1
|
Kanwal S, Bibi S, Haleem R, Waqar K, Mir S, Maalik A, Sabahat S, Hassan S, Awwad NS, Ibrahium HA, Alturaifi HA. Functional potential of chitosan-metal nanostructures: Recent developments and applications. Int J Biol Macromol 2024; 282:136715. [PMID: 39454923 DOI: 10.1016/j.ijbiomac.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chitosan (Cs), a naturally occurring biopolymer, has garnered significant interest due to its inherent biocompatibility, biodegradability, and minimal toxicity. This study investigates the effectiveness of various reaction strategies, including acylation, acetylation, and carboxymethylation, to enhance the solubility profile of Cs. This review provides a detailed examination of the rapidly developing field of Cs-based metal complexes and nanoparticles. It delves into the diverse synthesis methodologies employed for their fabrication, specifically focusing on ionic gelation and in-situ reduction techniques. Furthermore, the review offers a comprehensive analysis of the characterization techniques utilized to elucidate the physicochemical properties of these complexes. A range of analytical techniques are utilized, including Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and others. By comprehensively exploring a wide range of applications, the review emphasizes the significant potential of Cs in various scientific disciplines. Diagrams, figures, and tables effectively illustrate the synthesis processes, promoting a clear understanding for the reader. Chitosan-metal nanostructures/nanocomposites significantly enhance antimicrobial efficacy, drug delivery, and environmental remediation compared to standard chitosan composites. The integration of metal nanoparticles, such as silver or gold, improves chitosan's effectiveness against a range of pathogens, including resistant bacteria. These nanocomposites facilitate targeted drug delivery and controlled release, boosting therapeutic bioavailability. Additionally, they enhance chitosan's ability to absorb heavy metals and dyes from wastewater, making them effective for environmental applications. Overall, chitosan-metal nanocomposites leverage chitosan's biocompatibility while offering improved functionalities, making them promising materials for diverse applications. This paper sheds light on recent advancements in the applications of Cs metal complexes for various purposes, including cancer treatment, drug delivery enhancement, and the prevention of bacterial and fungal infections.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sehrish Bibi
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Rabia Haleem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology Kohat, KPK, Pakistan
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
2
|
Kanarat J, Bunchuay T, Chutimasakul T, Limprasart W, Unlum J, Tantirungrotechai J. Copper‐Chitosan Beads as Efficient and Recyclable Heterogeneous Catalysts for C−H Oxidation and C−X Amination. ChemistrySelect 2022. [DOI: 10.1002/slct.202202517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jurin Kanarat
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Threeraphat Chutimasakul
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Nuclear Technology Research and Development Center Institute of Nuclear Technology (Public Organization) Nakhon Nayok 26120 Thailand
| | - Waranya Limprasart
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Jetnarin Unlum
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Jonggol Tantirungrotechai
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| |
Collapse
|
4
|
Li J, Zhao Y, Yang J, Li R, Cao Z, Wan X. Ferric Sulphate/Potassium Bisulfate Promoted Facile Synthesis of
N
‐Sulfonylimidates from a Multi‐Component Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yanwei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jinwei Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Zhiyu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
5
|
Ghasemi Z, Amale AH, Azizi S, Valizadeh S, Soleymani J. Magnetic sulfonated polysaccharides as efficient catalysts for synthesis of isoxazole-5-one derivatives possessing a substituted pyrrole ring, as anti-cancer agents. RSC Adv 2021; 11:36958-36964. [PMID: 35494384 PMCID: PMC9043612 DOI: 10.1039/d1ra06472j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
Four polysaccharides (chitosan, cellulose, starch, and pectin) were magnetized with magnetic iron oxide (Fe3O4) and then sulfonated (except pectin) with chlorosulfonic acid. The obtained solid acids were used as a catalyst in three-component reactions between N-substituted-2-formylpyrrole, hydroxylamine-hydrochloride, and β-keto esters for the synthesis of 4-(2-pyrrolyl) methylene-isoxazole-5-ones. The optimal catalyst system was selected and studied by IR, SEM, TEM and XRD methods. The diverse isoxazoline derivatives (obtained via a mild and simple approach) were also fully characterized by spectroscopic methods and screened for anti-cancer activities against HT-29 and MCF-7 colon and breast cancer and HEK 293 normal cells. The results revealed interesting anti-cancer activities. Four magnetic polysaccharides containing acidic groups were used as catalysts for the synthesis of 4-(2-pyrrolyl) methylene-isoxazole-5-ones. The products showed anti-cancer activities.![]()
Collapse
Affiliation(s)
- Zarrin Ghasemi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Afsaneh Hamidian Amale
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Sajjad Azizi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Valizadeh
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Fakhree AA, Ghasemi Z, Rahimi M, Shahrisa A. Enhanced catalytic performance of copper iodide in 1,2,3‐triazole‐imidazole hybrid synthesis, and evaluation of their anti‐cancer activities along with optical properties besides 1H‐tetrazole‐imidazole hybrids. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Zarrin Ghasemi
- Department of Organic Chemistry and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Mahdi Rahimi
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Aziz Shahrisa
- Department of Organic Chemistry and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| |
Collapse
|