1
|
Shao Z, Jiang X, Lin Q, Wu S, Zhao S, Sun X, Cheng Y, Fang Y, Li P. Nano‑selenium functionalized chitosan gel beads for Hg(II) removal from apple juice. Int J Biol Macromol 2024; 261:129900. [PMID: 38316329 DOI: 10.1016/j.ijbiomac.2024.129900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The presence of potentially toxic elements and compounds poses threats to the quality and safety of fruit juices. Among these, Hg(II) is considered as one of the most poisonous heavy metals to human health. Traditional chitosan-based and selenide-based adsorbents face challenges such as poor adsorption capacity and inconvenient separation in juice applications. In this study, we prepared nano‑selenium functionalized chitosan gel beads (nanoSe@CBs) and illustrated the synergistic promotions between chitosan and nanoSe in removing Hg(II) from apple juice. The preparation conditions, adsorption behaviors, and adsorption mechanism of nanoSe@CBs were systematically investigated. The results revealed that the adsorption process was primarily controlled by chemical adsorption. At the 0.1 % dosage, the adsorbent exhibited high uptake, and the maximum adsorption capacity from the Langmuir isotherm model could reach 376.5 mg/g at room temperature. The adsorbent maintained high adsorption efficiency (> 90 %) across a wide range of Hg(II) concentrations (0.01 to 10 mg/L) and was unaffected by organic acids present in apple juice. Additionally, nanoSe@CBs showed negligible effects on the quality of apple juice. Overall, nanoSe@CBs open up possibilities to be used as a safe, low-cost and highly-efficient adsorbent for the removal of Hg(II) from juices and other liquid foods.
Collapse
Affiliation(s)
- Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China; Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yunhui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China.
| |
Collapse
|
2
|
Fayezi M, Shiri-Yekta Z, Sepehrian H, Heydari M, Rahghoshay M, Zolghadri S. Adsorption and safe immobilization of Sr ions in modified zeolite matrices. Sci Rep 2023; 13:19087. [PMID: 37925590 PMCID: PMC10625570 DOI: 10.1038/s41598-023-46381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
In the present study, an Iranian natural zeolite (Sabzevar region) was evaluated as a natural adsorbent for the elimination and immobilization of strontium ions from an aqueous solution. For improving the adsorption efficiency of strontium ion, the zeolite surface was modified by the Schiff base ligand of bis (2-hydroxybenzaldehyde)1,2-diaminoethane (H2L). The natural zeolite and zeolite/H2L were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray fluorescence (XRF), BET and scanning electron microscope (SEM). Analysis of the natural zeolite showed that the zeolite is from the type of clinoptilolite and has a crystalline structure with the specific surface area 29.74 m2/g. The results showed that strontium adsorption onto modified zeolite increases compared to unmodified zeolite from 64.5% to 97.2% (at pH = 6). The effective parameters pH, adsorbent dosage, initial concentration of strontium ions, contact time, temperature, and interfering ions, were studied and optimized. The maximum adsorption efficiency was confirmed by modified zeolite and found to be 97.5% after 60 min of equilibrium time at pH 6, 0.05g as adsorbent dosage, and at 25 °C. Adsorption of strontium was confirmed by Langmuir model with maximum adsorption capacity of 10.31 mg/g. Kinetic studies showed that the adsorption of strontium ions on the adsorbent follows pseudo-second-order (PSO) model. Also, the thermodynamics of the adsorption process indicated that the adsorption of strontium on zeolite/H2L is an endothermic and spontaneous process, and the adsorption mechanism is a combination of physical and chemical adsorption. Finally, to manage the secondary waste generated from the adsorption process, strontium ions were immobilized in a zeolite structure. The results showed that the stabilization is well done with the thermal preparation process. After thermal treatment at 25-900 °C, modified zeolite satisfactorily retains strontium during back-exchange tests with NaCl solution. According to the results, the amount of strontium released from the adsorbent phase decreases from 52.6 to 1.6% with increasing heat treatment temperature.
