1
|
Zhang Q, Zhao W, He J, He J, Shi S, Sun M, Niu X, Zeng Z, Zhao Y, Zhang Y, Wang P, Li Y, Zhang C, Duan S, Hung WL, Wang R. Effect of Lacticaseibacillus paracasei K56 with galactooligosaccharide synbiotics on obese individuals: an in vitro fermentation model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5042-5051. [PMID: 38319685 DOI: 10.1002/jsfa.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND The use of synbiotics is emerging as a promising intervention strategy for regulating the gut microbiota and for preventing or reducing obesity, in comparison with the use of probiotics or prebiotics alone. A previous in vivo study revealed that Lacticaseibacillus paracasei K56 (L. paracasei K56) could alleviate obesity induced in high-fat-diet mice; however, the effect of the synbiotic combination of L. paracasei K56 and prebiotics in obese individuals has not been explored fully. RESULTS The effect of prebiotics on the proliferation of L. paracasei K56 was determined by spectrophotometry. The results showed that polydextrose (PG), xylooligosaccharide (XOS), and galactooligosaccharide (GOS) had a greater potential to be used as substrates for L. paracasei K56 than three other prebiotics (melitose, stachyose, and mannan-oligosaccharide). An in vitro fermentation model based on the feces of ten obese female volunteers was then established. The results revealed that K56_GOS showed a significant increase in GOS degradation rate and short-chain fatty acid (SCFA) content, and a decrease in gas levels, compared with PG, XOS, GOS, K56_PG, and K56_XOS. Changes in these microbial biomarkers, including a significant increase in Bacteroidota, Bifidobacterium, Lactobacillus, Faecalibacterium, and Blautia and a decrease in the Firmicutes/Bacteroidota ratio and Escherichia-Shigella in the K56_GOS group, were associated with increased SCFA content and decreased gas levels. CONCLUSION This study demonstrates the effect of the synbiotic combination of L. paracasei K56 and GOS on obese individuals and indicates its potential therapeutic role in obesity treatment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Wen Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd, Hohhot, China
| | - Jingjing He
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Jian He
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd, Hohhot, China
| | - Shaoqi Shi
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Meiwen Sun
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Xiaokang Niu
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Zhaozhong Zeng
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| | - Yuyang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongxiang Zhang
- Hebei Engineering Research Center of Animal Product, Sanhe, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yixuan Li
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Sufang Duan
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| | - Wei-Lian Hung
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd, Hohhot, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
- Research Center for Probiotics, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Cardoso BB, Amorim C, Franco-Duarte R, Alves JI, Barbosa SG, Silvério SC, Rodrigues LR. Epilactose as a Promising Butyrate-Promoter Prebiotic via Microbiota Modulation. Life (Basel) 2024; 14:643. [PMID: 38792663 PMCID: PMC11123345 DOI: 10.3390/life14050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Epilactose is a disaccharide composed of galactose and mannose, and it is currently considered an "under development" prebiotic. In this study, we described the prebiotic potential of epilactose by in vitro fermentation using human fecal inocula from individuals following a Mediterranean diet (DM) or a Vegan diet (DV). The prebiotic effect of epilactose was also compared with lactulose and raffinose, and interesting correlations were established between metabolites and microbiota modulation. The production of several metabolites (lactate, short-chain fatty acids, and gases) confirmed the prebiotic properties of epilactose. For both donors, the microbiota analysis showed that epilactose significantly stimulated the butyrate-producing bacteria, suggesting that its prebiotic effect could be independent of the donor diet. Butyrate is one of the current golden metabolites due to its benefits for the gut and systemic health. In the presence of epilactose, the production of butyrate was 70- and 63-fold higher for the DM donor, when compared to lactulose and raffinose, respectively. For the DV donor, an increase of 29- and 89-fold in the butyrate production was obtained when compared to lactulose and raffinose, respectively. In conclusion, this study suggests that epilactose holds potential functional properties for human health, especially towards the modulation of butyrate-producing strains.
