1
|
Lu X, Zhao C, Wang X, Wang J, Du Y, Cui J, Zeng L, Zheng J. Arabinan branches in the RG-I region of citrus pectin aid acid-induced gelation. Carbohydr Polym 2024; 346:122668. [PMID: 39245519 DOI: 10.1016/j.carbpol.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Gelation is a critical property of citrus pectin. However, the roles played by neutral sugar side-chains on acid-induced pectin gelation remain poorly understood. Herein, galactan- or/and arabinan-eliminated pectins (P-G, P-A, and P-AG) were used to investigate the effects of side-chains on gelation. The gel hardness values of citrus pectin, P-G, P-A, and P-AG were 42.6, 39.9, 5.3, and 2.1 g, respectively, suggesting that arabinan contributed more to gelation than galactan. We next found that arabinan branches promoted pectin chain entanglement more effectively than arabinan backbones. Destabilizer addition experiments showed that hydrogen bonding, electrostatic interaction, and hydrophobic interaction were the main forces affecting pectin gel networks and strength, which was further validated by molecular dynamic simulations. The total number of hydrogen bonds between the arabinan branches and galactan/HG (65.7) was significantly higher than that between the arabinan backbones and galactan/HG (39.1), indicating that arabinan branches predominated in terms of such interactions. This study thus elucidated the roles played by neutral-sugar side-chains, especially the arabinan branches of acid-induced pectin gels, in term of enhancing high-methoxyl pectin gelation, and offers novel insights into the structure-gelling relationships of citrus pectin.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueping Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jirong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuyi Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Zhu Z, Wu Y, Zhong Y, Zhang H, Zhong J. Development, characterization and Lactobacillus plantarum encapsulating ability of novel C-phycocyanin-pectin-polyphenol based hydrogels. Food Chem 2024; 447:138918. [PMID: 38484543 DOI: 10.1016/j.foodchem.2024.138918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
In this study, it was found that the enhancement in the viability of Lactobacillus plantarum under gastrointestinal conditions by encapsulating them within novel C-Phycocyanin-pectin based hydrogels (from 5.7 to 7.1 log/CFU). The hardness, the strength and the stability of the hydrogels increased when the protein concentration was increased. In addition, the addition of resveratrol (RES), and tannic acid (TA) could improve the hardness (from 595.4 to 608.3 and 637.0 g) and WHC (from 93.9 to 94.2 and 94.8 %) of the hydrogels. The addition of gallic acid (GA) enhanced the hardness (675.0 g) of the hydrogels, but the WHC (86.2 %) was decreased. During simulated gastrointestinal conditions and refrigerated storage, the addition of TA enhanced the viable bacteria counts (from 6.8 and 8.0 to 7.5 and 8.5 log/CFU) of Lactobacillus plantarum. Furthermore, TA and GA are completely encased by the protein-pectin gel as an amorphous state, while RA is only partially encased.
Collapse
Affiliation(s)
- Ziyi Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Ying Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yejun Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Junzhen Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
3
|
Qu Y, Li X, Chen X, Li J, Yu Z, Shen R. Novel pH-sensitive gellan gum-ε-polylysine hydrogel microspheres for sulforaphene delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39045717 DOI: 10.1002/jsfa.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/01/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND This study aimed to improve the stability and utilization of sulforaphene (SFE) and to enhance the intestinal stability and pH-sensitive release of SFE in the gastrointestinal tract. To achieve this objective, calcium chloride (CaCl2) was used as a crosslinking agent to fabricate novel SFE-loaded gellan gum (GG)-ε-polylysine (ε-PL) pH-sensitive hydrogel microspheres by using the ionic crosslinking technique. RESULTS The molecular docking results of GG, ε-PL, and SFE were good and occurred in the natural state. The loading efficiency (LE) of all samples was above 70%. According to the structural characterization results, GG and ε-PL successfully embedded SFE in a three-dimensional network structure through electrostatic interaction. The swelling characteristics and in vitro release results revealed that the microspheres were pH-sensitive, and SFE was mainly retained inside the hydrogel microsphere in the stomach, and subsequently released in the intestine. The result of cytotoxicity assay showed that the hydrogel microspheres were non-toxic and had an inhibitory effect on human colon cancer Caco-2 cells. CONCLUSION Thus, the hydrogel microspheres could improve SFE stability and utilization and achieve the intestinal targeted delivery of SFE. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Qu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiuxia Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiaoqiao Chen