Collapse
Affiliation(s)
- Mahya Fayezi
- Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, P. O. Box: 14515-775, Tehran, Iran
| | - Zahra Shiri-Yekta
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran, Iran.
| | - Hamid Sepehrian
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran, Iran
| | - Mehran Heydari
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran, Iran
| | - Mohammad Rahghoshay
- Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, P. O. Box: 14515-775, Tehran, Iran
| | - Samaneh Zolghadri
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box: 14155-1339, Tehran, Iran
| |
Collapse
|
3
|
Yasunaga Y, Aso Y, Yamada K, Okahisa Y. Preparation of transparent fibroin nanofibril-reinforced chitosan films with high toughness and thermal resistance. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
4
|
Wang D, Zhao H, Xu C, Lin S, Guo Y. Enhancing neuroprotective effect of aminosalicylic acid-grafted chitosan electrospun fibers for spinal cord injury. Mater Today Bio 2023; 18:100529. [PMID: 36686034 PMCID: PMC9850028 DOI: 10.1016/j.mtbio.2022.100529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The hyperinflammation microenvironment after spinal cord injury (SCI) remains a great challenge for neural regeneration. Methylprednisolone has been used to reduce the inflammatory response after SCI, but it is controversial due to side effects associated with off-specific targeting effects. In this study, we synthesized in situ 5-ASA grafted chitosan electrospun fibers (ASA-EF) with excellent injectable and self-healing properties to reprogram nerve cells via displaying biological distribution, gene expression, and functional changes. With the support of ASA-EF, the downregulation of inflammatory cytokines expression and the upregulation of anti-inflammatory and regenerative gene expression were found in vitro studies. Moreover, ASA-EF administration polarized macrophages toward proregenerative phenotypes in the injured lesion, and significantly reduced cavity area. In addition, ASA-EF administration increased myelination and regenerating axons and improved motor function (score of 5 versus 2 for SCI group). These results illustrate that the neuroprotective effect of this artificial nanoplatform will facilitate the clinical treatment of traumatic-related diseases via forming a recycled microenvironment that supports regeneration and functional recovery. These particles may be applied to trauma and potential other inflammatory diseases.
Collapse
Affiliation(s)
- Dahao Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China,Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Haosen Zhao
- Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Chang Xu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sen Lin
- Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China,Corresponding author.
| | - Yue Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China,Key Laboratory of Medical Tissue Engineering, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China,Corresponding author. Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
5
|
Amiryaghoubi N, Abdolahinia ED, Nakhlband A, Aslzad S, Fathi M, Barar J, Omidi Y. Smart chitosan–folate hybrid magnetic nanoparticles for targeted delivery of doxorubicin to osteosarcoma cells. Colloids Surf B Biointerfaces 2022; 220:112911. [DOI: 10.1016/j.colsurfb.2022.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
|
6
|
Zr4+ cross-linked chitosan-thiourea composite for efficient detoxification of Cr(VI) ions in aqueous solution. Carbohydr Polym 2022; 296:119872. [DOI: 10.1016/j.carbpol.2022.119872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
|
7
|
Han S, Zhou X, Xie H, Wang X, Yang L, Wang H, Hao C. Chitosan-based composite microspheres for treatment of hexavalent chromium and EBBR from aqueous solution. CHEMOSPHERE 2022; 305:135486. [PMID: 35764109 DOI: 10.1016/j.chemosphere.2022.135486] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium is widely used in industrial fields, but its pollution has posed a great threat to the environment due to its high toxicity. We created a chitosan-based microsphere biosorbent (CP) by combining polyethyleneimine with chitosan adopting inverse emulsion polymerization method. Under the optimal conditions (pH = 3), the maximum adsorption capacity of composite microspheres can reach 299.89 mg g-1, which is much higher than that of chitosan microspheres (168.91 mg g-1). When the amount of CP is 0.25 g L-1, the removal rate of 50 mg L-1 Cr(VI) and 50 mg L-1 Eriochrome blue-black R (EBBR) can reach 95% and 99%, respectively. The time required for CP to reach adsorption equilibrium (180 min) was significantly shorter than that of chitosan microspheres (540 min), and the adsorption rate was significantly improved. Langmuir isotherm model, pseudo-second-order kinetic model and thermodynamic calculation results penetrated an endothermic spontaneous, monolayer, and chemical adsorption process. Biomass composite microspheres CP has obvious selectivity and the adsorption capacity retention rate of CP was still 71.32% after four adsorption cycles. This work proposed an easily prepared and biomass-based microspheres for the effective removal of Cr(VI) in printing and dyeing wastewater pollution through adsorption.