Collapse
Affiliation(s)
- Beatriz B. Cardoso
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
| | - Cláudia Amorim
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Joana I. Alves
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Sónia G. Barbosa
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Sara C. Silvério
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Lígia R. Rodrigues
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Zhao S, Lau R, Chen MH. Influence of chain length on the colonic fermentation of xylooligosaccharides. Carbohydr Polym 2024; 331:121869. [PMID: 38388037 DOI: 10.1016/j.carbpol.2024.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Xylooligosaccharides (XOS) have been employed as prebiotics containing oligomers of varying sizes or molecular ratios. XOS with a low degree of polymerization (DP) has been demonstrated to have high prebiotic potential. However, there is limited information regarding the specific chain length of XOS required to elicit distinct responses in the gut microbiota. In this study, we aimed to explore whether variations in XOS DP could alter the fate of colonic fermentation. Five XOS fractions (BWXFs) with DP ranges of >40, 20-40, 10-20, 5-10, and 2-4 were prepared by beechwood xylan autohydrolysis and tested on human gut microbiota. Extracellular XOS degradation was observed for molecules with a DP exceeding 5. BWXF treatments altered the microbial community structures, and substrate size-dependent effects on the microbial composition and metabolic outputs were observed. Bacteroidaceae were specifically enriched by xylan. Lachnospiraceae were particularly stimulated by XOS with a DP of 20-40 and 2-4. Bifidobacteriaceae were notably enriched by XOS with a DP of 5-20. High butyrate yields were obtained from cultures containing long-chain BWXFs. Microbiota responses differed with XOS DP composition changes, and microbial competition with XOS with a DP of 2-4 requires further exploration.
Collapse
Affiliation(s)
- Sainan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore.
| | - Raymond Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore.
| | - Ming-Hsu Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore; Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
4
|
Rahman MN, Barua N, Tin MC, Dharmaratne P, Wong SH, Ip M. The use of probiotics and prebiotics in decolonizing pathogenic bacteria from the gut; a systematic review and meta-analysis of clinical outcomes. Gut Microbes 2024; 16:2356279. [PMID: 38778521 PMCID: PMC11123511 DOI: 10.1080/19490976.2024.2356279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Repeated exposure to antibiotics and changes in the diet and environment shift the gut microbial diversity and composition, making the host susceptible to pathogenic infection. The emergence and ongoing spread of AMR pathogens is a challenging public health issue. Recent evidence showed that probiotics and prebiotics may play a role in decolonizing drug-resistant pathogens by enhancing the colonization resistance in the gut. This review aims to analyze available evidence from human-controlled trials to determine the effect size of probiotic interventions in decolonizing AMR pathogenic bacteria from the gut. We further studied the effects of prebiotics in human and animal studies. PubMed, Embase, Web of Science, Scopus, and CINAHL were used to collect articles. The random-effects model meta-analysis was used to pool the data. GRADE Pro and Cochrane collaboration tools were used to assess the bias and quality of evidence. Out of 1395 citations, 29 RCTs were eligible, involving 2871 subjects who underwent either probiotics or placebo treatment to decolonize AMR pathogens. The persistence of pathogenic bacteria after treatment was 22%(probiotics) and 30.8%(placebo). The pooled odds ratio was 0.59(95% CI:0.43-0.81), favoring probiotics with moderate certainty (p = 0.0001) and low heterogeneity (I2 = 49.2%, p = 0.0001). The funnel plot showed no asymmetry in the study distribution (Kendall'sTau = -1.06, p = 0.445). In subgroup, C. difficile showed the highest decolonization (82.4%) in probiotics group. Lactobacillus-based probiotics and Saccharomyces boulardii decolonize 71% and 77% of pathogens effectively. The types of probiotics (p < 0.018) and pathogens (p < 0.02) significantly moderate the outcome of decolonization, whereas the dosages and regions of the studies were insignificant (p < 0.05). Prebiotics reduced the pathogens from 30% to 80% of initial challenges. Moderate certainty of evidence suggests that probiotics and prebiotics may decolonize pathogens through modulation of gut diversity. However, more clinical outcomes are required on particular strains to confirm the decolonization of the pathogens. Protocol registration: PROSPERO (ID = CRD42021276045).