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhangfu Yu
- Hangzhou Xiaoshan Agriculture Development Co., Ltd, Hangzhou, China
| | - Ronghu Shen
- Hangzhou Xiaoshan Agriculture Development Co., Ltd, Hangzhou, China
| |
Collapse
|
4
|
Li Z, Geng Y, Bu K, Chen Z, Xu K, Zhu C. Construction of a pectin/sodium alginate composite hydrogel delivery system for improving the bioaccessibility of phycocyanin. Int J Biol Macromol 2024; 269:131969. [PMID: 38697419 DOI: 10.1016/j.ijbiomac.2024.131969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
In this study, different concentrations of sodium alginate were compounded with pectin and phycocyanin to co-prepare composite hydrogel spheres (HP-PC-SA 0.2 %, 0.6 %, 1.0 %, 1.4 %) to evaluate the potential of the composite hydrogel spheres for the application as phycocyanin delivery carriers. The hydrogel spheres' physicochemical properties and bioaccessibility were assessed through scanning electron microscopy, textural analysis, drug-carrying properties evaluation, and in vitro and in vivo controlled release analysis in the gastrointestinal environment. Results indicated that higher sodium alginate concentrations led to smaller pore sizes and denser networks on the surface of hydrogel spheres. The textural properties of hydrogel spheres improved, and their water-holding capacity increased from 93.01 % to 97.97 %. The HP-PC-SA (1.0 %) formulation achieved the highest encapsulation rate and drug loading capacity, at 96.87 % and 6.22 %, respectively. Within the gastrointestinal tract, the composite hydrogel's structure significantly enhanced and protected the phycocyanin's digestibility, achieving a bioaccessibility of up to 88.03 %. In conclusion, our findings offer new insights into improving functionality and the effective use of phycocyanin via pectin-based hydrogel spheres.
Collapse
Affiliation(s)
- Zhixin Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Yuxin Geng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Jinan, Shandong Province 250117, PR China
| | - Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Zhengtao Chen
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699, Qingdao Road, Jinan, Shandong Province 250117, PR China.
| | - Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
5
|
Feng Q, Fan B, He YC. Antibacterial, antioxidant, Cr(VI) adsorption and dye adsorption effects of biochar-based silver nanoparticles‑sodium alginate-tannic acid composite gel beads. Int J Biol Macromol 2024; 271:132453. [PMID: 38772472 DOI: 10.1016/j.ijbiomac.2024.132453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Ultrasonic extraction of Osmanthus fragrans was used for reducing Ag+ to prepare AgNPs, which were further loaded on barley distiller's grains shell biochar. By supplementary of sodium alginate and tannic acid, composite gel beads were prepared. The physical properties of biochar-based AgNPs‑sodium alginate-tannic acid composite gel beads (C-Ag/SA/TA) were characterized. SEM, FTIR, and XRD showed that biochar-based AgNPs were compatible with sodium alginate-tannic acid. CAg greatly improved the dissolution, swelling, and expansion of gel beads. Through the analysis by the agar diffusion method, C-Ag/SA/TA gel beads had high antibacterial activity (inhibition zone: 22 mm against Escherichia coli and 20 mm against Staphylococcus aureus). It was observed that C-Ag/SA/TA composite gel beads had high antioxidant capacity and the free radical scavenging rate reached 89.0 %. The dye adsorption performance of gel beads was studied by establishing a kinetic model. The maximum adsorption capacities of C-Ag/SA/TA gel beads for methylene blue and Congo red were 166.57 and 318.06 mg/g, respectively. The removal rate of Cr(VI) reached 96.4 %. These results indicated that the prepared composite gel beads had a high adsorption capacity for dyes and metal ions. Overall, C-Ag/SA/TA composite gel beads were biocompatible and had potential applications in environmental pollution treatment.
