparticles (ZnO NPs) as an antimicrobial agent (1%, 3%, 5%, and 7% w/w of gelatin). The results showed that the incorporation of 5% CNFs (optimum concentration) significantly boosted the films' stiffness (YM; by 47%) and strength (TS; by 72%) but decreased its flexibility (EAB; by 28%), water vapor permeability, and moisture absorption. The best G/CNF film antibacterial activity was provided by the 5% concentration of ZnO NPs according to the disk diffusion assay; Gram-positive bacteria were inhibited significantly more than Gram-negative bacteria. The antimicrobial efficacy of the G/CNF/ZnO NPs film as a food packaging material was assessed via counts of Staphylococcus aureus and Pseudomonas fluorescens inoculated on chicken fillets (as a food model) in the treatment (G/5% CNF/5% ZnO) and control groups (plastic bag). The antibacterial film led to a significant reduction in the bacterial load of the chicken fillets (p < .05), especially against the Gram-positive strain. This study illustrated that G/CNF/ZnO NPs films can be utilized as active packaging to prolong the shelf life of different perishable foods such as meat.
Collapse
Affiliation(s)
- Azam Ahmadi
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Parisa Ahmadi
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Department of Food Sciences and TechnologyFaculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Ali Ehsani
- Department of Food Sciences and TechnologyFaculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
- Food and Drug Safety Research CenterTabriz University of Medical ScienceTabrizIran
| |
Collapse
|
26
|
Yekta R, Mirmoghtadaie L, Hosseini H, Norouzbeigi S, Hosseini SM, Shojaee-Aliabadi S. Development and characterization of a novel edible film based on Althaea rosea flower gum: Investigating the reinforcing effects of bacterial nanocrystalline cellulose. Int J Biol Macromol 2020; 158:327-337. [PMID: 32278602 DOI: 10.1016/j.ijbiomac.2020.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/06/2023]
Abstract
Althaea rosea flowers were used to procure the gum (ARG) needed for film preparation. Pretest studies suggested 1.5% ARG + 50% glycerol as optimum for film preparation. The reinforcement impact of 3, 5, and 8 wt% bacterial nanocrystalline cellulose (BNC) incorporation (based on the dry weight of ARG) was investigated on the structural, mechanical, physical, thermal, optical, morphological, and barrier properties of films. The Results suggested that increasing the BNC concentration until a certain level (5 wt% BNC) could improve the latter properties. However, at higher concentration (8 wt% BNC), cellulose nanoparticles tended to agglomerate, which led to the impairment of some of those properties, especially barrier properties. According to AFM and SEM results, BNC addition increased surface roughness and coarseness. All BNC-loaded films showed better functions compared to control sample (0 wt% BNC) and the film containing 5 wt% BNC was suggested as the optimum film.
Collapse
Affiliation(s)
- Reza Yekta
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mirmoghtadaie
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Norouzbeigi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Spathodea campanulata bud fluid reinforced mechanical, hydrophilicity and degradation studies of poly (vinyl alcohol) matrix. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2413-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Sun J, Du Y, Ma J, Li Y, Wang L, Lu Y, Zou J, Pang J, Wu C. Transparent bionanocomposite films based on konjac glucomannan, chitosan, and TEMPO-oxidized chitin nanocrystals with enhanced mechanical and barrier properties. Int J Biol Macromol 2019; 138:866-873. [DOI: 10.1016/j.ijbiomac.2019.07.170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022]
|
29
|
Ahmadi R, Tanomand A, Kazeminava F, Kamounah FS, Ayaseh A, Ganbarov K, Yousefi M, Katourani A, Yousefi B, Kafil HS. Fabrication and characterization of a titanium dioxide (TiO 2) nanoparticles reinforced bio-nanocomposite containing Miswak ( Salvadora persica L.) extract - the antimicrobial, thermo-physical and barrier properties. Int J Nanomedicine 2019; 14:3439-3454. [PMID: 31190802 PMCID: PMC6522844 DOI: 10.2147/ijn.s201626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Objective: The microbial, physico-chemical and optical corruptions threaten a variety of foods and drugs and consequently the human biological safety and its accessible resources. The humanbeing's tendency towards bio-based materials and natural plant-extracts led to an increase in the usage of antimicrobial biocomposites based on medicinal herbs. Miswak (Salvadora persica L.) extract (SPE) has been proved effective for its antimicrobial and other biological activities. Therefore, in this study, titanium dioxide (TiO2) nanoparticles (TONP) and SPE were applied to fabricate antimicrobial carboxymethyl cellulose (Na-CMC) based bio-nanocomposites which would simultaneously promote some thermo-physical and barrier properties. Methods: CMC-neat film (C1), CMC/TONP-2% (C2) and CMC/TONP-2% with 150, 300 and 450 mg/mL SPE (SPE150, SPE30 and SPE450, respectively) were fabricated. The physical and mechanical properties; elemental mapping analysis (MAP), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA-DTG); fourier transform infrared (FTIR), energy-dispersive X-ray (EDX) and UV-vis spectroscopies were done to further validate the results. Results: Addition of TONP (2%) improved the blocking of UV light at 280 nm while SPE-containing nanocomposites completely blocked it. FTIR, XRD and SEM confirmed the formation of homogeneous films and high miscibility of applied materials. TONP led to an increase in Young's modulus (YM) and stress at break (SB) while SPE decreased them and enhanced the elongation to break (EB) (flexibility) of the active nanocomposites. Compared to CMC-film, the thermo-gravimetric analysis (TGA-DTG) showed a higher thermal stability for CMC/TONP and CMC/TONP/SPE nanocomposites. The EDX spectroscopy and elemental mapping analysis (MAP) proved the existence and well-distributedness of Na, K, Cl, S, Ti, F and N elements in SPE-activated nanocomposites. The pure SPE and SPE-activated nanocomposites showed a favorable antimicrobial activity against both gram-positive (Staphylococcus aureus) and negative (Escherichia coli) bacteria. Conclusion: The CMC-TiO2-SPE nanocomposites were homogeneously produced. Combination of TiO2 nanoparticles and dose-dependent SPE led to an improvement of thermal stability, and high potential in antimicrobial and UV-barrier properties. These results can generally highlight the role of the fabricated antimicrobial bio-nanocomposites as a based for different applications especially in food/drug packaging or coating.
Collapse
Affiliation(s)
- Raman Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Tanomand
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, DK- 2100 Copenhagen. Denmark
| | - Ali Ayaseh
- Department of Food Science and Technology, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adib Katourani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|