Collapse
Affiliation(s)
- Md Nannur Rahman
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
| | - Martha C.F. Tin
- Faculty of Medical Sciences, University College of London, London, UK
| | - Priyanga Dharmaratne
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
| | - Sunny H. Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Centre for Gut Microbiota, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
| |
Collapse
|
5
|
Ji J, Jin W, Liu S, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm (Beijing) 2023; 4:e420. [PMID: 37929014 PMCID: PMC10625129 DOI: 10.1002/mco2.420] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
The gut microbiota and its homeostasis play a crucial role in human health. However, for some diseases related to the gut microbiota, current traditional medicines can only relieve symptoms, and it is difficult to solve the root causes or even cause side effects like disturbances in the gut microbiota. Increasing clinical studies and evidences have demonstrated that probiotics, prebiotics, and postbiotics can prevent and treat various diseases, but currently they can only be used as dietary supplements rather than medicines, which restricts the application of probiotics in the field of medicine. Here, this review analyzes the importance of gut microbiota in human health and the current problems of traditional medicines, and systematically summarizes the effectiveness and mechanisms of probiotics, prebiotics, and postbiotics in maintaining health and treating diseases based on animal models and clinical trials. And based on current research outcomes and development trends in this field, the challenges and prospects of their clinical application in maintaining health, alleviating and treating diseases are analyzed. It is hoped to promote the application of probiotics, prebiotics, and postbiotics in disease treatment and open up new frontiers in probiotic research.
Collapse
Affiliation(s)
- Jing Ji
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| | - Weilin Jin
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityThe First Clinical Medical College of Lanzhou UniversityLanzhouGansuChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Zuoyi Jiao
- Cuiying Biomedical Research CenterThe Second Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
6
|
Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W. Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Bacillus coagulans BACO-17 Alone or in Combination with Galacto-Oligosaccharide Ameliorates Salmonella-Induced Diarrhea and Intestinal Inflammation. Processes (Basel) 2022. [DOI: 10.3390/pr10102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a diarrhea model was established by exposing rats to appropriate antibiotics and Salmonella. After an in vitro screening of prebiotics, fructo-oligosaccharide and galacto-oligosaccharide (GOS) were selected; their synbiotic potential and ability to ameliorate diarrhea symptoms and intestinal inflammation with Bacillus coagulans BACO-17 were evaluated in vivo. After a 27-day feeding experiment including antibiotic intervention and Salmonella infection, it was found that using B. coagulans BACO-17 alone and in combination with GOS as a synbiotic could render a better recovery by lowering diarrhea indexes by 26.9% and 18.7%, respectively. Compared with the negative control, the administration of this synbiotic mixture resulted in the most significant increase in fecal concentrations of total short-chain fatty acids (about 2-fold higher), with a promising improvement in disrupted gut microbial balance. It was worth noting that the administration of B. coagulans BACO-17 alone or in combination with GOS effectively reduced intestinal inflammation (27–31%) and mucosal necrosis (82%) over the negative control. These results suggested that B. coagulans BACO-17 and GOS could be exploited as a promising synbiotic mixture to relieve intestinal inflammatory diseases and improve gut health.
Collapse
|
8
|
Victoria Gautério G, Amorim C, Silvério SC, Cardoso BB, Ballesteros LF, Alves JI, Alcina Pereira M, Silva SP, Coelho E, Coimbra MA, Juliano Kalil S, Rodrigues LR. Hydrolysates containing xylooligosaccharides produced by different strategies: Structural characterization, antioxidant and prebiotic activities. Food Chem 2022; 391:133231. [PMID: 35613528 DOI: 10.1016/j.foodchem.2022.133231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 12/31/2022]
Abstract
This study explores the structural characterization, antioxidant and prebiotic activities of hydrolysates containing xylooligosaccharides (XOS) produced by different strategies: direct fermentation of beechwood xylan (FermBX) and enzymatic treatment of beechwood (EnzBX) and rice husk (EnzRH) xylans. EnzBX and EnzRH showed XOS with a backbone of (1 → 4)-linked-xylopyranosyl residues and branches of arabinose, galactose, and uronic acids. FermBX presented the highest content of total phenolic compounds (14 mg GAE/g) and flavonoids (0.6 mg QE/g), which may contribute to its antioxidant capacity -39.1 μmol TE/g (DPPH), 45.7 μmol TE/g (ABTS), and 79.9 μmol Fe II/g (FRAP). The fermentation of hydrolysates decreased the abundance of microorganisms associated with intestinal diseases from Eubacteriales, Desulfovibrionales and Methanobacteriales orders, while stimulating the growth of organisms belonging to Bacteroides, Megamonas and Limosilactobacillus genera. The production of short-chain fatty acids, ammonia, and CO2 suggested the prebiotic potential. In conclusion, hydrolysates without previous purification and obtained from non-chemical approaches demonstrated promising biological activities for further food applications.