Collapse
Affiliation(s)
- Qian Feng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Said NS, Olawuyi IF, Lee WY. Tailoring Pectin-PLA Bilayer Film for Optimal Properties as a Food Pouch Material. Polymers (Basel) 2024; 16:712. [PMID: 38475392 DOI: 10.3390/polym16050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
This study focuses on developing a biodegradable film using a novel hybrid citrus peel pectin. A bilayer approach with PLA was proposed and optimized using Response Surface Methodology (RSM) to complement pectin films' mechanical and barrier property limitations. The optimized film composition (2.90 g PLA and 1.96 g pectin) showed enhanced mechanical strength with a tensile strength (TS) of 7.04 MPa and an elongation at break (EAB) of 462.63%. In addition, it demonstrated lower water vapor (1.45 × 10-10 g/msPa), oxygen (2.79 × 10-7 g/ms) permeability, and solubility (23.53%). Compared to single-layer pectin films, the optimized bilayer film had a 25% increased thickness, significantly improved water barrier (3806 times lower) and oxygen barrier (3.68 times lower) properties, and 22.38 times higher stretchability, attributed to hydrogen bond formation, as confirmed by FTIR analysis. The bilayer film, effectively protected against UV and visible light, could be a barrier against light-induced lipid oxidation. Moreover, it demonstrated superior seal efficiency, ensuring secure sealing in practical applications. The bilayer pouch containing mustard dressing exhibited stable sealing with no leakage after immersion in hot water and ethanol, making it suitable for secure food pouch packaging.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Zhang Z, He YC, Liu Y. Efficient antibacterial and dye adsorption by novel fish scale silver biochar composite gel. Int J Biol Macromol 2023; 248:125804. [PMID: 37453636 DOI: 10.1016/j.ijbiomac.2023.125804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
A silver-loaded carbon-chitosan-polyvinyl alcohol gel (C/CTS/PVA) was designed for suppressing microbial growth and dye adsorption. The antibacterial test results showed that C/CTS/PVA gel had a good antibacterial ability against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The inhibition rate in water was 100 %, and the antibacterial rate remained above 95 % within 35 days after preparation. The tight spatial structure provided by the adhesive effect of PVA and CTS effectively prevented water loss and enhanced the stability of the gel. The adsorption curves of the gel were fitted by establishing the pseudo-first order and pseudo-second order kinetic models. The adsorption curves were more consistent with the pseudo-second-order kinetic model. The best adsorption effect for Malachite green was 128.12 mg/g. C/CTS/PVA gel had a remarkable adsorption effect on Malachite green, Congo red, Methyl orange, and Methylene blue. In general, C/CTS/PVA gels have great potential for the treatment of sewage in the future.
Collapse
Affiliation(s)
- Zhichao Zhang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Youyan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Xu D, Zhao X, Mahsa GC, Ma K, Zhang C, Rui X, Dong M, Li W. Controlled release of Lactiplantibacillus plantarum by colon-targeted adhesive pectin microspheres: Effects of pectin methyl esterification degrees. Carbohydr Polym 2023; 313:120874. [PMID: 37182964 DOI: 10.1016/j.carbpol.2023.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
The aim of this study is to report the preparation of pectin microspheres by varying degrees of methyl esterification (DM) cross-linked with divalent cationic calcium to encapsulate Lactiplantibacillus plantarum STB1 and L. plantarum LJ1, respectively. Scanning electron microscopy revealed the compact and smooth surface of pectin of DM 28 %, and the stochastic distribution of L. plantarum throughout the gel reticulation. And the pectin of DM 28 % considerably increased probiotics tolerance after continuous exposure to stimulated gastrointestinal tract conditions, with viable counts exceeding 109 CFU/mL. This data indicated that low methoxy-esterification pectin was more efficient to improve the targeted delivery of probiotics in GIT. Additionally, the controlled release of microspheres was dependent on various pH levels. At pH 7.4, the release rates of L. plantarum STB1 and L. plantarum LJ1 reached up to 97.63 % and 95.33 %, respectively. Finally, the Caco-2 cell adhesion model was used to evaluate the cell adhesion rate after encapsulation, which exhibited better adhesion at DM of 60 %.
