1
|
Geitel K, Würfel H, Günther W, Heinze T. Synthesis and characterization of nucleophilic polysaccharide carbazates. Carbohydr Polym 2024; 329:121727. [PMID: 38286527 DOI: 10.1016/j.carbpol.2023.121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
A simple synthesis of amino polysaccharides (PS) could be developed. Phenyl carbonates (PC) of xylan, dextran, and cellulose were easily transferred into PS carbazates by conversion with hydrazine hydrate. The degree of substitution could be adjusted by varying the molar ratio of hydrazine to PS repeating unit, enabling the preparation of both pure PS carbazates and derivatives with bifunctional reactivity containing the reactive PC and the amino group of the carbazate moiety. Further functionalization of the derivatives is feasible with carbonyl compounds like aldehydes at the carbazate groups. The reactivity of carbazate groups is shown by the reaction with 4-fluorobenzaldehyde, resulting in the formation of Schiff base conjugates.
Collapse
Affiliation(s)
- Katja Geitel
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Hendryk Würfel
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Wolfgang Günther
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Thomas Heinze
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany.
| |
Collapse
|
2
|
Pelinsari SM, Sarandy MM, Vilela EF, Novaes RD, Schlamb J, Gonçalves RV. Ozone Exposure Controls Oxidative Stress and the Inflammatory Process of Hepatocytes in Murine Models. Antioxidants (Basel) 2024; 13:212. [PMID: 38397810 PMCID: PMC10886373 DOI: 10.3390/antiox13020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Ozone exposure is a promising tool for treating liver damage since it is known to control the release of free radicals and increase the expression of antioxidant enzymes. The objective is to investigate the main intracellular pathways activated after exposure to ozone, considering the dosage of antioxidant enzymes and markers of oxidative stress. (2) Methods: This systematic review was performed based on the PRISMA guidelines and using a structured search in MEDLINE (PubMed), Scopus, and Web of Science. Bias analysis and methodological quality assessments were examined using the SYRCLE Risk of Bias tool. (3) Results: Nineteen studies were selected. The results showed that the exposure to ozone has a protective effect on liver tissue, promoting a decrease in inflammatory markers and a reduction in oxidative stress in liver tissue. In addition, ozone exposure also promoted an increase in antioxidant enzymes. The morphological consequences of controlling these intracellular pathways were reducing the tissue inflammatory process and reducing areas of degeneration and necrosis. (4) Conclusions: Ozone exposure has a beneficial effect on models of liver injury through the decrease in oxidative stress in tissue and inflammatory markers. In addition, it regulates the Nrf2/ARE antioxidant pathway and blocks the NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Silvania Mol Pelinsari
- Departament of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (S.M.P.)
| | - Mariáurea Matias Sarandy
- Departament of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (S.M.P.)
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 28081, USA
| | - Emerson Ferreira Vilela
- Agriculture and Livestock Research Enterprise of Minas Gerais (EPAMIG-Sudeste), Viçosa 36570-000, MG, Brazil
| | - Rômulo Dias Novaes
- Departament of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil;
- Departament of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Jade Schlamb
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 28081, USA
| | - Reggiani Vilela Gonçalves
- Departament of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (S.M.P.)
- Departament of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
3
|
Li Z, Feng X, Luo S, Ding Y, Zhang Z, Shang Y, Lei D, Cai J, Zhao J, Zheng L, Gao M. High drug loading hydrophobic cross-linked dextran microspheres as novel drug delivery systems for the treatment of osteoarthritis. Asian J Pharm Sci 2023; 18:100830. [PMID: 37588991 PMCID: PMC10425896 DOI: 10.1016/j.ajps.2023.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Drug delivery via intra-articular (IA) injection has proved to be effective in osteoarthritis (OA) therapy, limited by the drug efficiency and short retention time of the drug delivery systems (DDSs). Herein, a series of modified cross-linked dextran (Sephadex, S0) was fabricated by respectively grafting with linear alkyl chains, branched alkyl chains or aromatic chain, and acted as DDSs after ibuprofen (Ibu) loading for OA therapy. This DDSs expressed sustained drug release, excellent anti-inflammatory and chondroprotective effects both in IL-1β induced chondrocytes and OA joints. Specifically, the introduction of a longer hydrophobic chain, particularly an aromatic chain, distinctly improved the hydrophobicity of S0, increased Ibu loading efficiency, and further led to significantly improving OA therapeutic effects. Therefore, hydrophobic microspheres with greatly improved drug loading ratio and prolonged degradation rates show great potential to act as DDSs for OA therapy.