Collapse
Affiliation(s)
| | - Cláudia Amorim
- CEB-Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara C Silvério
- CEB-Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Beatriz B Cardoso
- CEB-Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Lina F Ballesteros
- CEB-Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana I Alves
- CEB-Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Alcina Pereira
- CEB-Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Soraia P Silva
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Elisabete Coelho
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Juliano Kalil
- School of Chemistry and Food, Universidade Federal do Rio Grande, 96203-900 Rio Grande, Brazil
| | - Lígia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Impact of orange juice containing potentially prebiotic ingredients on human gut microbiota composition and its metabolites. Food Chem 2022; 405:134706. [DOI: 10.1016/j.foodchem.2022.134706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
10
|
Ríos-Ríos KL, Rémond C, Dejonghe W, Van Roy S, Vangeel S, Van Hecke W. Production of tailored xylo-oligosaccharides from beechwood xylan by different enzyme membrane reactors and evaluation of their prebiotic activity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sun M, Li D, Hua M, Miao X, Su Y, Chi Y, Li Y, Sun R, Niu H, Wang J. Black bean husk and black rice anthocyanin extracts modulated gut microbiota and serum metabolites for improvement in type 2 diabetic rats. Food Funct 2022; 13:7377-7391. [PMID: 35730792 DOI: 10.1039/d2fo01165d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black rice and black bean have not yet been fully investigated as healthy foods for their therapeutic effects on type 2 diabetes mellitus (T2DM). In this study, we aimed to evaluate the antidiabetic effects of black rice, black bean husk anthocyanin extracts, and their combination on glycolipid metabolism, gut microbiota, and serum metabolites in T2DM rats. Black bean husk and black rice anthocyanin extracts were administered to T2DM rats by gavage for 4 weeks. The results showed that black rice and black bean husk anthocyanin extracts significantly improved blood glucose, insulin resistance, serum oxidative stress state, lipid metabolism and inflammatory cytokines levels in rats, and alleviated liver damage. Black rice and black bean husk anthocyanin extracts increased the abundance of short-chain fatty acid (SCFA) producing bacteria Akkermansia spp., Phascolarctobacterium spp., Bacteroides spp., and Coprococcus spp., changed the gut microbiota structure; activated AMPK, PI3K, and AKT; inhibited HMGCR, G6pase and PEPCK expression; and inhibited hepatic gluconeogenesis. Moreover, by adjusting the levels of urea, deoxycytidine, L-citrulline, pseudouridine, and other serum metabolites in T2DM rats, the arginine biosynthesis and pyrimidine metabolism pathways were downregulated. The above results indicated that black rice and black bean husk anthocyanin extracts had a significant impact on the development of T2DM.