Collapse
|
9
|
Morello G, De Iaco G, Gigli G, Polini A, Gervaso F. Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels 2023; 9:132. [PMID: 36826302 PMCID: PMC9957157 DOI: 10.3390/gels9020132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrogels are fascinating biomaterials that can act as a support for cells, i.e., a scaffold, in which they can organize themselves spatially in a similar way to what occurs in vivo. Hydrogel use is therefore essential for the development of 3D systems and allows to recreate the cellular microenvironment in physiological and pathological conditions. This makes them ideal candidates for biological tissue analogues for application in the field of both tissue engineering and 3D in vitro models, as they have the ability to closely mimic the extracellular matrix (ECM) of a specific organ or tissue. Polysaccharide-based hydrogels, because of their remarkable biocompatibility related to their polymeric constituents, have the ability to interact beneficially with the cellular components. Although the growing interest in the use of polysaccharide-based hydrogels in the biomedical field is evidenced by a conspicuous number of reviews on the topic, none of them have focused on the combined use of two important polysaccharides, chitosan and pectin. Therefore, the present review will discuss the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Gianvito De Iaco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
10
|
Silveira MP, Almeida FLC, Andreola K, Alvim ID, Prata AS. Influence of composition on the internal diffusion mechanism of pectin–starch gel beads. J Appl Polym Sci 2022. [DOI: 10.1002/app.53570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mariana Pereira Silveira
- Laboratory of Food Innovation, Department of Food Engineering and Technology, Faculty of Food Engineering University of Campinas (UNICAMP) – Campinas São Paulo Brazil
| | - Francisco Lucas Chaves Almeida
- Metabolic and Bioprocess Engineering Laboratory, Department of Food Engineering and Technology, Faculty of Food Engineering University of Campinas (UNICAMP) – Campinas São Paulo Brazil
| | - Kaciane Andreola
- Department of Chemical and Food Engineering Maua Institute of Technology (IMT) ‐ São Caetano do Sul São Paulo Brazil
| | - Izabela Dutra Alvim
- Cereal and Chocolate Technology Center Institute of Food Technology (ITAL) – Campinas São Paulo Brazil
| | - Ana Silvia Prata
- Laboratory of Food Innovation, Department of Food Engineering and Technology, Faculty of Food Engineering University of Campinas (UNICAMP) – Campinas São Paulo Brazil
| |
Collapse
|
11
|
CIFTBUDAK S, KALKAN B, BOZBAY R, Mertcan ER, ORAKDOGEN N. Structure-property relationships of Kaolin-nanocomposite beads decorated with tertiary amines: Influence of shape on network elasticity and multi-responsivity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Bu K, Wu S, Zhu C, Wei M. Comparative study of HG-type low-ester hawthorn pectin as a promising material for the preparation of hydrogel. Carbohydr Polym 2022; 296:119941. [DOI: 10.1016/j.carbpol.2022.119941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/17/2023]
|
13
|
Qin C, Yang G, Wu S, Zhang H, Zhu C. Synthesis, physicochemical characterization, antibacterial activity, and biocompatibility of quaternized hawthorn pectin. Int J Biol Macromol 2022; 213:1047-1056. [PMID: 35691431 DOI: 10.1016/j.ijbiomac.2022.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
Quaternized polysaccharides are considered as potential antimicrobial materials due to their antimicrobial activity, biodegradability, biocompatibility, and water solubility. In this work, hawthorn pectin (HP) was obtained by ultrasound‑sodium citrate assisted extraction, quaternized hawthorn pectin (QHP) derivatives (namely: QHP-1, QHP-2, QHP-3, and QHP-4) with different degree of substitution were produced using (3-Chloro-2-hydroxypropyl) trimethylammonium chloride under alkaline conditions. The structure, properties, and morphology of HP and QHP were characterized by FTIR, XRD, 1H NMR, high-performance gel permeation chromatography (HPGPC), thermal analysis, and SEM. The results of FTIR and 1H NMR demonstrated that the quaternary ammonium modification was successful, and the degree of substitution (DS) of derivatives was calculated through elemental analysis. The determination of the minimum inhibitory concentrations and biofilm inhibition assay exhibited that QHP has a certain inhibitory effect on Escherichia coli and Staphylococcus aureus. Acceptable values of QHP were obtained in cytotoxicity assay on human keratinocytes.