Collapse
Affiliation(s)
- Shiqi Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xuelei Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Honghao Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Lingze Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
8
|
Mehdi M, Jiang W, Zeng Q, Thebo KH, Kim IS, Khatri Z, Wang H, Hu J, Zhang KQ. Regenerated Silk Nanofibers for Robust and Cyclic Adsorption-Desorption on Anionic Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6376-6386. [PMID: 35561306 DOI: 10.1021/acs.langmuir.2c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, adsorption-based membranes have been widely investigated to remove and separate textile pollutants. However, cyclic adsorption-desorption to reuse a single adsorbent and clear scientific evidence for the adsorption-desorption mechanism remains challenging. Herein, silk nanofibers were used to assess the adsorption potential for the typical anionic dyes from an aqueous medium, and they show great potential toward the removal of acid dyes from the aqueous solution with an adsorption rate of ∼98% in a 1 min interaction. Further, we measured the filtration proficiency of a silk nanofiber membrane in order to propose a continuous mechanism for the removal of acid blue dye, and a complete rejection was observed with a maximum permeability rate of ∼360 ± 5 L·m-2·h-1. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies demonstrate that this fast adsorption occurs due to multiple interactions between the dye molecule and the adsorbent substrate. The as-prepared material also shows remarkable results in desorption. A 50-time cycle exhibits complete adsorption and desorption ability, which not only facilitates high removal aptitude but also produces less solid waste than other conventional adsorbents. Additionally, fluorescent 2-bromo-2-methyl-propionic acid (abbreviated as EtOxPY)-silk nanofibers can facilitate to illustrate a clear adsorption and desorption mechanism. Therefore, the above-prescribed results make electrospun silk nanofibers a suitable choice for removing anionic dyes in real-time applications.
Collapse
Affiliation(s)
- Mujahid Mehdi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wangkai Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Qingping Zeng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences, 2 Wenhua Road, Shenyang 110016, China
| | - Ick-Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano Prefecture 386-8567, Japan
| | - Zeeshan Khatri
- Center of Excellence in Nanotechnology and Materials, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan
| | - Huifen Wang
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Minhang, Shanghai 200240, China
| | - Jianchen Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Duan K, Ling Z, Sun M, Zhi W, Zhang Y, Han S, Xu J, Wang H, Li J. A novel high mechanical and excellent hydrophilic electrospun polyurethane
‐silk‐
bioactive glass nanofiber film for rotator cuff injury repair. J Appl Polym Sci 2022. [DOI: 10.1002/app.51746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kaikai Duan
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Ziao Ling
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Minghui Sun
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Weiliang Zhi
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Yifeng Zhang
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Sheng Han
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai China
| | - Jingli Xu
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Hui Wang
- Green Chemical Engineering Technology Research and Development Center Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai China
| | - Jiusheng Li
- Green Chemical Engineering Technology Research and Development Center Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai China
| |
Collapse
|
10
|
Cationic surface-modified regenerated nanocellulose hydrogel for efficient Cr(VI) remediation. Carbohydr Polym 2022; 278:118930. [PMID: 34973748 DOI: 10.1016/j.carbpol.2021.118930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022]
Abstract
Because nanocellulose has a large specific surface area and abundant hydroxyl functional groups due to its unique nanomorphology, interest increases as an eco-friendly water treatment material. However, the distinctive properties of nanocellulose, which exists in a dispersion state, strongly hamper its usage in practical water treatment processes. Additionally, nanocellulose shows low performance in removing anionic pollutants because of its anionic characteristics. In an effort to address this challenge, regenerated cellulose (RC) hydrogel was fabricated through cellulose's dissolution and regeneration process using an eco-friendly aqueous solvent system. Subsequently, a crosslinking process was carried out to introduce the cationic functional groups to the RC surface PEI coating (P/RC). As a result, the PEI surface cationization process improved the mechanical rigidity of RC and showed an excellent Cr(VI) removal capacity of 578 mg/g. In addition, the prepared P/RC maintained more than 90% removal efficiency even after seven reuses.
Collapse
|
11
|
Ramos‐Hernández LE, Pérez‐Aguilar NV, Ovando‐Medina VM, Oyervides‐Muñoz E, Arcibar‐Orozco JA. Photoinduced adsorption of Cr(
VI
) ions in nano‐zinc oxide and nano‐zinc oxide/polypyrrole composite. J Appl Polym Sci 2022. [DOI: 10.1002/app.52225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Luis E. Ramos‐Hernández
- Maestría en Ciencia y Tecnología Química, Facultad de Ciencias Químicas Universidad Autónoma de Coahuila Saltillo Mexico
| | - Nancy V. Pérez‐Aguilar
- Maestría en Ciencia y Tecnología Química, Facultad de Ciencias Químicas Universidad Autónoma de Coahuila Saltillo Mexico
| | | | - Ernesto Oyervides‐Muñoz
- Maestría en Ciencia y Tecnología Química, Facultad de Ciencias Químicas Universidad Autónoma de Coahuila Saltillo Mexico
| | - Javier A. Arcibar‐Orozco
- Research Department CIATEC A.C. Centro de Innovación Aplicada en Tecnologías Competitivas León Mexico
| |
Collapse
|
12
|
Xue C, Wilson LD. Preparation and characterization of salicylic acid grafted chitosan electrospun fibers. Carbohydr Polym 2022; 275:118751. [PMID: 34742447 DOI: 10.1016/j.carbpol.2021.118751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/15/2021] [Accepted: 10/10/2021] [Indexed: 02/05/2023]
Abstract
Chitosan (chi) and its modified forms as electrospun nanofibers have potential applications in advanced water treatment and biomedicine. Polyethylene oxide (PEO) is an additive commonly used to facilitate the formation of chitosan electrospun fibers because PEO (Mw ≥ 400 kDa) affords chain entanglement that stabilize the electrospinning jet, leading to enhanced formation of chi-based electrospun fibers. Herein, we report on the preparation of chitosan grafted with salicylic acid and its utility to afford improved electrospun fibers with low molecular weight (LMw) PEO (Mw » 100 kDa). A comparison of the interactions between original and grafted chitosan with PEO reveals that stable supramolecular assemblies are established between grafted chitosan and PEO, which provides support that such supramolecular interactions favor formation of chitosan electrospun fibers. Moreover, a porous chitosan electrospun nanofiber was prepared through physical treatment that reveals notably higher (ca. 4-fold) dye uptake than the pristine (unmodified) chitosan electrospun nanofibers.