Collapse
Affiliation(s)
- Mubai Sun
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Da Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Mei Hua
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Xinyu Miao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Ying Su
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Yanping Chi
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Yueqiao Li
- Department of International Cooperation, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China
| | - Ruiyue Sun
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji, 133000, Jilin, China
| | - Honghong Niu
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Jinghui Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| |
Collapse
|
12
|
Braga A, Gomes D, Amorim C, Silvério SC, Alves J, Rainha J, Cardoso BB, Rodrigues JL, Rodrigues LR. One-step production of a novel prebiotic mixture using Zymomonas mobilis ZM4. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Gautério GV, Hübner T, Ribeiro TDR, Ziotti APM, Kalil SJ. Xylooligosaccharide Production with Low Xylose Release Using Crude Xylanase from Aureobasidium pullulans: Effect of the Enzymatic Hydrolysis Parameters. Appl Biochem Biotechnol 2022; 194:862-881. [PMID: 34550500 DOI: 10.1007/s12010-021-03658-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
Xylooligosaccharides (XOS) are non-digestible and fermentable oligomers that stand out for their efficient production by enzymatic hydrolysis and beneficial effects on human health. This study aimed to investigate the influence of the main reaction parameters of the beechwood xylan hydrolysis using crude xylanase from Aureobasidium pullulans CCT 1261, thus achieving the maximum XOS production. The effects of temperature (40 to 50 °C), reaction time (12 to 48 h), type of agitation, substrate concentration (1 to 6%, w/v), xylanase loading (100 to 300 U/g xylan), and pH (4.0 to 6.0) on the XOS production were fully evaluated. The most suitable conditions for XOS production included orbital shaking of 180 rpm, 40 °C, and 24 h of reaction. High contents of total XOS (10.1 mg/mL) and XOS with degree of polymerization (DP) of 2-3 (9.7 mg/mL), besides to a high percentage of XOS (99.1%), were obtained at 6% (w/v) of beechwood xylan, xylanase loading of 260 U/g xylan, and pH 6.0. The establishment of the best hydrolysis conditions allowed increasing both the content of total XOS 1.5-fold and the percentage of XOS by 9.4%, when compared to the initial production (6.7 mg/mL and 89.7%, respectively). Thus, this study established an efficient enzymatic hydrolysis process that results in a hydrolysate containing XOS with potential prebiotic character (i.e., rich in XOS with DP 2-3) and low xylose amounts.
Collapse
Affiliation(s)
| | - Tamires Hübner
- Federal University of Rio Grande, School of Chemistry and Food, Rio Grande, 96203-900, Brazil
| | - Tairine da Rosa Ribeiro
- Federal University of Rio Grande, School of Chemistry and Food, Rio Grande, 96203-900, Brazil
| | | | - Susana Juliano Kalil
- Federal University of Rio Grande, School of Chemistry and Food, Rio Grande, 96203-900, Brazil
| |
Collapse
|
14
|
Recent advances in the enzymatic production and applications of xylooligosaccharides. World J Microbiol Biotechnol 2021; 37:169. [PMID: 34487266 DOI: 10.1007/s11274-021-03139-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
The majority of lignocellulosic biomass on the planet originates from plant cell walls, which are complex structures build up mainly by cellulose, hemicellulose and lignin. The largest part of hemicellulose, xylan, is a polymer with a β-(1→4)-linked xylose residues backbone decorated with α-D-glucopyranosyl uronic acids and/or L-arabinofuranose residues. Xylan is the second most abundant biopolymer in nature, which can be sustainably and efficiently degraded into decorated and undecorated xylooligosaccharides (XOS) using combinations of thermochemical pretreatments and enzymatic hydrolyses, that have broad applications in the food, feed, pharmaceutical and cosmetic industries. Endo-xylanases from different complex carbohydrate-active enzyme (CAZyme) families can be used to cleave the backbone of arabino(glucurono)xylans and xylooligosaccharides and degrade them into short XOS. It has been shown that XOS with a low degree of polymerization have enhanced prebiotic effects conferring health benefits to humans and animals. In this review we describe recent advances in the enzymatic production of XOS from lignocellulosic biomass arabino- and glucuronoxylans and their applications as food and feed additives and health-promoting ingredients. Comparative advantages of xylanases from different CAZy families in XOS production are discussed and potential health benefits of different XOS are presented.
