1
|
Trencsényi G, Halmos G, Képes Z. Radiolabeled NGR-Based Heterodimers for Angiogenesis Imaging: A Review of Preclinical Studies. Cancers (Basel) 2023; 15:4459. [PMID: 37760428 PMCID: PMC10526435 DOI: 10.3390/cancers15184459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Since angiogenesis/neoangiogenesis has a major role in tumor development, progression and metastatic spread, the establishment of angiogenesis-targeting imaging and therapeutic vectors is of utmost significance. Aminopeptidase N (APN/CD13) is a pivotal biomarker of angiogenic processes abundantly expressed on the cell surface of active vascular endothelial and various neoplastic cells, constituting a valuable target for cancer diagnostics and therapy. Since the asparagine-glycine-arginine (NGR) sequence has been shown to colocalize with APN/CD13, the research interest in NGR-peptide-mediated vascular targeting is steadily growing. Earlier preclinical experiments have already demonstrated the imaging and therapeutic feasibility of NGR-based probes labeled with different positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radionuclides, including Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re) or Bismuth-213 (213Bi). To improve the tumor binding affinity and the retention time of single-receptor targeting peptides, NGR motifs containing heterodimers have been introduced to identify multi-receptor overexpressing malignancies. Preclinical studies with various tumor-bearing experimental animals provide useful tools for the investigation of the in vivo imaging behavior of NGR-based heterobivalent ligands. Herein, we review the reported preclinical achievements on NGR heterodimers that could be highly relevant for the development of further target-specific multivalent compounds in diagnostic and therapeutic settings.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| |
Collapse
|
2
|
Li X, Fu H, Wang J, Liu W, Deng H, Zhao P, Liao W, Yang Y, Wei H, Yang X, Chen Y. Multimodality labeling of NGR-functionalized hyaluronan for tumor targeting and radiotherapy. Eur J Pharm Sci 2021; 161:105775. [PMID: 33640501 DOI: 10.1016/j.ejps.2021.105775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Hyaluronan (HA) is a negatively charged linear polysaccharide that can interact with cluster determinant 44 (CD44) overexpressed cancers. However, HA can also bind to excess substrates in the human body leading to the lower specificity of tumor targeting. Conjugation of other targeting group to HA could enhance the uptake by cancer cell comparing to that of native HA. In this study, we develop the multi-functionalized HA (177Lu-DOTA/Alexa647-HA100-N) for malignant tumor targeting. An asparagine-glycine-arginine (NGR) based peptide was selected for HA functionalization. The peptide is known to target CD13 receptor that is overexpressed in malignant tumors with abundant blood vessels, such as lung cancer. Furthermore, the fluorescent probe Alexa Fluor 647 for ex vivo/in vivo tracking and the radionuclide 177Lu for radioactive therapy were both labeled on the material. The functionalized HA could be bound by lung cancer cells and breast cancer cells. In vivo fluorescent imaging showed that the material could accumulate in the tumor site for more than 96 h. The 177Lu labeling of functionalized HA was stable for more 48 h at physiological conditions. The accumulation of 177Lu-DOTA/Alexa647-HA100-N in the tumor of lung cancer (NCI-H292) bearing mice was 1.91±0.97%ID/g, and it was about 17 times higher than the value in blood. Conclusion: The multimodality labeled functional HA was successfully prepared and could be fluorescent trackable ex vivo and in vivo. It showed high potential to be used for malignant cancer radiotherapy for its specific targeting property to tumors and radiotoxicity from the labeled 177Lu radionuclide.
Collapse
Affiliation(s)
- Xiangyu Li
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China
| | - Huaxia Fu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China
| | - Jing Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, 215123 Suzhou, China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999 Mianyang, China
| | - Wei Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China
| | - Hao Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China
| | - Peng Zhao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China
| | - Wei Liao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999 Mianyang, China
| | - Yuchuan Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China
| | - Hongyuan Wei
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China.
| | - Xia Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, 215123 Suzhou, China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999 Mianyang, China.
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900 Mianyang, China.
| |
Collapse
|