Collapse
Affiliation(s)
- Chunge Qin
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Guangcheng Yang
- China School of Biology and Brewing Engineering, Taishan University, Tai'an 271000, PR China
| | - Shuai Wu
- Yantai Testing Center for Food and Drug, Yantai 264000, PR China
| | - Hao Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Chuanhe Zhu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
14
|
The Effect of Pectin Branching on the Textural and Swelling Properties of Gel Beads Obtained during Continuous External Gelation Process. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of the study was to produce gel beads under continuous conditions. Pectins obtained from black and red currants and commercial apple pectin were used as the material. For the production of gel beads, a self-designed device was used. The designed device allows for the production of gel beads in a continuous process, the properties of which are similar to those obtained in the classic, batch process. Thanks to the device, it is possible to obtain a repeatable product while reducing the workload. The produced gel beads were tested for water absorption and textural properties. The water absorption of the obtained gel capsules is strongly influenced by the pectin chain structure. Pectin beads obtained from currant pectins have a less hard structure and are more sensitive to deformation than those from apple pectin. Shorter and more branched chains of currant pectin than apple pectin form gels with a delicate structure, which strongly absorbs water, and unlike apple pectin gel, it disintegrates. The results show that the use of raw material obtained from different sources allows for obtaining products with various properties, using the same method; moreover, the used device is fully scalable and can be used in large scale.
Collapse
|
15
|
Zhang Y, Song Q, Tian Y, Zhao G, Zhou Y. Insights into biomacromolecule-based alcogels: A review on their synthesis, characteristics and applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Qin C, Yang G, Zhu C, Wei M. Characterization of edible film fabricated with HG-type hawthorn pectin gained using different extraction methods. Carbohydr Polym 2022; 285:119270. [DOI: 10.1016/j.carbpol.2022.119270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
|
17
|
Nazeri MT, Javanbakht S, Nabi M, Shaabani A. Copper phthalocyanine-conjugated pectin via the Ugi four-component reaction: An efficient catalyst for CO2 fixation. Carbohydr Polym 2022; 283:119144. [DOI: 10.1016/j.carbpol.2022.119144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
18
|
Swelling, Protein Adsorption, and Biocompatibility In Vitro of Gel Beads Prepared from Pectin of Hogweed Heracleum sosnówskyi Manden in Comparison with Gel Beads from Apple Pectin. Int J Mol Sci 2022; 23:ijms23063388. [PMID: 35328806 PMCID: PMC8954847 DOI: 10.3390/ijms23063388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The study aims to develop gel beads with improved functional properties and biocompatibility from hogweed (HS) pectin. HS4 and AP4 gel beads were prepared from the HS pectin and apple pectin (AP) using gelling with calcium ions. HS4 and AP4 gel beads swelled in PBS in dependence on pH. The swelling degree of HS4 and AP4 gel beads was 191 and 136%, respectively, in PBS at pH 7.4. The hardness of HS4 and AP4 gel beads reduced 8.2 and 60 times, respectively, compared with the initial value after 24 h incubation. Both pectin gel beads swelled less in Hanks’ solution than in PBS and swelled less in Hanks’ solution containing peritoneal macrophages than in cell-free Hanks’ solution. Serum protein adsorption by HS4 and AP4 gel beads was 118 ± 44 and 196 ± 68 μg/cm2 after 24 h of incubation. Both pectin gel beads demonstrated low rates of hemolysis and complement activation. However, HS4 gel beads inhibited the LPS-stimulated secretion of TNF-α and the expression of TLR4 and NF-κB by macrophages, whereas AP4 gel beads stimulated the inflammatory response of macrophages. HS4 gel beads adsorbed 1.3 times more LPS and adhered to 1.6 times more macrophages than AP4 gel beads. Thus, HS pectin gel has advantages over AP gel concerning swelling behavior, protein adsorption, and biocompatibility.
Collapse
|
19
|
Preparation of pectin-based nanofibers encapsulating Lactobacillus rhamnosus 1.0320 by electrospinning. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107216] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Fabrication and Characterization of Gel Beads of Whey Isolate Protein-Pectin Complex for Loading Quercetin and Their Digestion Release. Gels 2021; 8:gels8010018. [PMID: 35049553 PMCID: PMC8775321 DOI: 10.3390/gels8010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/23/2023] Open
Abstract
In this study, emulsion gel beads for loading quercetin were prepared through an emulsification/gelation process using whey protein isolate (WPI) and pectin. Emulsion gel beads’ properties were investigated by different pectin content. Additionally, the physicochemical properties, morphology and quercetin release properties from beads were explored. Firstly, electrical characteristics and the rheology of bead-forming solutions were measured, revealing that all systems had strong negative charge and exhibited shear-thinning behavior. The textural results demonstrated that the properties of emulsion gel beads were improved with increasing the content of pectin. It was also confirmed that crosslinking was formed between WPI emulsion and pectin by Fourier Transform Infrared (FTIR) analysis and thermogravimetric analysis (TGA). In addition, the shape of the beads was spherical or ellipses with smooth surfaces and they had a tight gel network of internal structures, which was visualized by using electron microscopy (SEM). Finally, the amount of quercetin released in vitro was gradually decreased with increasing pectin content; it was as low as 0.59%. These results revealed that WPI emulsion–pectin gel beads might be an effective delivery system for quercetin as a colon target and are worth exploring further.