Collapse
|
15
|
Current status of xylooligosaccharides: Production, characterization, health benefits and food application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Designing a functional rice muffin formulated with prebiotic oligosaccharides and sugar reduction. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Novel and emerging prebiotics: Advances and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:41-95. [PMID: 33745516 DOI: 10.1016/bs.afnr.2020.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumers are conscientiously changing their eating preferences toward healthier options, such as functional foods enriched with pre- and probiotics. Prebiotics are attractive bioactive compounds with multidimensional beneficial action on both human and animal health, namely on the gastrointestinal tract, cardiometabolism, bones or mental health. Conventionally, prebiotics are non-digestible carbohydrates which generally present favorable organoleptic properties, temperature and acidic stability, and are considered interesting food ingredients. However, according to the current definition of prebiotics, application categories other than food are accepted, as well as non-carbohydrate substrates and bioactivity at extra-intestinal sites. Regulatory issues are considered a major concern for prebiotics since a clear understanding and application of these compounds among the consumers, regulators, scientists, suppliers or manufacturers, health-care providers and standards or recommendation-setting organizations are of utmost importance. Prebiotics can be divided in several categories according to their development and regulatory status. Inulin, galactooligosaccharides, fructooligosaccharides and lactulose are generally classified as well established prebiotics. Xylooligosaccharides, isomaltooligosaccharides, chitooligosaccharides and lactosucrose are classified as "emerging" prebiotics, while raffinose, neoagaro-oligosaccharides and epilactose are "under development." Other substances, such as human milk oligosaccharides, polyphenols, polyunsaturated fatty acids, proteins, protein hydrolysates and peptides are considered "new candidates." This chapter will encompass actual information about the non-established prebiotics, mainly their physicochemical properties, market, legislation, biological activity and possible applications. Generally, there is a lack of clear demonstrations about the effective health benefits associated with all the non-established prebiotics. Overcoming this limitation will undoubtedly increase the demand for these compounds and their market size will follow the consumer's trend.
Collapse
|
18
|
Lee HB, Son SU, Lee JE, Lee SH, Kang CH, Kim YS, Shin KS, Park HY. Characterization, prebiotic and immune-enhancing activities of rhamnogalacturonan-I-rich polysaccharide fraction from molokhia leaves. Int J Biol Macromol 2021; 175:443-450. [PMID: 33556396 DOI: 10.1016/j.ijbiomac.2021.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 01/23/2023]
Abstract
Plant-derived polysaccharides possess potential health benefits that improve intestinal health and the immune system. Molokhia leaves have a large amount of mucilage polysaccharide; in the present study, crude polysaccharide extract was prepared from molokhia leaves. The molecular weight of molokhia leaf polysaccharide fraction (MPF) was estimated to be 51.2 × 103 Da. Polysaccharide was methylated and the structure of MPF was mainly composed of rhamnogalacturonan-I structure with side chains, such as galactans and linear glucan (starch), as shown by GC-MS analysis. To study the biofunctional effects of MPF, its prebiotic and intestinal immune-enhancing activities were assayed in vitro. MPF exhibited good prebiotic activity, as shown by its high prebiotic scores, and increased contents of total short-chain fatty acids on five probiotic strains. In addition, MPF showed immune-enhancing activity on Peyer's patches, as revealed by the high bone marrow cell proliferating activity and production of immunoglobulin A and cytokines. These results demonstrate that MPF may be a potential beneficial prebiotic and intestinal immune-enhancer, which may have wide implications in the food industry.
Collapse
Affiliation(s)
- Hye-Bin Lee
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Gyeonggi 16227, Republic of Korea
| | - Jang-Eun Lee
- Research Division of Strategic Food Technology, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Sang-Hoon Lee
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Chang-Ho Kang
- MEDIOGEN Co. Ltd., Chungcheongbuk-do 27159, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Gyeonggi 16227, Republic of Korea.