Collapse
Affiliation(s)
- Chen Xue
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
13
|
Wang X, Shi J, Zhuang J, Chen C, Ouyang K, Xu M, Xu Z. Characterization and evaluation of adsorption potential of chitosan impregnated cellulose nanofiber / multi-walled carbon nanotubes aerogel for copper ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05244f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of aerogel materials with high preparation efficiency, no pollution, and high adsorption efficiency was still an effective solution for water pollution caused by heavy metal ions. This paper...
Collapse
|
14
|
Mahmoud ME, Fekry NA, Abdelfattah AM. Novel supramolecular network of graphene quantum dots-vitamin B9-iron (III)-tannic acid complex for removal of chromium (VI) and malachite green. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Dutta J, Devi N. Preparation, optimization, and characterization of chitosan-sepiolite nanocomposite films for wound healing. Int J Biol Macromol 2021; 186:244-254. [PMID: 34245736 DOI: 10.1016/j.ijbiomac.2021.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
In this study, a series of chitosan-sepiolite (CS-SEP) nanocomposites films were prepared by using a conventional solution casting method. The effect of sepiolite on physicochemical and biological properties of the prepared nanocomposite films was studied by various techniques such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD) to name a few. In WCA measurements, the decrease of contact angle from 78.51° (CS) to 71.29° (CS7SEP3) reaffirms the water holding nature of sepiolite, which enables to create moist environment essentially required for wound healing. Further, addition of sepiolite tremendously increased WVTR, folding endurance, porosity, and blood clotting ability of the prepared nanocomposites. Furthermore, CS-SEP nanocomposite films exhibit better antibacterial activity than that of chitosan against gram positive (B. subtilis) and gram negative bacteria (E. coli). Moreover, the percentage of hemolysis and degradation study indicated that the prepared nanocomposite films were non-hemolytic in nature and decomposed nearly 40% in four weeks. In addition, cytotoxicity assay showed that the prepared nanocomposite film i.e. CS7SEP3 exhibited better cell viability and cell proliferation rate against L929 mouse fibroblast cells as compared to CS and hence, the prepared nanocomposite film can be used as a promising candidate for wound management.
Collapse
Affiliation(s)
- Joydeep Dutta
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India.
| | - Nirmla Devi
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India
| |
Collapse
|
16
|
Preparation of Freeze-Dried Porous Chitosan Microspheres for the Removal of Hexavalent Chromium. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Novel porous chitosan microspheres were successfully produced by a freezing–lyophilization drying method in this study and were then used as adsorbents to remove a toxic iron metal, hexavalent chromium (Cr(VI)). The effects of the concentration of the chitosan solution, syringe diameter, and freezing time on the morphologies of porous chitosan microspheres were characterized. The metal ion adsorption for Cr(VI) was also studied. Results showed that freezing chitosan hydrogel beads at a temperature of −20 °C and subsequently lyophilizing the frozen structure allowed to easily obtain the porous chitosan microspheres with rough surfaces and large pores, which were more suitable for adsorption materials to remove metal ions. A chitosan solution concentration of 3% (w/v) and a syringe diameter of 500 μm allowed the porous microspheres to have a good sphericity, thinner pore walls, and small pore sizes. The adsorption capacity of porous chitosan microspheres for Cr(VI) increased with the increase in freezing time. The pH of the initial adsorption solution ranged from 3.0 to 5.0 and was beneficial to the maximum adsorption efficiency for Cr(VI). The porous chitosan microspheres prepared with 3% (w/v) chitosan solution at −20 °C for a freezing time of 72 h had a higher adsorption capacity of 945.2 mg/g for Cr(VI) than the those at 24-h and 48-h freezing times. Kinetic study showed that the adsorption process could be described by a pseudo-second order (PSO) kinetic model. The equilibrium adsorption rate constant and the adsorption amount at equilibrium for the porous chitosan microspheres increased with an increase in the freezing time, and those for the porous microspheres prepared with 3% chitosan solution at −20 °C for a 72-h freezing time were 1.83 × 10−5 g mg−1 min−1 and 1070.5 mg g−1, respectively. The porous chitosan microspheres have good potential to facilitate the separation and recycling of expensive and toxic Cr(VI) from wastewater.