Collapse
|
21
|
Wang N, Zhou X, Wang W, Wang L, Jiang L, Liu T, Yu D. Effect of high intensity ultrasound on the structure and solubility of soy protein isolate-pectin complex. ULTRASONICS SONOCHEMISTRY 2021; 80:105808. [PMID: 34737159 PMCID: PMC8567442 DOI: 10.1016/j.ultsonch.2021.105808] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 05/16/2023]
Abstract
In this study, a soy protein isolate (SPI)-pectin (PC) complex was prepared, and the effects of different high intensity ultrasound (HIU) powers on the structure and solubility of the complex were studied. Fourier transform infrared (FTIR) spectroscopy analysis exhibited that with increasing HIU power, the α-helix content of the SPI in the complex was significantly reduced, and the random coil content increased; however, an opposite trend appeared after higher power treatments. Fluorescence spectra showed that HIU treatment increased the fluorescence intensity of the complex, and the surface hydrophobicity was increased. The trend of the protein structure studied by Raman spectroscopy was similar to that of FTIR and fluorescence spectroscopy. When the HIU treatment was performed for 15 min and at 450 W power, the particle size of the complex was 451.85 ± 2.17 nm, and the solubility was 89.04 ± 0.19 %, indicating that the HIU treatment caused the spatial conformation of the protein to loosen and improved the functional properties of the complex. Confocal laser scanning microscopy (CLSM) revealed that the complex after HIU treatment exhibited improved dispersibility in water and smaller particle size. Gel electrophoresis results indicated that HIU treatment did not affect the protein subunits of the complex. Therefore, the selection of a suitable HIU treatment power can effectively improve the structural properties and solubility of SPI in the complex, and promote the application of the SPI-PC complex in food processing and industries.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Zhou
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weining Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Liqi Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Lianzhou Jiang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Liu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
22
|
Popescu I, Lupei M, Constantin M, Voicu G, Calin M, Prisacaru AI, Fundueanu G. Double cross-linked pectin beads stable in physiological environment as potential support for biomedical applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
He Z, Liu C, Zhao J, Li W, Wang Y. Physicochemical properties of a ginkgo seed protein-pectin composite gel. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Li DQ, Li J, Dong HL, Li X, Zhang JQ, Ramaswamy S, Xu F. Pectin in biomedical and drug delivery applications: A review. Int J Biol Macromol 2021; 185:49-65. [PMID: 34146559 DOI: 10.1016/j.ijbiomac.2021.06.088] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Natural macromolecules have attracted increasing attention due to their biocompatibility, low toxicity, and biodegradability. Pectin is one of the few polysaccharides with biomedical activity, consequently a candidate in biomedical and drug delivery Applications. Rhamnogalacturonan-II, a smaller component in pectin, plays a major role in biomedical activities. The ubiquitous presence of hydroxyl and carboxyl groups in pectin contribute to their hydrophilicity and, hence, to the favorable biocompatibility, low toxicity, and biodegradability. However, pure pectin-based materials present undesirable swelling and corrosion properties. The hydrophilic groups, via coordination, electrophilic addition, esterification, transesterification reactions, can contribute to pectin's physicochemical properties. Here the properties, extraction, and modification of pectin, which are fundamental to biomedical and drug delivery applications, are reviewed. Moreover, the synthesis, properties, and performance of pectin-based hybrid materials, composite materials, and emulsions are elaborated. The comprehensive review presented here can provide valuable information on pectin and its biomedical and drug delivery applications.
Collapse
Affiliation(s)
- De-Qiang Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Jun Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Hui-Lin Dong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jia-Qi Zhang
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Shri Ramaswamy
- Department of Bioproducts and Biosystems Engineering, Kaufert Laboratory, University of Minnesota, Saint Paul, MN 55108, USA
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|