| | - Ho-Young Park
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
19
|
Skariyachan S, Khangwal I, Niranjan V, Kango N, Shukla P. Deciphering effectual binding potential of xylo-substrates towards xylose isomerase and xylokinase through molecular docking and molecular dynamic simulation. J Biomol Struct Dyn 2020; 39:3948-3957. [PMID: 32508225 DOI: 10.1080/07391102.2020.1772882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xylooligosaccharides (XOS) such as xylobiose and xylotriose are prebiotics with important functions and relevance and the study of interaction mechanism between these substrate and their respective enzymes has scope and applications. Thus, the present study aimed to decipher the interaction mechanisms of xylose isomerase (XylA) and xylokinase (XylB) towards their xylo-substrates namely xylobiose and xylotriose by computational modeling and molecular dynamic simulation studies. The three-dimensional structures of XylA and XylB, not available in their native forms, were predicted, energy minimized and validated by various computational biology tools and software. The binding mechanisms of xylobiose and xylotriose towards XylA and XylB were modeled by molecular docking and the stability of the docked complexes was confirmed by molecular dynamic (MD) simulation. The current study suggested that the theoretical models of XylA and XylB possessed good stereo-chemical validity, structural stabilities and minimum energy conformers. The molecular docking studied showed that xylotriose showed better binding interactions to XylA than xylobiose and xylobiose showed better binding interaction to XylB than xylotriose with ideal root mean square deviation (RMS), minimum binding energy (kcal/mol), hydrogen bonding and weak interactions. The MD simulation confirmed the stabilities of the docked complexes predicted by docking studies. The study suggested that interactions between the probiotics and prebiotics and provides the novel insights in exploring synbiotics as functional foods towards their futuristic applications. [Formula: see text]HighlightsThis study deciphers the interactions of xylosubstrates to XylA and XylB.The XylA and XylB possessed ideal structural stability and stereochemistryXylotriose and Xylobiose showed significant interactionsThe interactions of Xylotriose-XylA and Xylobiose-XylB were found stable in MD studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College Rajapuram, Kasaragod, India
| | - Ishu Khangwal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Vidya Niranjan
- Department of Biotechnology, R.V. College of Engineering, Bangalore , Karnatka, India
| | - Naveen Kango
- Enzyme Technology and Molecular Catalysis Laboratory, Department of Microbiology, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
20
|
Li C, Niu Z, Zou M, Liu S, Wang M, Gu X, Lu H, Tian H, Jha R. Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms. J Dairy Sci 2020; 103:5816-5829. [PMID: 32418689 DOI: 10.3168/jds.2019-18003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Fermented milk is an effective carrier for probiotics, the consumption of which improves host health. The beneficial effects of probiotics, prebiotics, and synbiotics on gut dysbiosis have been reported previously. However, the way in which specific probiotics, prebiotics, and synbiotics regulate intestinal microbes remains unclear. Therefore, the probiotics Lactobacillus rhamnosus AS 1.2466 and Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 and the prebiotics xylooligosaccharide and red ginseng extracts were fed to mice to determine their effects on the intestinal microbiota. Then, mice were administered xylooligosaccharide and L. rhamnosus (synthesis) by gavage, and the number of L. rhamnosus was determined in the intestine at different times. The results show that probiotics and prebiotics can quickly reduce the Firmicutes/Bacteroidetes ratio, inhibit harmful bacteria (such as Klebsiella and Escherichia coli), and accelerate the recovery of beneficial intestinal microorganisms (such as Lactobacillus). In a complex intestinal microecology, different probiotics and prebiotics have different effects on specific intestinal microorganisms that cannot be recovered in the short term. In addition, after 20 d of intragastric xylooligosaccharide addition at 0.12 g/kg of body weight, L. rhamnosus colonization in the mouse ileum was 7.48 log cfu/mL, which was higher than in the low-dose group, prolonging colonization time and increasing the number of probiotics in the intestine. Therefore, this study demonstrated that probiotics and prebiotics can promote the balance of intestinal microbiota by regulating specific microbes in the intestine, and the effects of a suitable combination of synbiotics are beneficial, laying the foundation for the development of new dairy products rich in synbiotics.
Collapse
Affiliation(s)
- Chen Li
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Zhihua Niu
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Meijuan Zou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Suyue Liu
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co. Ltd., Baoding, Hebei, 071000, China
| | - Xinxi Gu
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Haiqiang Lu
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071000, China; National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei, 071000, China.
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu 96822.
| |
Collapse
|
21
|
Amorim C, Silvério SC, Cardoso BB, Alves JI, Pereira MA, Rodrigues LR. In vitro fermentation of raffinose to unravel its potential as prebiotic ingredient. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|