Collapse
|
17
|
Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115062] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Shen Y, Guo JZ, Bai LQ, Chen XQ, Li B. High effective adsorption of Pb(II) from solution by biochar derived from torrefaction of ammonium persulphate pretreated bamboo. BIORESOURCE TECHNOLOGY 2021; 323:124616. [PMID: 33387711 DOI: 10.1016/j.biortech.2020.124616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Biochar was prepared by torrefaction of ammonium persulphate pretreated bamboo (labeled as APBC) and applied into elimination of Pb(II) from water solutions. APBC was characterized by N2 adsorption-desorption isotherms, elemental and Zeta potential analyses, SEM-EDS, XPS, and FTIR. Abundant N- and O-containing groups appeared atop APBC. Batch sorption assays revealed that APBC had high affinity and strong sorption ability towards Pb(II). The high Pb(II) adsorbing ability was attributed to the high contents of N- and O-containing functional groups of APBC. The adsorption mechanism mainly occurred by inner-sphere surface complexation. Hence, torrefaction of ammonium persulphate pretreated bamboo is a promising strategy for producing efficient biochar that is applicable for industrial wastewater treatment.
Collapse
Affiliation(s)
- Yan Shen
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Li-Qun Bai
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Xiao-Qin Chen
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
19
|
Shang Y, Zhu G, Yan D, Liu Q, Gao T, Zhou G. Tannin cross-linked polyethyleneimine for highly efficient removal of hexavalent chromium. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha K. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym 2021; 251:117000. [DOI: 10.1016/j.carbpol.2020.117000] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
|
21
|
|
22
|
Abdel-Mohsen AM, Frankova J, Abdel-Rahman RM, Salem AA, Sahffie NM, Kubena I, Jancar J. Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. II. Multifunctional properties to promote cutaneous wound healing. Int J Pharm 2020; 582:119349. [PMID: 32315748 DOI: 10.1016/j.ijpharm.2020.119349] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
This study presents an innovative multifunctional system in fabricating new functional wound dressing (FWD) products that could be used for skin regeneration, especially in cases of infected chronic wounds and ulcers. The innovation is based on the extraction, characterization, and application of collagen (CO)/chitosan-glucan complex hollow fibers (CSGC)/aloe vera (AV) as a novel FWS. For the first time, specific hollow fibers were extracted with controlled inner (500-900 nm)/outer (2-3 µm) diameters from mycelium of Schizophyllum commune. Further on, research and evaluation of morphology, hydrolytic stability, and swelling characteristics of CO/CSGC@AV were carried out. The obtained FWS showed high hydrolytic stability with enhanced swelling characteristics compared to native collagen. The hemostatic effect of FWS increased significantly in the presence of CSGC, compared to native CO and displayed excellent biocompatibility which was tested by using normal human dermal fibroblast (NHDF). The FWS showed high antibacterial activity against different types of bacteria (positive/negative grams). From in vivo measurements, the novel FWS increased the percentage of wound closure after one week of treatment. All these results imply that the new CO/CSGC@AV-FWD has the potential for clinical skin regeneration and applying for controlled drug release.
Collapse
Affiliation(s)
- A M Abdel-Mohsen
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 612 00, Czechia; SCITEG, a.s., Brno, Czechia; Pretreatment and Finishing of Cellulosic based Textiles Department, Textile Industries Research Division, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - J Frankova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15 Olomouc, Czechia
| | - Rasha M Abdel-Rahman
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 612 00, Czechia
| | - A A Salem
- Pharmacology Department, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - N M Sahffie
- Pathology Department National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - I Kubena
- Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ 61662 Brno, Czechia
| | - J Jancar
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 612 00, Czechia; SCITEG, a.s., Brno, Czechia; Institute of Materials Chemistry, Facility of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno 612 00, Czechia
| |
Collapse
|