Collapse
Affiliation(s)
- Zhimin Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xianjing Feng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Shixing Luo
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi 536000, China
| | - Yanfeng Ding
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhi Zhang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yifeng Shang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Doudou Lei
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Jinhong Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
A high-protein retained PES hemodialysis membrane with tannic acid as a multifunctional modifier. Colloids Surf B Biointerfaces 2022; 220:112921. [DOI: 10.1016/j.colsurfb.2022.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
|
5
|
Hu W, Liu S, Wang Z, Feng X, Gao M, Song F. In Situ Reduced Graphene Oxide and Polyvinyl Alcohol Nanocomposites With Enhanced Multiple Properties. Front Chem 2022; 10:856556. [PMID: 35392418 PMCID: PMC8980314 DOI: 10.3389/fchem.2022.856556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The nanocomposites formed by graphene oxide (GO) and carbazate-modified polyvinyl alcohol (PVA-N) were developed to investigate their multiple properties for wide applications. Their physicochemical characterizations confirmed that the in situ reduced GO (rGO) not only decreased the crystallization but also induced the porous structures inside the nanocomposites. Significantly, it revealed that the comprehensive performance of PVA-N2-2%GO consisted of PVA-N2 with the carbazate degree of substitution (DS) of 7% and the weight ratio (wt%) of 2% GO displayed 79% of tensile elongation and tensile strength of 5.96 N/mm2 (MPa) by tensile testing, glass transition temperature (Tg) of 60.8°C and decomposition temperature (Td) of 303.5°C by TGA and DSC, surface contact angle at 89.4 ± 2.1°, and electrical conductivity of 9.95 × 10−11 S/cm. The abovementioned comprehensive performance was enhanced with the increased amount of in situ rGO, contributed by the high DS of the carbazate group in PVA-N and high amount of GO. The rGO by in situ reduction was the main driving force for enhancing the multiple properties inside the nanocomposites.
Collapse
Affiliation(s)
- Wenwen Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuhan Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhonghai Wang
- Information and Management College, Guangxi Medical University, Nanning, China
| | - Xianjing Feng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Ming Gao, ; Fangming Song,
| | - Fangming Song
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Ming Gao, ; Fangming Song,
| |
Collapse
|
6
|
|
7
|
Dilek O. Current Probes for Imaging Carbonylation in Cellular Systems and Their Relevance to Progression of Diseases. Technol Cancer Res Treat 2022; 21:15330338221137303. [PMID: 36345252 PMCID: PMC9647279 DOI: 10.1177/15330338221137303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress resulted from reactive oxygen or nitrogen species in biological
systems has a significant role in the diagnosis/progression of several human
diseases. Human diseases associated with oxidative stress include Alzheimer's
disease, chronic lung disease, chronic renal failure, cancer, diabetes, and
fibrosis. In oxidative stress conditions, carbonylation process can be described
as one of the most common modifications in biomolecules that takes place in the
presence of carbonyl (C = O) groups which are introduced into molecules by
direct metal-catalyzed oxidation of certain amino acids or indirectly by
reaction with the oxidation of lipids and sugars. At a molecular cellular level,
carbonylation can cause some defective biological consequences or chemical
transformations in cells. During this process, specifically, carbonylated
proteins can be accumulated in cells and trigger to develop some diseases in
human body. The role of the accumulation of carbonylated proteins in the
progression of several diseases has also been reported in the literature, such
as neurodegenerative diseases, diabetes, obesity, aging, and cancer. Early
detection of carbonylation process is, therefore, very critical to monitor these
diseases at an early stage. Finding a suitable biomarker or probe is very
challenging due to the need for multiple criteria: high fluorescence efficiency,
stability, toxicity, and permeability. If they are designed with a good
strategy, these probes are highly effective in cell biology applications and
they can be used as good diagnostic tools for monitoring oxidative
stress-induced carbonylation in relevant diseases. This review highlights the
design and use of recent fluorescent probes for visualization of carbonylation
in cellular systems and the relationship between oxidative stress and carbonyl
species for causing long-term disease complications.
Collapse
Affiliation(s)
- Ozlem Dilek
- University of the District of Columbia, College of Arts and Sciences, Washington, DC, USA
| |
Collapse
|
8
|
Ding Y, Li Z, Hu W, Feng X, Chen Y, Yan G, Wang Y, Zhu B, Yao W, Zheng L, He M, Gao M, Zhao J. Carbazate-modified cross-linked dextran microparticles suppress the progression of osteoarthritis by ROS scavenging. Biomater Sci 2021; 9:6236-6250. [PMID: 34365495 DOI: 10.1039/d1bm00743b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of modified polysaccharide microparticles have been fabricated and their potential application for scavenging reactive oxygen species (ROS) and their derivatives to achieve osteoarthritis (OA) treatment has been explored. These microparticles were cross-linked dextran (Sephadex) with different carbazate substitution ratios determined by the TNBS assay and elemental analysis. It has been demonstrated that they could effectively scavenge carbonylated proteins and ROS including hydroxyl radicals (˙OH), superoxide anions (˙O2-) and H2O2 and their derivatives with high efficiency, improve the viability of H2O2-treated chondrocytes by reducing their ROS levels, as well as lower their inflammatory factors. The above ability of antioxidation and inflammation resistance improved with the increase of carbazate substitution ratio. Significantly, this work provided the proof that modified Sephadex successfully alleviated the deterioration of cartilage and the progression of OA in vivo. The proposed microparticles showed a very promising capability for reducing ROS levels and further treating OA.
Collapse
Affiliation(s)
- Yanfeng Ding
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhimin Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Wenwen Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Xianjing Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Ying Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Guohua Yan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yonglin Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bo Zhu
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wei Yao
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Maolin He
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Ming Gao
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Liboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
9
|
Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|